
Cybersecurity research  
is not making us more secure

Simson L. Garfinkel
Senior Computer Scientist for Confidentiality and Data Access,  
US Census Bureau*
October 30, 2018
University of Pennsylvania
*Affiliation presented only for purpose of identification.

Photos from https://pixabay.com

Note: This presentation is to inform interested parties of
research and to encourage discussion of work in
progress. Any views expressed on the issues are those
of the author and not those of the U.S. Census Bureau.

https://pixabay.com

"Cybersecurity research is not making us more secure."
Interpreting this inflammatory title...

-1. Cybersecurity research is making us less secure?

-2. Other things are making us secure, but it's not cybersecurity research?

Are computers more secure than 10 years ago?

Are we [society?] more secure than 10 years ago?

-3. Other things are needed, so that cybersecurity research could realize its
promise of making us more secure?

-4. What's the purpose of cybersecurity research, if not to make us more secure?

-

 2

The Computer Book
Garfinkel and Grunspan,  
Sterling Milestones, 2018

Based on:
Thousands of Google searches,
April to December, 2017

This talk is influenced by three projects.

 3

Lorem ipsum dolor sit amet consect adipiscing nunc enim mauris sed massa

JUNE 2012 | VOL. 55 | NO. 6 | COMMUNICATIONS OF THE ACM 29

V viewpoints

I
L

L
U

S
T

R
A

T
I

O
N

 B
Y

 Y
A

R
E

K
 W

A
S

Z
U

L

THE RI SK OF being “hacked”—
whatever that expression ac-
tually means—is at the heart
of our civilization’s chronic
cybersecurity problem. De-

spite decades of computer security
research, billions spent on secure op-
erations, and growing training require-
ments, we seem incapable of operating
computers securely.

There are weekly reports of pen-
etrations and data thefts at some of
the world’s most sensitive, impor-
tant, and heavily guarded computer
systems. There is good evidence that
global interconnectedness combined
with the proliferation of hacker tools
means that today’s computer systems
are actually less secure than equiva-
lent systems a decade ago. Numerous
breakthroughs in cryptography, se-
cure coding, and formal methods not-
withstanding, cybersecurity is getting
worse as we watch.

So why the downward spiral? One
reason is that cybersecurity’s goal of re-
ducing successful hacks creates a large
target to defend. Attackers have the
luxury of choice. They can focus their
efforts on the way our computers rep-
resent data, the applications that pro-
cess the data, the operating systems
on which those applications run, the
networks by which those applications
communicate, or any other area that
is possibly subverted. And faced with
a system that is beyond one’s techni-
cal hacking skills, an attacker can go
around the security perimeter and use
a range of other techniques, including
social engineering, supply-chain inser-
tion, or even kidnapping and extortion.

It may be that cybersecurity appears
to be getting worse simply because
society as a whole is becoming much
more dependent upon computers.
Even if the vulnerability were not in-
creasing, the successful hacks can have
significantly more reach today than a
decade ago.

Views of Cybersecurity
The breadth of the domain means
many different approaches are being
proposed for solving the cybersecurity
problem:

 ! Cybersecurity can be viewed solely
as an insider problem. What is needed,
say advocates, are systems that prevent

DOI:10.1145/2184319.2184330 Simson L. Garfinkel

Inside Risks
The Cybersecurity Risk
Increased attention to cybersecurity has
not resulted in improved cybersecurity.

http://simson.net/clips/academic/2012.CACM.Cybersecurity.pdf

“The Cyber Security Risk”,
Communications of the ACM,  
June 2012, 55(6)

Based on experiences as:
Founder of thee Internet startups
Computer journalist, 1988-2003

ISBN 978-1-4549-2621-4

9 781 45 4 92621 4

5 2 9 9 5>

Manufactured in China

$29.95 U.S.
$39.95 CAN.

Simson L. Garfinkel is the senior computer scientist for
Confidentiality and Disclosure Avoidance at the US Census
Bureau. He holds seven patents and has published dozens of
articles on computer security and digital forensics. He is an ACM
Fellow, award-winning journalist, and author or coauthor of
fifteen other books, mostly on computing. Garfinkel received a
PhD in Computer Science from MIT, and a Master of Science in
Journalism from Columbia University.

Rachel H. Grunspan has worn many hats in her almost 20
years at the CIA including cyber-threat analyst, game and
simulation designer, and a leader in the world of digital
innovation. She is a member of the Senior Intelligence Service
and a winner of the 2007 Director of National Intelligence
Galileo Award. Rachel received a BA in Politics from Brandeis
University and a Master of Science in Information Systems from
the London School of Economics and Political Science.

Also available in the Sterling Milestones series:

250 of the most intriguing
computer milestones, including:

Sumerian Abacus (c. 2500 BCE) • Cipher Disk (c. 1470) • First Electromagnetic Spam

Message (1864) • Isaac Asimov’s Three Laws of Robotics (1942) • Core Memory (1951)

• First Disk Storage Unit (1956) • First Digital Image (1957) • The Bell 101 Modem (1958)

• Digital Long Distance (1962) • Spacewar! (1962) • ASCII (1963) • Touch Screen (1965)

• Star Trek (1966) •First Cash Machine (1967) • The Mouse (1967) • HAL 9000 Computer

(1968) • UNIX (1969) • Floppy Disk (1970) • @Mail (1971) • First Microprocessor (1971)

• First Wireless Network (1971) • Pong® (1972) • First Personal Computer (1974) •

Apple® II (1977) • Flash Memory (1980) • TRON (1982) • Microsoft Word® (1983) •

Nintendo® Entertainment System (1983) • Wargames (1983) • Macintosh® (1984) •

Digital Video Editing (1987) • CD-ROM (1988) • Morris Worm (1988) • World Wide Web

(1989) •JPEG (1992) • DVD (1995) • Google® (1998) • Wikipedia® (2001) • iPhone®

(2007) • Watson wins Jeopardy! (2011) • Subscription Software (2013) • Data Breaches

(2014) • The Limits of Computation (~9999)

Garfinkel/
Grunspan

What is sometimes referred to as
the world’s “first computer”

How do you prove that you know a
secret without revealing the secret?

What seminal events truly launched
the era of online commerce?

These are just a few of the thought-provoking questions
addressed in this beautifully illustrated book. Join authors
Simson L. Garfinkel and Rachel H. Grunspan as they
explore 250 of the most intriguing computer milestones,
from ancient record-keeping devices to modern-day
computing technologies.

Along with odd and amusing incidents like the first
actual bug found in a computer (it was a moth), this
timeline covers such diverse topics as the electrical
telegraph, fiber optics, software engineering, encryption,
hacking, desktop publishing, Facebook®, smart homes,
Bitcoin, and more. Key individuals behind the milestones
are also featured, including Ada Lovelace, Seymour Cray,
Grace Hopper, the Homebrew Computer Club, Alan
Turing, and Bill Gates, as well as riveting pop culture
moments from Star Trek to War Games to IBM’s Watson®
winning Jeopardy®!

Chronologically organized, each entry consists of a short
summary and one or more stunning images, while the
“Notes and Further Reading” section provides resources
for more in-depth study. In large part the story of
technology, this book is a compelling journey through the
history of computer science.

SCIENCE / His tor y

T
he Com

puter BO
O

KJacket design by Elizabeth Mihaltse Lindy
Jacket photographs courtesy of Wikimedia Foundation:

(code); Bubba76 (chip); Tomitsti (Antikythera)

© 2018 Sterling Publishing Co., Inc.

Bulk_Extractor Digital Forensics Tool
2006-2014

Based on cybersecurity research at:
MIT 1989-1990
MIT 2002-2005
Harvard SEAS 2005-2006
Naval Postgraduate School 2006-2014

http://simson.net/clips/academic/2012.CACM.Cybersecurity.pdf

 4

-EDVAC First Draft Report
John Mauchly, J. Persper Eckert,  
John von Neumann, Herman Goldstine

1945

http://www.computerhistory.org/collections/catalog/102689071

NOTE: These pages are only similar to the actual pages from The Computer Book

Year of
Milestone

Title of
Milestone

"Inventors"

Photo, possibly
historic

The Computer Book: From the Abacus to Artificial Intelligence, 250 Milestones in the History of Computer Science 
Garfinkel and Grunspan, 2018

 5

-ENIAC
John Mauchly, J. Preper Eckert

-Program stored on  
1,200 10-position switches.

-The hardware design team did
not consider the possibility
that software might be hard to
write or to debug.

1943

https://www.engadget.com/2014/11/25/eniac-on-public-display/

NOTE: Not actually the text
from our book

- This talk has four parts.

 6

Part 1: Users

-1. Cybersecurity is too hard for users to get right.
We expect too much from users

Most cybersecurity decisions should be made by cybersecurity
experts

There are many things that should be left to experts

Examples include:

Aviation, Construction, Medicines, Teaching, ...

"An expert is someone who has a prolonged or intense experience
through practice and education in a particular field." —Wikipedia

 7

Larry Walters lawn chair flight
July 2, 1982

Part 2: Experts

-1. Cybersecurity is too hard for users to get right

-2. Cybersecurity experts can't get it right, either
At least, not all the time

All experts make mistakes due to limitations of expert knowledge

This happens in cybersecurity, just like in other fields

 8

Tacoma Narrows Bridge Collapse (1940)

Part 3: Leadership

-1. Cybersecurity is too hard for users to get right

-2. Cybersecurity experts can't get it right, either

-3. Despite talk, leadership does not  
 value cybersecurity

Leadership does not [properly] value many things:

Safety — e.g. the Challenger Disaster (STS-51-L)

Systemic risk — e.g. the Financial Crisis

 9

STS-51-L Disaster, January 28, 1986

Lehman Brothers bankruptcy,
September 15, 2008

Part 4: Technology Transition

-1. Cybersecurity is too hard for users to get right

-2. Cybersecurity experts can't get it right, either

-3. Despite talk, leadership does not value 
 cybersecurity

-4. Research is needed on how to transition 
 research

Technology transition is a major problem!

