
Design Principles and Patterns for Computer Systems That Are

Simultaneously Secure and Usable

by

Simson L. Garfinkel

S.B., Massachusetts Institute of Technology (1987)
S.B., Massachusetts Institute of Technology (1987)
S.B., Massachusetts Institute of Technology (1987)

M.S., Columbia University (1988)

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 2005

c© Simson L. Garfinkel, MMV. All rights reserved.

The author hereby grants to MIT permission to reproduce and distribute publicly paper
and electronic copies of this thesis document in whole or in part.

Author. .
Department of Electrical Engineering and Computer Science

May 16, 2005

Certified by .
David D. Clark

Senior Research Scientist
Thesis Supervisor

Certified by .
Robert C. Miller

Assistant Professor
Thesis Supervisor

Accepted by .
A. C. Smith

Professor
Chair, Committee on Graduate Students

2

Design Principles and Patterns for Computer Systems That Are Simultaneously
Secure and Usable

by
Simson L. Garfinkel

Submitted to the Department of Electrical Engineering and Computer Science
on May 16, 2005, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy in Computer Science and Engineering

Abstract
It is widely believed that security and usability are two antagonistic goals in system design. This
thesis argues that there are many instances in which security and usability can be synergistically im-
proved by revising the way that specific functionality is implemented in many of today’s operating
systems and applications.

Specific design principles and patterns are presented that can accomplish this goal.

Patterns are presented that minimize the release of confidential information through remnant and
remanent data left on hard drives, in web browsers, and in documents. These patterns are based on
a study involving the purchase of 236 hard drives on the secondary market, interviews conducted
with organizations whose drives had been acquired, and through a detailed examination of modern
web browsers and reports of information leakage in documents.

Patterns are presented that enable secure messaging through the adoption of new key management
techniques. These patterns are supported through an analysis of S/MIME handling in modern email
clients, a survey of 469 Amazon.com merchants, and a user study of 43 individuals.

Patterns are presented for promoting secure operation and for reducing the danger of covert mon-
itoring. These patterns are supported by the literature review and an analysis of current systems.

In every case considered, it is shown that the perceived antagonism of security and usability can
be scaled back or eliminated by revising the underlying designs on which modern systems are
conceived. In many cases these designs can be implemented without significant user interface
changes.

The patterns described in this thesis can be directly applied by today’s software developers and
used for educating the next generation of programmers so that longstanding usability problems in
computer security can at last be addressed. It is very likely that additional patterns can be identified
in other related areas.

Thesis Supervisor: David D. Clark
Title: Senior Research Scientist

Thesis Supervisor: Robert C. Miller
Title: Assistant Professor

3

4

Acknowledgments
While a dissertation is meant to represent the work of a single person, every dissertation is necessar-
ily the result of numerous interactions between the author, the author’s advisors, peers, colleagues,
friends, and family. This one is no different.

Thesis advisors and readers
Foremost, my thanks are with my thesis advisors, David Clark and Rob Miller. Both of them have
worked with me for years to create not only this document and the research behind it, but to
help me make the transition from journalist to scientist. They have shared with me their time,
their resources, and their judgment. They have helped me to correct numerous errors with this
document—not merely typographical errors, but deep errors in thinking, purpose and presentation.
All of the errors that remain are mine alone; I am far better for my association with them.

I would also like to thank my thesis readers, Ron Rivest and Danny Weitzner. Both of them offered
me numerous comments in writing and during my defense which made this document much better
than it would have otherwise been.

Hard drive study
Mig Hofmann, Peter Wayner, and several employees at Microsoft graciously told me of good places
to obtain used hard drives and, in some cases, even accompanied me on my collection trips.

Amy Bruckman at Georgia Tech suggested that I read the Ethical Principles and Guidelines for the
Protection of Human Subjects, generally known as the “Belmont Report.” This information proved
very important for me to ensure that this work proceeded with the highest ethical standards.

At MIT Abhi Shelat and Ben Gelb both worked with me to make sense of the 112 gigabytes of data
that I acquired. Abhi’s credit card recognizer was instrumental in helping us to find the data that
ultimately brought the study so much attention in the general media—a vital element to having this
work make an impact on computer users everywhere. Ben’s email histogram tool proved invaluable
in tracking down the names and identities of people whose information we had recovered.

Browser sanitization study
Marc Rotenberg suggested comparing the “clear history” and “reset” features in Internet Explorer
and Apple Safari. Marc is always a source of good ideas; my only regret is that we were not able to
co-author a paper together on this topic, as we had originally planned.

Regulatory approaches
The idea of using icons to denote functions in programs appears to have originated with Cranor,
Resnick and Gallo.[CRG97] The icons presented with the “Pure Software Act of 2006” were cre-
ated by TechnologyReview.com senior graphic designer Matthew Bouchard. Jonathan Zittrain at
Harvard Law School offered many helpful comments on the proposal, as did Steven Bauer at MIT.
Likewise, the “RFID Bill of Rights” was first published in Technology Review. My editor Herb Brody
was instrumental in giving me the editorial freedom to pursue both ideas, and then on forcing me
to make the article as good as it possibly could have been. Overall, some of the best technology
writing that I have ever done was under Herb’s supervision. I miss writing for him.

Laura Ruby at Microsoft very graciously discussed accessibility issues with me and provided me

5

with copies of her writings. Carolyn Hodge and Fran Maier at TRUSTe reviewed the section on
their organization and offered useful corrections.

S/MIME survey
The idea for the S/MIME survey was originally suggested by Jean Camp when she was at Harvard’s
Kennedy School. Sean Smith at Dartmouth College and John Linn at RSA Security provided useful
comments on the survey design and questions, as did David Clark, Karen Sollins and Min Wu at
MIT.

The work on the S/MIME survey was done in conjunction with David Margrave at Amazon.com,
Jeffrey I. Schiller at MIT Information Systems, Erik Nordlander at CSAIL, and Robert C. Miller. This
work was previously published in part as [GSN+05] and [GNM+05]. I am grateful to my co-authors
for their permission to incorporate that work into this thesis.

Apart from allowing its employees to participate in the study, Amazon.com did not contribute
monetarily to the S/MIME survey and does not necessarily endorse the conclusions and recom-
mendations that appear in this dissertation.

PKI
My most sincerest thanks are due to Peter Gutmann and Carl Ellison for teaching me to be critical
of PKI. Thanks are also due to Loren Kohnfelder for reading key sections of my thesis and offering
his commentary.

Thanks also to Mary Ellen Zurko at IBM, to the engineers at Groove, to Jan R. Brands at Philips,
and to all of the members of the hcisec mailing list on Yahoo! Groups for engaging in interesting
discussions about PKI philosophy and practice.

Johnny 2
The Johnny 2 study never would have taken place had not Alma Whitten blazed the trail with her
original paper Why Johnny Can’t Encrypt. Thanks are due to her for sparking much of the interest
in the field of HCI-SEC which continues to this day, and for answering my numerous questions
regarding her study.

Peter Gutmann suggested the phrase “key continuity management” and provided me with many
examples of PKI’s failure, helping me to realize that I wasn’t the only person in the room who
thought that PKI was an unworkable solution.

Microsoft’s security team, especially David Ladd and Scott Culp, offered insight, suggestions, and
answered many questions regarding this project at various times over the past year.

Design principles and patterns
Chris Noessel at Microsoft Research graciously reviewed my chapter on design patterns. He pro-
vided a lot of good suggestions and recommendations on ways that I could tighten up the text; the
chapter benefited immensely from his input.

The inclusion of the “Principle of Least Surprise” is a result of an email exchange that I had with
Jerome Saltzer, who told me that he was now using this language instead of his 30-year-old princi-
ple of “Psychological Acceptability.” Although Saltzer said that he doubts the term (or the concept)

6

originated with the paper he wrote with Michael Schroeder [SS75], I have been unable to find any
prevous references that described this design principle with such clarity.