There is no financial incentive for vendors to make products secure

 10

Xerox Star Personal Computer, 1981
$16,500 ($45,822 in 2018)

384 KiB RAM
10-40 MB hard drive

17 inch 1024x800 graphical display

 11

-Xerox Alto
Butler Lampson, Charles P. Thacker

-GUI Display

-Word Processing • Email

-Local Area Network

-Laser Printer

-2000 machines produced

-0 sold—it wasn't a product

-

1973

https://www.geekwire.com/2016/1973-xerox-computer-inspired-paul-allen-others-restored-running-seattle-museum/

Technology transitioning is a longstanding problem.

Part 4: Technology Transition

 12

Xerox Star Personal Computer, 1981
$16,500 ($45,822 in 2018)

384 KiB RAM
10-40 MB hard drive

17 inch 1024x800 graphical display

IBM Personal Computer, 1981
16 KiB RAM

$1,565 ($4,346 in 2018)
360K floppy drives (1 or 2)

80x25 monochrome display or
640x480 CGA graphics display

Cybersecurity is too hard 
[for average users]

1

Cybersecurity is hard because there is an active, malicious adversary.

- The Adversary
-Turns bugs into exploits

-Adapts to our defenses

-Has more time than we do

-Attacks employees when systems are secure

 14

https://www.deviantart.com/pptsy/art/The-Adversary-504369005

With this powerful adversary, we expect a lot from users.

1. Use a strong password on all devices

2. Passwords must be encrypted in transit and in storage

3. Apply security patches on a timely basis (e.g.

immediately)

4. Active firewall on all networked devices
5. Keep anti-virus current; enable real-time scanning

6. Employ centralized endpoint management

7. Encrypt all data on portable devices

8. Put servers in a locked, physically secure area

9. Backup data, and test backups regularly
10.Wipe or destroy devices when they are retired

 15

-Sound familiar?

 16

The University of Pennsylvania expects all that and much more of its
users and system administrators.

 17

http://www.upenn.edu/computing/group/npc/
approved/20100308-computersecurity.html

I. Title
A. Name: Computer Security Policy
B. Number: 20100308-computersecurity
C. Author: D. Millar, J. Choate, E. Katz, M. Muth, J.
Beeman (ISC), L. Steinfeld (OACP)
D. Status:
[] proposed [] under review [X] approved [] rejected []

obsolete
E. Date proposed: 2008-09-17
F. Date revised: 2010-03-23, 2010-05-20, 2015-05-25
G. Date approved: 2010-03-08, 2016-02-09
H. Effective date: 2016-02-09
I. Obsoletes: Critical PennNet Host Security Policy and
PennNet Computer Security Policy

http://www.net.isc.upenn.edu/policy/approved/20000530-hostsecurity.html
http://www.net.isc.upenn.edu/policy/approved/20040524-hostsecurity.html

In 1999, "Why Johnny Can't Encrypt" created the notion of usability of
"security software."

-"Why Johnny Can't Encrypt: A Usability
Evaluation of PGP 5.0"

-Alma Whitten and J.D. Tygar 
Usenix Security '99

-2015 USENIX Security "Test of Time" Award

 18

 19

-Pretty Good Privacy (PGP)
Phil Zimmermann

-PGP was a command-line tool.

-Whitten & Tygar reviewed the
1998 MacPGP version.

1991

PGP: Pretty Good Privacy, Garfinkel, O'Reilly, 1994

Whitten & Tygar actually analyzed the 1998 Macintosh PGP program.

 20

682 C H A P T E R T H I R T Y - F O U R

discussion of the user test results. A more detailed presentation of this material, including

user test transcript summaries, may be found in Whitten and Tygar.11

Based on the results of our evaluation, we conclude that PGP 5.0’s user interface does not

come even reasonably close to achieving our usability standard—it does not make public

key encryption of electronic mail manageable for average computer users. This, along

with much of the detail from our evaluation results, supports our hypothesis that

security-specific user interface design principles and techniques are needed. In our

continuing work, we are using our usability standard for security, the observations made

in our direct analysis, and the detailed findings from our user test as a basis from which

to develop and apply appropriate design principles and techniques.

Understanding the Problem
Before describing the user test, we provide a specific definition of usability for security,

identify the key properties of security as a problem domain for user interface design, and

define a usability standard for PGP.

Defining Usability for Security

Usability necessarily has different meanings in different contexts. For some, efficiency

may be a priority; for others, learnability; for still others, flexibility. In a security context,

our priorities must be whatever is needed in order for the security to be used effectively.

We capture that set of priorities in the following definition:

Definition: Security software is usable if the people who are expected to use it:

•Are reliably made aware of the security tasks they need to perform

•Are able to figure out how to successfully perform those tasks

•Don’t make dangerous errors

•Are sufficiently comfortable with the interface to continue using it

Problematic Properties of Security

Security has some inherent properties that make it a difficult problem domain for user

interface design. Design strategies for creating usable security will need to take these

properties explicitly into account, and generalized user interface design does not do so.

We describe five such properties here; it is possible that there are others that we have not

yet identified.

1. The unmotivated user property

Security is usually a secondary goal. People do not generally sit down at their

computers wanting to manage their security; rather, they want to send email, browse

web pages, or download software, and they want security in place to protect them

11 Alma Whitten and J. D. Tygar, Usability of Security: A Case Study, Carnegie Mellon University School
of Computer Science Technical Report CMU-CS-98-155 (Dec. 1998).

—Whitten & Tygar, 1999

When it comes to cybersecurity,  
many non-experts can compromise security.

-Cybersecurity researchers that study non-experts have found that usability
problems dominate all aspects of the security chain

-Users — Don't make sensible choice, put everyone at risk

-Programmers — Develop software with cybersecurity vulnerabilities

-System Administrators — Errors in configuration, deployment, incident response

-Managers and Leadership — Errors in priority setting, resource allocation

 21

- With active adversaries,  
all software is security software,  

all programmers are security
programmers.

 22

For example: As compilers get better at optimizing,  
security bugs are emerging in old code. [2012]

 23

Undefined Behavior: What Happened to My Code?⇤

Xi Wang Haogang Chen Alvin Cheung Zhihao Jia†

Nickolai Zeldovich M. Frans Kaashoek
MIT CSAIL

†
Tsinghua University

Abstract

System programming languages such as C grant compiler writ-
ers freedom to generate efficient code for a specific instruction
set by defining certain language constructs as undefined be-
havior. Unfortunately, the rules for what is undefined behavior
are subtle and programmers make mistakes that sometimes
lead to security vulnerabilities. This position paper argues
that the research community should help address the problems
that arise from undefined behavior, and not dismiss them as
esoteric C implementation issues. We show that these errors
do happen in real-world systems, that the issues are tricky, and
that current practices to address the issues are insufficient.

1 Introduction

A difficult trade-off in the design of a systems programming
language is how much freedom to grant the compiler to gen-
erate efficient code for a target instruction set. On one hand,
programmers prefer that a program behaves identically on all
hardware platforms. On the other hand, programmers want
to get high performance by allowing the compiler to exploit
specific properties of the instruction set of their hardware plat-
form. A technique that languages use to make this trade-off
is labeling certain program constructs as undefined behavior,
for which the language imposes no requirements on compiler
writers.

As an example of undefined behavior in the C programming
language, consider integer division with zero as the divisor.
The corresponding machine instruction causes a hardware ex-
ception on x86 [17, 3.2], whereas PowerPC silently ignores
it [15, 3.3.38]. Rather than enforcing uniform semantics across
instruction sets, the C language defines division by zero as
undefined behavior [19, 6.5.5], allowing the C compiler to
choose an efficient implementation for the target platform.
For this specific example, the compiler writer is not forced
to produce an exception when a C program divides by zero,

⇤This is revision #2 of the paper, which corrects some mistakes found in
the original version.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
APSys ’12, July 23–24, 2012, Seoul, S. Korea
Copyright 2012 ACM 978-1-4503-1669-9/12/07 . . . $15.00.

which allows the C compiler for the PowerPC to use the in-
struction that does not produce an exception. If the C language
had insisted on an exception for division by zero, the C com-
piler would have to synthesize additional instructions to detect
division by zero on PowerPC.

Some languages such as C/C++ define many constructs as
undefined behavior, while other languages, for example Java,
have less undefined behavior [7]. But the existence of unde-
fined behavior in higher-level languages such as Java shows
this trade-off is not limited to low-level system languages
alone.

C compilers trust the programmer not to submit code that
has undefined behavior, and they optimize code under that
assumption. For programmers who accidentally use constructs
that have undefined behavior, this can result in unexpected
program behavior, since the compiler may remove code (e.g.,
removing an access control check) or rewrite the code in a
way that the programmer did not anticipate. As one sum-
marized [28], “permissible undefined behavior ranges from
ignoring the situation completely with unpredictable results,
to having demons fly out of your nose.”

This paper investigates whether bugs due to programmers
using constructs with undefined behavior happen in practice.
Our results show that programmers do use undefined behav-
ior in real-world systems, including the Linux kernel and the
PostgreSQL database, and that some cases result in serious
bugs. We also find that these bugs are tricky to identify, and
as a result they are hard to detect and understand, leading to
programmers brushing them off incorrectly as “GCC bugs.”
Finally, we find that there are surprisingly few tools that aid
C programmers to find and fix undefined behavior in their
code, and to understand performance implications of unde-
fined behavior. Through this position paper, we call for more
research to investigate this issue seriously, and hope to shed
some light on how to treat the undefined behavior problem
more systematically.

2 Case Studies

In this section, we show a number of undefined behavior cases
in real-world systems written in C. For each case, we describe
what C programmers usually expect, how representative in-
struction sets behave (if the operation is non-portable across in-
struction sets), and what assumptions a standard-conforming C
compiler would make. We demonstrate unexpected optimiza-
tions using two popular compilers, GCC 4.7 and Clang 3.1, on

1

APSys '12, July 23-24, 2012

struct iw_event {
uint16_t len; /* Real length of this stuff */
...

};

static inline char * iwe_stream_add_event(
char * stream, /* Stream of events */
char * ends, /* End of stream */
struct iw_event *iwe, /* Payload */
int event_len) /* Size of payload */

{

/* Check if it’s possible */
if (likely((stream + event_len) < ends)) {

iwe->len = event_len;

memcpy(stream, (char *) iwe, event_len);
stream += event_len;

}

return stream;
}

Figure 7: A strict aliasing violation, in include/net/iw_handler.h of the
Linux kernel, which uses GCC’s -fno-strict-aliasing to prevent possible
reordering.

error code due to the null pointer check (e.g., when address 0
is mapped). Neither was considered a serious vulnerability.

However, an unexpected optimization makes this bug ex-
ploitable. When GCC sees the dereference, it assumes that
tun is non-null, and removes the “redundant” null pointer
check. An attacker can then continue to run the rest of the
function with tun pointing to address 0, leading to privi-
lege escalation [9]. The Linux kernel started using GCC’s
-fno-delete-null-pointer-checks to disable such optimiza-
tions.

2.6 Type-Punned Pointer Dereference

C gives programmers the freedom to cast pointers of one type
to another. Pointer casts are often abused to reinterpret a given
object with a different type, a trick known as type-punning. By
doing so, the programmer expects that two pointers of different
types point to the same memory location (i.e., aliasing).

However, the C standard has strict rules for aliasing. In
particular, with only a few exceptions, two pointers of different
types do not alias [19, 6.5]. Violating strict aliasing leads to
undefined behavior.

Figure 7 shows an example from the Linux kernel. The
function first updates iwe->len, and then copies the content of
iwe, which contains the updated iwe->len, to a buffer stream
using memcpy. Note that the Linux kernel provides its own op-
timized memcpy implementation. In this case, when event_len
is a constant 8 on 32-bit systems, the code expands as follows.

iwe->len = 8;

*(int *)stream = *(int *)((char *)iwe);
*((int *)stream + 1) = *((int *)((char *)iwe) + 1);

The expanded code first writes 8 to iwe->len, which is of
type uint16_t, and then reads iwe, which points to the same
memory location of iwe->len, using a different type int. Ac-
cording to the strict aliasing rule, GCC concludes that the read
and the write do not happen at the same memory location,
because they use different pointer types, and reorders the two
operations. The generated code thus copies a stale iwe->len

struct timeval tv;
unsigned long junk; /* XXX left uninitialized

on purpose */
gettimeofday(&tv, NULL);

srandom((getpid() << 16)

^ tv.tv_sec ^ tv.tv_usec ^ junk);

Figure 8: An uninitialized variable misuse for random number generation, in
lib/libc/stdlib/rand.c of the FreeBSD libc, where the seed computation
will be optimized away.

value [27]. The Linux kernel uses -fno-strict-aliasing to
disable optimizations based on strict aliasing.

2.7 Uninitialized Read

A local variable in C is not initialized to zero by default. A
misconception is that such an uninitialized variable lives on the
stack, holding a “random” value. This is not true. A compiler
may assign the variable to a register (e.g., if its address is never
taken), where its value is from the last instruction that modified
the register, rather than from the stack. Moreover, on Itanium
if the register happens to hold a special not-a-thing value,
reading the register traps except for a few instructions [16,
3.4.3].

Reading an uninitialized variable is undefined behavior in
C [19, 6.3.2.1]. A compiler can assign any value not only to
the variable, but also to expressions derived from the variable.

Figure 8 shows such a misuse in the srandomdev function
of FreeBSD’s libc, which also appears in DragonFly BSD and
Mac OS X. The corresponding commit message says that
the programmer’s intention of introducing junk was to “use
stack junk value,” which is left uninitialized intentionally, as a
source of entropy for random number generation. Along with
current time from gettimeofday and the process identification
from getpid, the code computes a seed value for srandom.

Unfortunately, the use of junk does not introduce more ran-
domness from the stack. GCC assigns junk to a register. Clang
further eliminates computation derived from junk completely,
and generates code that does not use either gettimeofday or
getpid.

3 Disabling Offending Optimizations

Experienced C programmers know well that code with un-
defined behavior can result in surprising results, and many
compilers support flags to selectively disable certain optimiza-
tions that exploit undefined behavior. One reason for these
optimizations, however, is to achieve good performance. This
section briefly describes some of these flags, their portability
across compilers, and the impact of optimizations that exploit
undefined behavior on performance.

3.1 Flags

One way to avoid unwanted optimizations is to lower the opti-
mization level, and see if the bugs like the ones in the previous
section disappear. Unfortunately, this workaround is incom-
plete; for example, GCC still enables some optimizations, such
as removing redundant null pointer checks, even at -O0.

4

For example: Bugs in CPU silicon are remotely exploitable! [2008]
So every team working on a modern CPU must have security engineer.

-Programs that are “secure” on one CPU
may be vulnerable on another.

-Auditing the code & the compiler isn’t
enough.

-Kris Kaspersky (1976-2017)

“Fact: malware that uses CPU bugs really does
exist;”

"nobody can catch it, since nobody knows how it
works or how it looks;"

“not apocalypse, just a new threat;”

 24

Remote Code Execution
through Intel CPU Bugs

Kris Kaspersky, Alice Chang
Endeavor Security, Inc.

CPU bugs are like a bullet from behindCPU bugs are like a bullet from behindCPU bugs are like a bullet from behindCPU bugs are like a bullet from behind

www.cs.dartmouth.edu/~sergey/cs258/2010/D2T1 - Kris
Kaspersky - Remote Code Execution Through Intel CPU
Bugs.pdf

http://www.cs.dartmouth.edu/~sergey/cs258/2010/D2T1%20-%20Kris%20Kaspersky%20-%20Remote%20Code%20Execution%20Through%20Intel%20CPU%20Bugs.pdf
http://www.cs.dartmouth.edu/~sergey/cs258/2010/D2T1%20-%20Kris%20Kaspersky%20-%20Remote%20Code%20Execution%20Through%20Intel%20CPU%20Bugs.pdf
http://www.cs.dartmouth.edu/~sergey/cs258/2010/D2T1%20-%20Kris%20Kaspersky%20-%20Remote%20Code%20Execution%20Through%20Intel%20CPU%20Bugs.pdf

For example: increasingly complex CPUs reveal previously unrealized
security assumptions about CPU architecture. [2018]

-These attacks use timing side-channel to bypass memory protection. 
Spectre can even be exploited by JavaScript!

 25

be fast. Otherwise, if the victim has not accessed the line,
the read will be slow. Hence, by measuring the access time,
the attacker learns whether the victim accessed the monitored
cache line between the eviction and probing steps.

The main difference between the two techniques is the
mechanism used for evicting the monitored cache line from
the cache. In the Flush+Reload technique, the attacker uses
a dedicated machine instruction, e.g., x86’s clflush, to
evict the line. Using Evict+Reload, eviction is achieved by
forcing contention on the cache set that stores the line, e.g.,
by accessing other memory locations which are loaded into
the cache and (due to the limited size of the cache) cause
the processor to discard (evict) the line that is subsequently
probed.

F. Return-Oriented Programming
Return-Oriented Programming (ROP) [63] is a technique

that allows an attacker who hijacks control flow to make
a victim perform complex operations by chaining together
machine code snippets, called gadgets, found in the code of
the vulnerable victim. More specifically, the attacker first finds
usable gadgets in the victim binary. Each gadget performs
some computation before executing a return instruction. An
attacker who can modify the stack pointer, e.g., to point to
return addresses written into an externally-writable buffer, or
overwrite the stack contents, e.g., using a buffer overflow, can
make the stack pointer point to the beginning of a series of
maliciously-chosen gadget addresses. When executed, each
return instruction jumps to a destination address from the
stack. Because the attacker controls this series of addresses,
each return effectively jumps into the next gadget in the chain.

III. ATTACK OVERVIEW

Spectre attacks induce a victim to speculatively perform
operations that would not occur during strictly serialized in-
order processing of the program’s instructions, and which leak
victim’s confidential information via a covert channel to the
adversary. We first describe variants that leverage conditional
branch mispredictions (Section IV), then variants that leverage
misprediction of the targets of indirect branches (Section V).

In most cases, the attack begins with a setup phase, where
the adversary performs operations that mistrain the processor
so that it will later make an exploitably erroneous speculative
prediction. In addition, the setup phase usually includes steps
that help induce speculative execution, such as manipulating
the cache state to remove data that the processor will need to
determine the actual control flow. During the setup phase, the
adversary can also prepare the covert channel that will be used
for extracting the victim’s information, e.g., by performing the
flush or evict part of a Flush+Reload or Evict+Reload attack.

During the second phase, the processor speculatively exe-
cutes instruction(s) that transfer confidential information from
the victim context into a microarchitectural covert channel.
This may be triggered by having the attacker request that the
victim perform an action, e.g., via a system call, a socket, or a
file. In other cases, the attacker may leverage the speculative

(mis-)execution of its own code to obtain sensitive information
from the same process. For example, attack code which is
sandboxed by an interpreter, just-in-time compiler, or ‘safe’
language may wish to read memory it is not supposed to
access. While speculative execution can potentially expose
sensitive data via a broad range of covert channels, the
examples given cause speculative execution to first read a
memory value at an attacker-chosen address then perform a
memory operation that modifies the cache state in a way that
exposes the value.

For the final phase, the sensitive data is recovered. For Spec-
tre attacks using Flush+Reload or Evict+Reload, the recovery
process consists of timing the access to memory addresses in
the cache lines being monitored.

Spectre attacks only assume that speculatively executed
instructions can read from memory that the victim process
could access normally, e.g., without triggering a page fault
or exception. Hence, Spectre is orthogonal to Meltdown [47]
which exploits scenarios where some CPUs allow out-of-order
execution of user instructions to read kernel memory. Conse-
quently, even if a processor prevents speculative execution of
instructions in user processes from accessing kernel memory,
Spectre attacks still work [17].

IV. VARIANT 1: EXPLOITING CONDITIONAL BRANCH
MISPREDICTION

In this section, we demonstrate how conditional branch
misprediction can be exploited by an attacker to read arbitrary
memory from another context, e.g., another process.

Consider the case where the code in Listing 1 is part of a
function (e.g., a system call or a library) receiving an unsigned
integer x from an untrusted source. The process running the
code has access to an array of unsigned bytes array1 of
size array1_size, and a second byte array array2 of
size 1 MB.

if (x < array1_size)
y = array2[array1[x] * 4096];

Listing 1: Conditional Branch Example

The code fragment begins with a bounds check on x which
is essential for security. In particular, this check prevents the
processor from reading sensitive memory outside of array1.
Otherwise, an out-of-bounds input x could trigger an exception
or could cause the processor to access sensitive memory by
supplying x = (address of a secret byte to read) � (base
address of array1).

Figure 1 illustrates the four cases of the bounds check in
combination with speculative execution. Before the result of
the bounds check is known, the CPU speculatively executes
code following the condition by predicting the most likely
outcome of the comparison. There are many reasons why the
result of a bounds check may not be immediately known,
e.g., a cache miss preceding or during the bounds check,
congestion of an execution unit required for the bounds
check, complex arithmetic dependencies, or nested speculative

1 if (index < simpleByteArray.length) {
2 index = simpleByteArray[index | 0];
3 index = (((index * 4096)|0) & (32*1024*1024-1))|0;
4 localJunk ˆ= probeTable[index|0]|0;
5 }

Listing 2: Exploiting Speculative Execution via JavaScript.

1 cmpl r15,[rbp-0xe0] ; Compare index (r15) against simpleByteArray.length

2 jnc 0x24dd099bb870 ; If index >= length, branch to instruction after movq below

3 REX.W leaq rsi,[r12+rdx*1] ; Set rsi = r12 + rdx = addr of first byte in simpleByteArray

4 movzxbl rsi,[rsi+r15*1] ; Read byte from address rsi+r15 (= base address + index)

5 shll rsi,12 ; Multiply rsi by 4096 by shifting left 12 bits

6 andl rsi,0x1ffffff ; AND reassures JIT that next operation is in-bounds

7 movzxbl rsi,[rsi+r8*1] ; Read from probeTable

8 xorl rsi,rdi ; XOR the read result onto localJunk

9 REX.W movq rdi,rsi ; Copy localJunk into rdi

Listing 3: Disassembly of JavaScript Example from Listing 2.

Context A Context B

call [function]
...

function A

function B

?? ?

Branch
Predictor

call [function]
...

spectre gadget

legit function

speculate

Fig. 2: The branch predictor is (mis-)trained in the attacker-
controlled context A. In context B, the branch predictor makes
its prediction on the basis of training data from context A,
leading to speculative execution at an attacker-chosen address
which corresponds to the location of the Spectre gadget in the
victim’s address space.

V. VARIANT 2: POISONING INDIRECT BRANCHES

In this section, we demonstrate how indirect branches can
be poisoned by an attacker and the resulting misprediction of
indirect branches can be exploited to read arbitrary memory
from another context, e.g., another process. Indirect branches
are commonly used in programs across all architectures (cf.
Section II-C). If the determination of the destination address of
an indirect branch is delayed, e.g., due to a cache miss, spec-
ulative execution will often continue at a location predicted
from previous code execution.

In Spectre variant 2, the adversary mistrains the branch
predictor with malicious destinations, such that speculative
execution continues at a location chosen by the adversary.
This is illustrated in Figure 2, where the branch predictor
is (mis-)trained in one context, and applies the prediction
in a different context. More specifically, the adversary can
misdirect speculative execution to locations that would never
occur during legitimate program execution. Since speculative
execution leaves measurable side effects, this is an extremely

powerful means for attackers, for example exposing victim
memory even in the absence of an exploitable conditional
branch misprediction (cf. Section IV).

For a simple example attack, we consider an attacker
seeking to read a victim’s memory, who has control over
two registers when an indirect branch occurs. This commonly
occurs in real-world binaries since functions manipulating
externally-received data routinely make function calls while
registers contain values that an attacker controls. Often these
values are ignored by the called function and instead they are
simply pushed onto the stack in the function prologue and
restored in the function epilogue.

The attacker also needs to locate a “Spectre gadget”, i.e.,
a code fragment whose speculative execution will transfer the
victim’s sensitive information into a covert channel. For this
example, a simple and effective gadget would be formed by
two instructions (which do not necessarily need to be adjacent)
where the first adds (or XORs, subtracts, etc.) the memory
location addressed by an attacker-controlled register R1 onto
an attacker-controlled register R2, followed by any instruction
that accesses memory at the address in R2. In this case,
the gadget provides the attacker control (via R1) over which
address to leak and control (via R2) over how the leaked
memory maps to an address which is read by the second
instruction. On the CPUs we tested, the gadget must reside
in memory executable by the victim for the CPU to perform
speculative execution. However, with several megabytes of
shared libraries mapped into most processes [25], an attacker
has ample space to search for gadgets without even having to
search in the victim’s own code.

Numerous other attacks are possible, depending on what
state is known or controlled by the adversary, where the
information sought by the adversary resides (e.g., registers,
stack, memory, etc.), the adversary’s ability to control spec-
ulative execution, what instruction sequences are available to
form gadgets, and what channels can leak information from

1 if (index < simpleByteArray.length) {
2 index = simpleByteArray[index | 0];
3 index = (((index * 4096)|0) & (32*1024*1024-1))|0;
4 localJunk ˆ= probeTable[index|0]|0;
5 }

Listing 2: Exploiting Speculative Execution via JavaScript.

1 cmpl r15,[rbp-0xe0] ; Compare index (r15) against simpleByteArray.length

2 jnc 0x24dd099bb870 ; If index >= length, branch to instruction after movq below

3 REX.W leaq rsi,[r12+rdx*1] ; Set rsi = r12 + rdx = addr of first byte in simpleByteArray

4 movzxbl rsi,[rsi+r15*1] ; Read byte from address rsi+r15 (= base address + index)

5 shll rsi,12 ; Multiply rsi by 4096 by shifting left 12 bits

6 andl rsi,0x1ffffff ; AND reassures JIT that next operation is in-bounds

7 movzxbl rsi,[rsi+r8*1] ; Read from probeTable

8 xorl rsi,rdi ; XOR the read result onto localJunk

9 REX.W movq rdi,rsi ; Copy localJunk into rdi

Listing 3: Disassembly of JavaScript Example from Listing 2.

Context A Context B

call [function]
...

function A

function B

?? ?

Branch
Predictor

call [function]
...

spectre gadget

legit function

speculate

Fig. 2: The branch predictor is (mis-)trained in the attacker-
controlled context A. In context B, the branch predictor makes
its prediction on the basis of training data from context A,
leading to speculative execution at an attacker-chosen address
which corresponds to the location of the Spectre gadget in the
victim’s address space.

V. VARIANT 2: POISONING INDIRECT BRANCHES

In this section, we demonstrate how indirect branches can
be poisoned by an attacker and the resulting misprediction of
indirect branches can be exploited to read arbitrary memory
from another context, e.g., another process. Indirect branches
are commonly used in programs across all architectures (cf.
Section II-C). If the determination of the destination address of
an indirect branch is delayed, e.g., due to a cache miss, spec-
ulative execution will often continue at a location predicted
from previous code execution.

In Spectre variant 2, the adversary mistrains the branch
predictor with malicious destinations, such that speculative
execution continues at a location chosen by the adversary.
This is illustrated in Figure 2, where the branch predictor
is (mis-)trained in one context, and applies the prediction
in a different context. More specifically, the adversary can
misdirect speculative execution to locations that would never
occur during legitimate program execution. Since speculative
execution leaves measurable side effects, this is an extremely

powerful means for attackers, for example exposing victim
memory even in the absence of an exploitable conditional
branch misprediction (cf. Section IV).

For a simple example attack, we consider an attacker
seeking to read a victim’s memory, who has control over
two registers when an indirect branch occurs. This commonly
occurs in real-world binaries since functions manipulating
externally-received data routinely make function calls while
registers contain values that an attacker controls. Often these
values are ignored by the called function and instead they are
simply pushed onto the stack in the function prologue and
restored in the function epilogue.

The attacker also needs to locate a “Spectre gadget”, i.e.,
a code fragment whose speculative execution will transfer the
victim’s sensitive information into a covert channel. For this
example, a simple and effective gadget would be formed by
two instructions (which do not necessarily need to be adjacent)
where the first adds (or XORs, subtracts, etc.) the memory
location addressed by an attacker-controlled register R1 onto
an attacker-controlled register R2, followed by any instruction
that accesses memory at the address in R2. In this case,
the gadget provides the attacker control (via R1) over which
address to leak and control (via R2) over how the leaked
memory maps to an address which is read by the second
instruction. On the CPUs we tested, the gadget must reside
in memory executable by the victim for the CPU to perform
speculative execution. However, with several megabytes of
shared libraries mapped into most processes [25], an attacker
has ample space to search for gadgets without even having to
search in the victim’s own code.

Numerous other attacks are possible, depending on what
state is known or controlled by the adversary, where the
information sought by the adversary resides (e.g., registers,
stack, memory, etc.), the adversary’s ability to control spec-
ulative execution, what instruction sequences are available to
form gadgets, and what channels can leak information from

-We conducted a 256-person, between-subjects online study comparing five
Python cryptographic libraries:

-In 20% of functionally correct tasks (across libraries),  
participants believed that their code was secure when it was not

Factor Description Baseline

Required factors
Library The cryptographic library used. PyCrypto
Encryption mode Asymmetric or Symmetric Symmetric

Optional factors
Experienced True if a programming in Python is part of participant’s job, and/or if participant has been

programming in Python for more than five years; otherwise false. Self-reported.
False

Security background True or false, self-reported. False
Library experience Whether the participant has used the library before, seen code that used it but not used it

themselves; or neither. Self-reported.
No experience

Copy-paste Whether the participant pasted code during this task. Measured, per-task regressions only. False
Library ⇥ Mode Interaction between the library and encryption mode factors described above. cryptography.io

:asymmetric

TABLE V
Factors used in regression models. Categorical factors are individually compared to the baseline. Final models were selected by minimum AIC; candidates

were defined using all possible combinations of optional factors, with both required factors included in every candidate.

Started Total
Library Mode Consented Survey Valid
PyCrypto sym 136 48 41

asym 175 37 24
M2Crypto sym 157 36 20

asym 174 35 27
cryptography.io sym 136 48 39

asym 174 22 19
Keyczar sym 136 26 20

asym 173 24 17
PyNaCl sym 136 34 29

asym 174 27 20

Total 1 571 337 256
TABLE VI

The number of participants who progressed through each phase of the study,
by condition. Each column is a subset of the previous columns.

Factor O.R. C.I. p-value
M2Crypto 0.55 [0.33, 0.91] 0.02*
cryptography.io 1.00 [0.61, 1.64] 1
Keyczar 0.43 [0.25, 0.75] 0.003*
PyNaCl 0.61 [0.36, 1.03] 0.065

asymmetric 0.49 [0.3, 0.81] 0.006*

M2Crypto:asymmetric 1.72 [0.83, 3.57] 0.144
cryptography.io:asymmetric 0.54 [0.25, 1.16] 0.112
Keyczar:asymmetric 1.39 [0.63, 3.05] 0.418
PyNaCl:asymmetric 1.12 [0.53, 2.39] 0.768

TABLE VII
Results of the final logistic regression model examining whether participants

who consented proceeded through all tasks and continued to the survey.
Odds ratios (O.R.) indicate relative likelihood of continuing. Statistically
significant factors indicated with *. See Section IV-B for further details.

significant. Most notably, Keyczar is estimated as only 10%
as likely to produce a functional result. By comparing con-
fidence intervals, we see that Keyczar is also significantly
worse than PyNaCl and cryptography.io. The results also show

Fig. 3. Percentage of tasks for which participants generated functional
solutions, by condition.

that symmetric tasks were about 6⇥ (0.16-1) as likely as
asymmetric tasks to have functional solutions, and that using
code generated via copy-and-paste improves a task’s odds of
functionality about 3⇥ (both significant). The participant’s
Python experience level, security background, and experience
with their assigned library do not appear in the final model,
suggesting they are not significant factors in the functionality
results.

In general, the set of asymmetric cryptography tasks was
harder to solve in a functionally correct way than the set
of symmetric cryptography tasks. This seem to be largely
because we included X.509 certificate handling in the set of
asymmetric cryptography tasks. Two of the libraries specifi-
cally designed to be easy to use (Keyczar and PyNaCl) do
not support X.509 certificate handling out of the box, so
these tasks had to be done via workarounds or could not
be solved at all. On the other hand, the low-level X.509
certificate APIs of M2Crypto and PyCrypto require developers
to deal with many cryptographic details (e.g., root certificate
stores and certificate details such as the Common Name or
Subject Alternative Name), which might have an impact on

10

Programmers writing security software optimize for functionality,  
not for security—their tools don't tell them when the code is secure.

 26

Yasemin Acar (CISPA, Saarland University), Michael Backes (CISPA, Saarland University & MPI-SWS), Sascha Fahl
(CISPA, Saarland University), Simson Garfinkel (National Institute of Standards and Technology), Doowon Kim
(University of Maryland), Michelle Mazurek (University of Maryland), Christian Stransky (CISPA, Saarland University),
Comparing the Usability of Cryptographic APIs, IEEE Security and Privacy 2017, San Jose, CA

https://www.ieee-security.org/TC/SP2017/papers/161.pdf

Organizations developing cryptographic products face significant
challenges. [Haney, Garfinkel, Theofanos 2017]
-We surveyed 121 individuals.

-78%	 Use test vectors 
11%	 Don't do formal testing, but just 
	 look at the data to observe that 
	 it's being encrypted

-74% 	 Use crypto standards 
 6%	 Don't use standards

-64%	 Have problems recruiting talent

-40%	 Think security professionals are harder to 
	 manage

-33%	 Have challenges finding adequate 
	 development tools

-93%	 Have challenges explaining products 
	 to potential customers.

-The marketplace does not incentivize cryptographic
products that are actually secure!

 27

Table I
Participant job functions

Job Function Category n= %a

Managerial (e.g. executive, program or depart-
ment manager)

�� ��%

Cryptographer �� �%
Developer/Software Engineer �� ��%
Researcher/Educator � �%
Security Professional (e.g. security architect, se-
curity engineer)

�� �%

Technical - Executive (e.g. CTO, Chief Scientist,
Technical Director)

�� ��%

Technical - Other (e.g. architect, engineer, certifi-
cations)

�� ��%

Unknown/not specified �� ��%

aNote: percentages do not sum to ���% due to rounding.

IV. Survey Findings
Because not all participants answered all questions, we

will specify the number of responses for each question
included in our results. For example, if �� out of ���
participants responding to a question selected a particular
option, we will indicate that with the notation of “��/���.”
Also, since there were several multiple responses questions,
we also report the number of “mentions” for those questions,
in other words, the number of total options that were
selected by all respondents for that question. Some response
options listed below are abridged from the actual survey
text for readability purposes.

Specific participants are referred to with the notation
P# where # is between � and ���, for example, P��.
When providing direct quotes, the participant ID will
be followed by a description of their job function (when
available). Direct quotes from participants are provided
only for those participants who granted permission to quote
their responses.

A. Participant Job Functions

Ninety-seven participants specified at least one job
function. We categorized reported job functions into high-
level categories (see Table �). Lack of specificity in these
open-ended responses (e.g. “engineer”) made it impossible
to accurately categorize all functions, so a best estimation
was made.

Our participant pool showed an obvious skew toward
technical roles (��/���), which is appropriate for our
research goals. Note that job function categorization into
a managerial role may not necessarily mean that the
participant lacks technical expertise. The job function
responses in our survey also indicated that most of our
participants worked on product development or had a role
in an organization performing development as their primary
job.

B. Product Descriptions

In order to provide some insight into the kind of products
represented in the survey, participants were asked, “Where

106

93

92

84

76

70

61

50

48

35

34

20

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

End-to-end encryption

Data-at-rest

Machine identity

Networking

Service identity

Human identity

Database integrity

Cloud-based protected storage

Data matching and deduplication

Chain-of-custody

High-integrity archives

Other

Figure �. Use of cryptography in products, ��� mentions, ���
respondents.

is cryptography used in your products?” Fig. � summarizes
the responses, showing that end-to-end encryption, data-at-
rest, and machine identity were the most commonly spec-
ified types of cryptography. Of participants who checked
the “Other” option, the two most commonly mentioned
categories were software/firmware code integrity (�/��)
and hardware-level encryption and security (�/��).

We also asked participants to describe what their product
does and how it uses cryptography. It was di�cult to
categorize these open-ended responses due to the variation
in detail and terminology used by participants, so we
were not able to do more in-depth statistical analysis of
participant responses in relation to product type. Out of
the ��� responses, the majority of products were software-
based, with only �� indicating a hardware-based solution.
Products were diverse and included operating systems,
cryptographic toolkits and libraries, internet of things
devices, disk and file encryption, network communication
encryption, certificate authorities, authentication software,
and key-management solutions, among others.

We also attempted to categorize product descriptions
into the number of cryptographic products that each par-
ticipant represented in the survey. Of the ��� respondents,
��.�% of participants had a single product that uses
cryptography, ��.��% had more than one product (but
not many products), and ��.�% were from an organization
with a large product line. In addition, �.��% of products
were research prototypes or proofs of concept.

C. Cryptographic Implementation Sources and Resources

We asked participants about the sources of the cryp-
tographic implementations used in their products with
��/��� (��.��%) indicating that they use what the
hardware, operating system, and standard libraries pro-
vide. Almost as many (��/���, ��.��%) said that they
develop their own cryptographic implementations and
��/��� (��.�%) selected open-source implementations.
Less common were the purchase of commercially available

Haney, Julie M., Simson L. Garfinkel, Mary F. Theofanos, Organizational
Practices in Cryptographic Development and Testing, 2017 IEEE Conference
on Communications and Network Security (CNS).

https://simson.net/clips/academic/2017.IEEE.CNS.pdf
https://simson.net/clips/academic/2017.IEEE.CNS.pdf

We reviewed 10 years of usable security research [2014]

User Authentication

Email Security and PKI

Anti-Phishing

Storage

Device Pairing

Web Privacy and Information Information Practice

Policy Specification and Interaction

Mobile Security and Privacy

Social Media Privacy

Security Administrators

 28

Usable Security
History, Themes, and Challenges

Simson Garfinkel
Heather Richter Lipford

GARFINKEL • LIPFORD
USABLE SECURITY

M
O

R
G

A
N

&
C

LAYPO
O

L

Usable Security
History, Themes, and Challenges
Simson Garfinkel, U.S. Naval Postgraduate School
Heather Richter Lipford, University of North Carolina, Charlotte
There has been roughly 15 years of research into approaches for aligning research in Human Com-
puter Interaction with computer Security, more colloquially known as “usable security.” Although
usability and security were once thought to be inherently antagonistic, today there is wide consensus
that systems that are not usable will inevitably suffer security failures when they are deployed into the
real world. Only by simultaneously addressing both usability and security concerns will we be able to
build systems that are truly secure.

This book presents the historical context of the work to date on usable security and privacy,
creates a taxonomy for organizing that work, outlines current research objectives, presents lessons
learned, and makes suggestions for future research.

ISBN: 978-1-62705-529-1

9 781627 055291

90000

Series Editors: Elisa Bertino, Purdue University
Ravi Sandhu, University of Texas at San Antonio

SYNTHESIS LECTURES ON INFORMATION SECURIT Y, PRIVACY, AND TRUST

ABOUT SYNTHESIS
This volume is a printed version of a work that appears in the Synthesis
Digital Library of Engineering and Computer Science. Synthesis Lectures
provide concise, original presentations of important research and development
topics, published quickly, in digital and print formats. For more information
visit www.morganclaypool.com

w w w . m o r g a n c l a y p o o l . c o m
MORGAN&CLAYPOOL PUBLISHERS

Series ISSN: 1945-9742

Elisa Bertino & Ravi Sandhu, Series Editors

MORGAN&CLAYPOOL PUBLISHERS

SYNTHESIS LECTURES ON INFORMATION SECURIT Y, PRIVACY, AND TRUST

Key Lessons

1. Reduce Decisions

2. Safe and Secure Defaults

3. Provide Users with Better Information, not

More Information

4. Users Require Clear Context to Make Good

Decisions

5. Information Presentation is Critical

6. Education Works, But Has Limits

 29

Usable Security
History, Themes, and Challenges

Simson Garfinkel
Heather Richter Lipford

GARFINKEL • LIPFORD
USABLE SECURITY

M
O

R
G

A
N

&
C

LAYPO
O

L

Usable Security
History, Themes, and Challenges
Simson Garfinkel, U.S. Naval Postgraduate School
Heather Richter Lipford, University of North Carolina, Charlotte
There has been roughly 15 years of research into approaches for aligning research in Human Com-
puter Interaction with computer Security, more colloquially known as “usable security.” Although
usability and security were once thought to be inherently antagonistic, today there is wide consensus
that systems that are not usable will inevitably suffer security failures when they are deployed into the
real world. Only by simultaneously addressing both usability and security concerns will we be able to
build systems that are truly secure.

This book presents the historical context of the work to date on usable security and privacy,
creates a taxonomy for organizing that work, outlines current research objectives, presents lessons
learned, and makes suggestions for future research.

ISBN: 978-1-62705-529-1

9 781627 055291

90000

Series Editors: Elisa Bertino, Purdue University
Ravi Sandhu, University of Texas at San Antonio

SYNTHESIS LECTURES ON INFORMATION SECURIT Y, PRIVACY, AND TRUST

ABOUT SYNTHESIS
This volume is a printed version of a work that appears in the Synthesis
Digital Library of Engineering and Computer Science. Synthesis Lectures
provide concise, original presentations of important research and development
topics, published quickly, in digital and print formats. For more information
visit www.morganclaypool.com

w w w . m o r g a n c l a y p o o l . c o m
MORGAN&CLAYPOOL PUBLISHERS

Series ISSN: 1945-9742

Elisa Bertino & Ravi Sandhu, Series Editors

MORGAN&CLAYPOOL PUBLISHERS

SYNTHESIS LECTURES ON INFORMATION SECURIT Y, PRIVACY, AND TRUST

Research Challenges

Subject Challenges:

1. Authentication

2. Adversary Modeling

3. Consumer Privacy

4. Social Computing

Domain Challenges:

1. Ecological Validity

2. Teaching

 30

Usable Security
History, Themes, and Challenges

Simson Garfinkel
Heather Richter Lipford

GARFINKEL • LIPFORD
USABLE SECURITY

M
O

R
G

A
N

&
C

LAYPO
O

L

Usable Security
History, Themes, and Challenges
Simson Garfinkel, U.S. Naval Postgraduate School
Heather Richter Lipford, University of North Carolina, Charlotte
There has been roughly 15 years of research into approaches for aligning research in Human Com-
puter Interaction with computer Security, more colloquially known as “usable security.” Although
usability and security were once thought to be inherently antagonistic, today there is wide consensus
that systems that are not usable will inevitably suffer security failures when they are deployed into the
real world. Only by simultaneously addressing both usability and security concerns will we be able to
build systems that are truly secure.

This book presents the historical context of the work to date on usable security and privacy,
creates a taxonomy for organizing that work, outlines current research objectives, presents lessons
learned, and makes suggestions for future research.

ISBN: 978-1-62705-529-1

9 781627 055291

90000

Series Editors: Elisa Bertino, Purdue University
Ravi Sandhu, University of Texas at San Antonio

SYNTHESIS LECTURES ON INFORMATION SECURIT Y, PRIVACY, AND TRUST

ABOUT SYNTHESIS
This volume is a printed version of a work that appears in the Synthesis
Digital Library of Engineering and Computer Science. Synthesis Lectures
provide concise, original presentations of important research and development
topics, published quickly, in digital and print formats. For more information
visit www.morganclaypool.com

w w w . m o r g a n c l a y p o o l . c o m
MORGAN&CLAYPOOL PUBLISHERS

Series ISSN: 1945-9742

Elisa Bertino & Ravi Sandhu, Series Editors

MORGAN&CLAYPOOL PUBLISHERS

SYNTHESIS LECTURES ON INFORMATION SECURIT Y, PRIVACY, AND TRUSTCybersecurity is too hard for average users,
but with research we could change that.

Cybersecurity experts make
mistakes, too.

2

New technologies seem secure because nobody has attacked them.
Remember Wi-Fi?

-1985 - FCC Approves Unlicensed Spread Spectrum

-1991 - NCR Corporation starts selling WaveLAN

-1999 - Wi-Fi Alliance Created

-"Spread Spectrum" technology ... makes the signal
both difficult to intercept and less susceptible to
interference."  
— The Economist, "A brief history of Wi-Fi", 
 June 10th, 2004

Today we know that nothing could be further from the truth!

 32

The expert managers of the world's most secure networks can't get
cybersecurity right.

-Practical systems for multi-factor authentication have
been available since 1980s

-The US Government mandated them in 2004

-DoD's CAC "provides two-factor authentication that's
largely immune to social engineering and phishing."

-We found:

97% of DoD respondents use a CAC to log into at least one work-
related system.

56% of DoD employees used systems requiring a "character string"
password. (Average of 3 accounts accessed frequently, 2
occasionally.)

-DoD's success depended on a $30 million allocation
by Congress for coordinating activities

 33

14 September/October 2016 Copublished by the IEEE Computer and Reliability Societies 1540-7993/16/$33.00 © 2016 IEEE

THE SECURITY–USABILITY TRADEOFF MYTH

Secure and Usable Enterprise Authentication:
Lessons from the Field

Mary Th eofanos, Simson Garfi nkel, and Yee-Yin Choong | National Institute of Standards and Technology

Surveys of US Defense and Commerce department employees show that using Personal Identity
Verifi cation and Common Access Cards for two-factor authentication results in improved usability
and security.

O ver the past 15 years, the US government has
deployed millions of multifunction smart cards

to its workforce with the goal of using the cards to grant
both physical access to facilities and logical access to
information systems. Th e deployment and use of these
cards has been inconsistent across diff erent government
agencies. Th e Department of Defense (DoD), with its
Common Access Card (CAC), recently announced that
98 percent of its information systems had been adapted
to use the smart cards, thus providing these systems
with strong two-factor user authentication. Other parts
of the government are signifi cantly behind the DoD,
with logical authentication deployment rates ranging
from 0 to 95 percent.1

Practical systems for multifactor authentication have
been on the market for roughly 30 years, but it’s only
in the past few years that industry and academia have
made a concerted eff ort to migrate users away from
pure password systems. Th ese groups can benefi t from
the US government’s experience in deploying multi-
factor systems and by comparing the results of diff erent
deployment strategies.

In this article, we present the historical background
that led to diff erent deployment strategies within the
US’s defense and civilian executive branch agencies.

We then present the results of two large-scale surveys of
password usage in the DoD and the US Department of
Commerce (DoC). Both surveys were completed before
the US government’s 2015 Cyber Sprint program, initi-
ated by the Offi ce of Management and Budget (OMB)
to address that year’s high-profi le cyberintrusions.2 Th e
DoD aggressively implemented the CAC on many of its
business systems, while DoC was less aggressive in its
Personal Identity Verifi cation (PIV) implementation.
Th us, comparing these two departments’ employee
reports and att itudes about password usage provides
insight into the eff ect of successfully deploying an easy-
to-use, strong, two-factor authentication method in a
large organization. Our sample includes responses from
28,481 DoD and 4,573 DoC employees.

Smart Card–Based Authentication
Smart card–based authentication relies on the card and
a six- to eight-digit numeric PIN. Unlike passwords
that must be changed routinely, PINs are generally
not changed for the life of the card. Our survey found
that it was rare for DoD users to mistype or forget their
PINs—common failure modes with passwords. Th e
security advantage comes from the use of public-key
infrastructure (PKI)-based authentication, rather than

Fall 2012 Survey of 28,481 DoD and 4,573 DoC employees
IEEE Security & Privacy Magazine
September/October 2016

June 2015: Office of Personnel Management (OPM) 
Data Breach 19.7 million individuals applying for security clearances

 34

OPM's Strong Authentication Capabilities before hack: 1%
— OMB FISMA Report, Feb. 27, 2015

-OPM had 0% Strong Authentication deployment in 2013

-DOD had 89% deployment of two-factor

-DOD's experts prioritized two-factor, OPM's didn't. OPM got hacked.

 35

ANNUAL REPORT TO CONGRESS: FEBRUARY 27, 2015 20

As seen in Table 4 below, numerous agencies have made no progress meeting the Strong
Authentication CAP goal. SBA, NRC, HUD, Labor, and State were all at 0% Strong Authentication
implementation at the end of FY 2014. The blue cells indicate performance that fell below the 75% target
across all CFO Act agencies. Excluding DOD, the percentage of CFO Act agency users for whom Strong
Authentication is required is 41%.5

Table 4: Strong Authentication Capabilities FY 2013 & FY 2014

Agency Strong Authentication
FY 2013 (%)

Strong Authentication
FY 2014 (%)

Labor 0 0
HUD 0 0
NRC 0 0
SBA 0 0
State 1 0
OPM 0 1
USAID 0 3
USDA 6 6
VA 4 10
NSF 0 19
Energy 9 29
DOT 7 31
Interior 0 36
Treasury 9 43
Justice 30 44
EPA 0 69
HHS 66 69
DHS 30 80
NASA 17 82
ED 75 85
SSA 85 85
DOD 89 87
Commerce 30 88
GSA 94 95
CFO Act Agency
Average* 67 72

*The average is weighted by the total number of people at the agency who have network accounts.
Source: Analysis of FISMA Agency Level Questions Data (Questions 5.1, 5.2.5, 5.3, and 5.4.5), reported to DHS via
CyberScope from October 1, 2012, to September 30, 2014.

Strong authentication doesn't protect against hostile insiders.

-Most cybersecurity approaches are
designed to deny access to bad actors

-Some of the most devastating
publicized cybersecurity incidents were
perpetrated by insiders

-(Typically only attacks on government
systems are publicized.)

 36
http://www.flickr.com/photos/shaneglobal/5115134303/

Ames Hanssen

Manning Snowden

http://www.flickr.com/photos/shaneglobal/5115134303/sizes/o/in/photostream/

As Spectre and Meltdown demonstrate,  
much of today's cybersecurity research is attack research.
-The "cyber kill chain" is driven by the quest for new exploits.

 37

Page 7 GAO-19-128 Weapon Systems Cybersecurity

Figure 1: Key Activities in Cyber Attacks and Cyber Defense

Offensive cybersecurity research changes business "risks" into "issues."

-Cybersecurity researchers find new things to attack

-Today's computers are incredibly complex:

Data • Encoding • Apps • Architectures • OS • Network & VPNs • DNS
(DNSSEC) • IPv4 (IPv6) • Embedded Systems • Human operators •
Hiring process • Supply chain • Family members

-The more we look, the more vulnerabilities we find

 38

Icon credit
downward spiral,
By Davo Sime, AU

10/27/18, 9*29 PMdownward_spiral

Page 1 of 2file:///Users/simsong/Library/Containers/com.apple.Safari/Data/Downloads/noun_downward%20spiral_589704.svg

https://thenounproject.com/davosime

Cybersecurity is a “wicked problem”

-Wicked Problems: Rittel and Webber,  
“Dilemmas in a General Theory of Planning,” 1973

-No clear definition
You don’t understand the problem until you have a solution.

-No “stopping rule”
The problem can never be solved.

-Solutions not right or wrong
Benefits to one player hurt another — Information security vs. Free speech

-Solutions are “one-shot” — no learning by trial and error
No two systems are the same. The game keeps changing.

-Every wicked problem is a symptom of another problem
Dave Clement, “Cyber Security as a Wicked Problem,” Chatham House, 2011

 39

Chatham House • Oct. 2011
"Cyber Security as a Wicked Problem"

Cybersecurity is too hard for both users and experts!

Despite talk, leadership does
not value cybersecurity.

3

October 2018: GAO-19-128

-DOD has been concerned about its
information networks for years

-DOD has only recently evaluated the
security of its weapons systems

-GAO has audited what DOD has done.

-This report is fascinating reading!

 41

WEAPON SYSTEMS
CYBERSECURITY

DOD Just Beginning
to Grapple with Scale
of Vulnerabilities

Report to the Committee on Armed
Services, U.S. Senate

October 2018

GAO-19-128

United States Government Accountability Office

Hot new report!

Today's weapons are cyberphysical systems

 42

Page 12 GAO-19-128 Weapon Systems Cybersecurity

Figure 2: Embedded Software and Information Technology Systems Are Pervasive in Weapon Systems (Represented via
Fictitious Weapon System for Classification Reasons)

A fighter is really flying laptop with weapons.

 43

Page 14 GAO-19-128 Weapon Systems Cybersecurity

Figure 3: Weapons Include Numerous Interfaces That Can Be Used as Pathways to
Access the System (Represented via Fictitious Weapon System for Classification
Reasons)

DOD systems are also more connected than ever before, which can
introduce vulnerabilities and make systems more difficult to defend.
According to the DSB, nearly every conceivable component in DOD is
networked.25 Weapon systems connect to DOD’s extensive set of
networks—called the DOD Information Network—and sometimes to
external networks, such as those of defense contractors. Technology
systems, logistics, personnel, and other business-related systems
sometimes connect to the same networks as weapon systems.
Furthermore, some weapon systems may not connect directly to a
network, but connect to other systems, such as electrical systems, that
may connect directly to the public Internet, as is depicted in figure 4.

25Department of Defense, Defense Science Board, Task Force Report: Resilient Military
Systems and the Advanced Cyber Threat, (Washington, D.C.: Jan. 2013).

Example: Importance of Network
Segmentation
In the 2013 Target cyber attack, hackers
obtained full names, contact information,
credit card details, and other sensitive data for
41 million customers in part because of
system design issues. Attackers initially
accessed Target’s network through a
refrigeration, heating, and air conditioning
subcontractor. Target’s payment system was
not directly connected to the Internet.
However, reports indicate that because the
payment system was on the same network as
a nonpayment system, attackers were able to
access it through that route.

Source: GAO analysis of Target statement and industry
reports. | GAO-19-128

Here's what GAO found.

-Officials from one program... said they are supposed to apply patches within 21
days of when they are released, but fully testing a patch can take months due
to the complexity of the system." (p. 20)

 44

Here's what GAO found.

-We found that from 2012 to 2017, DOD testers routinely found mission-critical
cyber vulnerabilities in nearly all weapon systems that were under development.

-Using relatively simple tools and techniques, testers were able to take control of
these systems and largely operate undetected. In some cases, system
operators were unable to effectively respond to the hacks.

-Furthermore, DOD does not know the full scale of its weapon system
vulnerabilities because, for a number of reasons, tests were limited in scope
and sophistication." (p. 25)

-

 45

DOD's test teams easily took control of weapons systems.

-One test team emulated a denial of service attack by rebooting the system,
ensuring the system could not carry out its mission for a short period of time.
41 Operators reported that they did not suspect a cyber attack because
unexplained crashes were normal for the system." (p. 24)

 46

It wasn't hard.

-In one case, it took a two-person test team just one hour to gain initial access
to a weapon system and one day to gain full control of the system they were
testing." (p. 25)

 47

Leadership literally does not "value" cybersecurity [enough].

-"DOD struggles to hire and retain cybersecurity personnel, particularly those with weapon
systems cybersecurity expertise.

-"Our prior work has shown that maintaining a cybersecurity workforce is a challenge
government-wide and that this issue has been a high-priority across the government for years.

-"Program officials from a majority of the programs and test organizations we met with said
they have difficulty hiring and retaining people with the right expertise, due to issues such as a
shortage of qualified personnel and private sector competition.

-"Test officials said that once their staff members have gained experience in DOD, they
tend to leave for the private sector, where they can command much higher salaries.

-"According to a 2014 RAND study, personnel at the high end of the capability scale, who
are able to detect the presence of advanced threats, or finding the hidden vulnerabilities in
software and systems, can be compensated above $200,000 to $250,000 a year, which
greatly exceeds DOD’s pay scale." (p.34)

-

 48

Underfunding is not a new problem. We narrowly missed World War III
because the production system was used for development and testing.

-Mitigation:

-"A software development and testing facility
was constructed in Colorado Springs that
allows the development and testing of all
software at an offsite facility removed from the
operational missile warning system in the
Cheyenne Mountain Complex.

-"This should prevent errors such as that of
November 9, 1979, when test data was
inadvertently injected into the operational
mission warning system." (p. ii)

-

 49

 50

-WarGames
Lawrence Lasker, Walter F. Parkes, John Badham

-After seeing the movie,
President Ronald Reagan
asked the chairman of the
Joint Chiefs of Staff it it was
really possible to break into
sensitive US government
computers.

-"Mr. President, the problem is
much worse than you think."

1983

Cybersecurity is expensive.

-Global cyber security spending: $60 billion in 2011

Cyber Security M&A, pwc, 2011

-172 Fortune 500 companies surveyed:

Spending $5.3 billion per year on cyber security.

Stopping 69% of attacks.

-If they raise spending...

$10.2 billion stops 84%

$46.67 billion stops 95% — “highest attainable level”

-95% is not good enough.

-Spending more money does not make a computer more secure

 51

Cyber Security M&A
Decoding deals in the global
Cyber Security industry

pwc.com

Cyber Security M&A
review

November 2011

Cybersecurity expenditures continue to rise.

-$73.7 billion in 2016

Source: International Data Corporation 
http://fortune.com/2016/10/12/cybersecurity-global-spending/

-$1 trillion spent globally from 2015 to 2021

$200B/year!

Source: Cybersecurity Ventures, http://cybersecurityventures.com/

 52

http://fortune.com/2016/10/12/cybersecurity-global-spending/
http://cybersecurityventures.com/

- Is money spent on
cybersecurity 

an investment or a cost?

 53

 54

-Mass-Marked Web Browser
Marc Andressen, Eric Bina

-No security.

-"Experts" said not to send
credit cards over the Web.

1992

Cybersecurity researchers want money spent on cybersecurity to be an investment.

 55

-E-Commerce

-— Netscape SSL (1994)

-— Verisign®

-— NSFNET commercial traffic

-— Network Solutions charges  
 for domain names

-— eBay

-— Amazon

-— DoubleClick®

1995

Cybersecurity experts told American business that encryption and good
security were necessary to let them use the Internet.... We were wrong.
-Consider Paypal — send money by email.

Established December 1998 — No email encryption!

IPO 2002 — valuation $847 million

Acquired by eBay in July 2002 — $1.5 billion

2018 revenue: $13 billion

2018 income: $2 billion

-Companies that prioritize cybersecurity:

Are late to market and miss market opportunities.

Miss sales that could fund security patches.

They are not the market winners.

 56

10/27/18, 4*25 PM

Page 1 of 2file:///Users/simsong/Library/Containers/com.apple.Safari/Data/Downloads/paypal-784404.svg

Spending money on cybersecurity does not prevent incidents. 
Companies are rarely penalized for cybersecurity problems.

— Source: https://www.csoonline.com/article/2130877/data-breach/the-biggest-data-breaches-of-the-21st-century.html

 57

Yahoo breach:  
2013-2014: 3 billion accounts, 
revealed Sept. 2016

eBay breach: 
May 2014: 145 million users,

Equifax breach:
July 2017: 143 million consumers

The three largest breaches in history.

∴ Cybersecurity appears to be a cost that is best minimized or avoided.

 58

Unlucky Lucky

Good
Cybersecurity

Company is attacked.

Attack is repulsed.

High cost.

Company is not attacked.

Cybersecurity is wasted.

CISO gets budget cut.

Poor 
Cybersecurity

Company is attacked.

Company suffers lost.

Company recovers.

Company is not attacked.

Low cost = higher profits.

"Simson's Magic Quadrant"

Micro-economics analysis from the point of view of the surviving companies.

 59

-Gartner Hype Cycle

-The Hype Cycle applies to
information technology.

-Cybersecurity never reaches
the Plateau of Productivity
because the environment
keeps changing.

1995

Leadership is not economically accountable for valuing cybersecurity, so leadership doesn't.

Research is needed on how
to transition research

4

Cybersecurity research has made major advances in the past 30 years.

-Major security breakthroughs since 1980:

Public key cryptography (RSA with certificates to distribute public keys)

Fast symmetric cryptography (AES)

Fast public key cryptography (elliptic curves)

Easy-to-use cryptography (SSL/TLS)

BAN logic

Fuzzing

-Most of these breakthroughs are crypto & theory

-None of these breakthroughs has been a “silver bullet,”  
but they have all helped.

 61

We have been less successful deploying applied cybersecurity research.

-Sandboxing (Java, C# and virtualization)

— Not very successful on desktop

— Highly successful on mobile — it was the only choice in the new OS

— Highly successful in cloud — it was the only choice at AWS

-Firewalls

— Highly successful in regulated environments

— Mostly successful in small markets but only when incorporated into access devices

-Network Monitoring

— Hard to get statistics on this.

— Many organizations seem to monitor, but it's not clear if they look at their logs.

 62

Removing user choice has been a powerful tool for improving security.

-Browser vendors (Google, Firefox, etc.) are
increasingly forcing good cybersecurity practices:

HTTPS everywhere

Elimination of SSL 3.0, TLS 1.0, etc.

-Microsoft's elimination of support for Windows
XP has been less successful.

In the past 2 years, market share of Windows XP has dropped
from 9% to 6.6%

Support was ended in 2014!

Microsoft gives users choice!

6.6% of users chose to be not secure.

-DNSSEC appears dead in the water.

Users want to go to websites when DNSSEC is misconfigured.

There is no match in incentives.

 63

http://netmarketshare.com/

Experiences transitioning bulk_extractor from the lab to the field.

Bulk_Extractor Digital Forensics Tool
2006-2014

Based on cybersecurity research at:
MIT 1989-1990
MIT 2002-2005
Harvard CRCS 2005-2006
NPS 2006-2014

 64

A brief history of bulk_extractor

-1989 — Named Entity Recognizer (NER)
developed at MIT Media Lab

-1991 — Transitioned to free-format address
book for NeXT computers.

-2003 — Used technology to find email
addresses, phone numbers and other
information on hard drives that I had
purchased without first recovering the files.

 65

1: Getting Started with SBook

SBook: Simson Garfinkel’s Address Book 5

SBook has several features that make it especially easy to type in a new entry:

• When a new entry is created, its name is selected and highlighted. Just start typing
the name of the new entry to replace the dummy name. As you type, the name will
appear simultaneously in the display and the matrix above.

• After you type the name and hit return, SBook automatically selects and highlights
“Address” on the template so that you can immediately begin typing in the address
font.

• Type as many addresses and phone numbers as you like. Whether you are typing
new information or editing old information, SBook places address and phone
icons automatically, in all the right places, while you type.

Deleting entries
You can delete one or several entries from an SBook file by selecting the names of the
entries that you want to delete in the matrix, and then choosing Edit>Delete entry
(command-D). An alert panel will appear on the screen asking you to confirm that you
really want to delete the entries.

Click YES (the default) to delete the entries, and NO to cancel the request for deletion.

If there is only one entry, the
panel will refer to it by name.

If there are several entries, the panel will
warn you how many you are about to delete.

1: Getting Started with SBook

SBook: Simson Garfinkel’s Address Book 5

SBook has several features that make it especially easy to type in a new entry:

• When a new entry is created, its name is selected and highlighted. Just start typing
the name of the new entry to replace the dummy name. As you type, the name will
appear simultaneously in the display and the matrix above.

• After you type the name and hit return, SBook automatically selects and highlights
“Address” on the template so that you can immediately begin typing in the address
font.

• Type as many addresses and phone numbers as you like. Whether you are typing
new information or editing old information, SBook places address and phone
icons automatically, in all the right places, while you type.

Deleting entries
You can delete one or several entries from an SBook file by selecting the names of the
entries that you want to delete in the matrix, and then choosing Edit>Delete entry
(command-D). An alert panel will appear on the screen asking you to confirm that you
really want to delete the entries.

Click YES (the default) to delete the entries, and NO to cancel the request for deletion.

If there is only one entry, the
panel will refer to it by name.

If there are several entries, the panel will
warn you how many you are about to delete.

We purchased 3000 used hard drives, memory sticks, digital cameras
and cell phones between 1998 and 2010 for their data.

 66

Center for Research on Computation and Society
Harvard School of Engineering and Applied Sciences, 2006
≈ 600 hard drives

In 2009, I was at the Naval Postgraduate School.
I had a vision for using the data analysis tool for threat correlation.

 67

UNCLASSIFIED

Most of this data is analyzed using trained personnel
and off-the-shelf software.

DOMEX in Iraq

 6

Actual slide from a presentation I used trying to raise money from a sponsor.

My vision was to automatically correlate information discovered on
different drives.

 68

UNCLASSIFIED

Manual analysis misses opportunities for correlation.

Different analysts see different hard drives.

Keyword searches don’t connect the dots.

 8

email from gdarf1@hotmail.com
email to gdarf1@hotmail.com

gdarf1@hotmail.com

Actual slide from a presentation I used to raise money from a sponsor.

I knew this would work,  
because I had done it during my postdoc at Harvard three years before!

 69

Manual analysis of on-drive data reveals that these drives
are from the same organization.

Drives #74 x #77
25 CCNS

in common

Drives #171 & #172
13 CCNS

in common

Drives #179 & #206
13 CCNS

in common

Both from same
Community College

Both from same
Medical Center

66

Actual slide from a presentation from my 2006 job talk.

Cross-drive correlation was too sophisticated for my intended users.

-The customer didn't want some fancy new cyber approach.

-The customer just wanted to get email addresses and phone
numbers off the hard drives.

 70

We were prepared. Between 2005 and 2008,  
we interviewed law enforcement regarding their use of forensic tools.

- Law enforcement officers wanted a highly automated tool for finding:

Email addresses

Credit card numbers (including track 2 information)

Search terms (extracted from URLs)

Phone numbers

GPS coordinates

EXIF information from JPEGs

All words that were present on the disk (for password cracking)

- The tool had to:

Run on Windows, Linux, and Mac-based systems

Run with no user interaction

Operate on every kind of evidence file they might have.

Automatically extract features from compressed data such as gzip-compressed HTTP

Run at maximum I/O speed of physical drive

Never crash

 71

Moving the technology from the lab to the field was challenging.

-The tool had to:

— plug-in to existing processes (technical, managerial)

— require no training to get immediate results.

— run on limited hardware.

— run faster when run on a faster, more expensive hardware.

— produce text files and have a graphical user interface.

-We learned that:

— If a tool doesn't work, we would not be given a chance to fix it.

— Users frequently coudln't provide data when a program crashed.

— Users are not engineers or programmers.

 72

We were highly successful.

-bulk_extractor is used in research and law
enforcement operations.

-bulk_extractor is packaged with many open
source digital forensics distributions.

-Over 960 Internet videos specifically mention
bulk_extractor (mostly tutorials).

-3 master's theses 
3 journal articles 
11 conference papers

-

 73

This project was successful because it is cheap for
organizations to adopt bulk_extractor and the ROI is huge.

Lessons from bulk_extractor

-Importance of product engineering

Not an accident that the tool precisely matched the requirements of the users

-Tool economics are incredibly important

Bulk_Extractor is a force multiplier for its users

Like many cybersecurity tools, it became more expensive maintain over time
Economics of cybersecurity tools depends on constantly expanding the user base

-Technology Impedance

The sophistication of the technology must match the sophistication of the users

We developed a lot of clever technology that we could never deploy

 74

Good news:  
DHS has prioritized funding of cybersecurity economics issues.

 75

Cyber Risk Economics
Capability Gaps
Research Strategy
2018

Conclusion: Cybersecurity is not making us more secure because that's
not where the incentives are.
-We didn't set out to create a tool that was
more reliable. We were told to create a tool
that never crashed.

-Few if any cybersecurity researchers are
being incentivized to create systems that are
"unhackable."

Users want systems that are unhackable. We don't even
have a definition.

-Many researchers are focused on attacking
or defending existing systems.

Malware • Access controls • Authentication • Supply chain

-Non-technical issues are equally important

Education • career paths • salaries

Economic incentives • Regulation

 76

Contact Information:
Simson Garfinkel

simsong@acm.org

-[Not discussed in this talk]  
I'm hopeful about:

Increasing use of formal methods.

Clean-Slate approaches (e.g. DARPA CRASH).

iOS, Android, and Chromebooks show that this
a workable approach.

Regulation — it's coming.

mailto:simsong@acm.org