The application of design principles to the field of HCI-SEC was pioneered by the work of Whitten
and Tygar [WT98], and by Yee [Yee02]. I am indeed fortunate that I can stand on their shoulders.

MIT
Since arriving at MIT I have had been a member of the Advanced Network Architecture Group and
have truly enjoyed my associations there. It has been a wonderful place to work, made all the
better by the researchers, staff, and student members. I’d especially like to express thanks to Becky
Shepardson for making sure that things in the group run so smoothly.

I have also benefited tremendously through my associations with the Cryptography and Information
Security research group, and especially with Ron Rivest, Silvio Micali, Ben Ardita, Susan Hohen-
berger, Abhi Shelat, Stephen Weis, and Be Blackburn, all of whom have provided both intellectual
stimulation, friendship, and emotional support.

And a special thanks to Paula Michevich and Maria Sensale at the CSAIL reading room. While
working on this thesis, I have been helped by their skills in procuring both journal articles and
chocolates. I shall miss them—and their yummies–very much.

A personal note
At the start of 2001, I decided to return to graduate school and pursue a degree in computer science.
I received significant encouragement from Eric Grimson, who had been my recitation instructor for
an introductory computer course in the fall of 1984. Professor Grimson’s encouragement convinced
me that I really had a chance of being accepted into the program.

Frans Kaashoek sent me an email message in the spring of 2002 telling me that I had indeed been
accepted; this was followed by a letter from the department informing me that I had been awarded
an MIT Presidential Fellowship. It was this award that cemented my decision to attend MIT: I am
indebetted to Provost Robert Brown for being the program’s champion.

During the fall of 2002 I spoke with many MIT professors and researchers in an attempt to identify
a suitable research problem for me to work on. Discussions that I had during that time with Jerry
Saltzer, Frank Field and Joel Moses were all helped me to decide on a thesis that would explore the
apparent conflict between usability and security.

Professor Ron Rivest allowed me to be his Teaching Assistant during the fall of 2003 for his course
6.857: Cryptography and Computer Security. The following Spring, I had the good luck to be a
Teaching Assistant for Jerry Saltzer and David Karger in the course 6.033: Computer System Engi-
neering. Some of the ideas presented in this thesis—especially the system’s approach to usability
engineering—are a direct result of my close contact with those three professors.

Other ideas presented in this thesis are the result of discussions with attendees of the 2003 CRA
Conference on Grand Research Challenges in Information Security & Assurance[CRA03] and the
2004 DIMACS Workshop on Usable Privacy. [CAM+04] I am indebetted to Gene Spafford for invit-
ing me to attend the CRA conference and to Lorrie Faith Cranor for inviting me to both attend and
present at DIMACS. I am also indebetted to Gene for agreeing in February 1990 to be my co-author
on the book Practical Unix Security. [GS91] Gene and I have been collaborators and friends for the

7

past 15 years; it has been both a productive and pleasurable relationship.

It had been one of my most sincerest hopes to show this completed thesis to Jef Raskin, who I met
in 1996 and who taught me about many things—not only about usability and computers, but also
about model aircraft, child rearing, and the gentle art of leading a humane life. Sadly, this was not
to be, as Jef passed away on February 26, 2005, after a brief and intense battle with cancer.

Finally, I need to express my thanks, appreciation and gratitude to my wife Beth Rosenberg and my
three children, Sonia, Jared, and Draken, all of whom have sustained me on this massive project
and have been tolerant of the stress that it has caused in our home.

Belmont, Massachusetts
April 2005

8

Contents

1 Introduction 13
1.1 Security vs. Usability: The Need for Design Patterns 14
1.2 Computer Security at the Crossroads. 18
1.3 Why Have Security Specialists Failed to Address Usability? 22
1.4 Why Have Usability Specialists Failed to Address Security Issues? 26
1.5 Security Principles . 29
1.6 Original Contributions . 30
1.7 Thesis Roadmap . 34

2 Prior Work 37
2.1 Early Work in HCI-SEC . 37
2.2 Rules and Principles for Designing Usable Systems 43
2.3 Properties, Models and Principles for Usable Security 48
2.4 Specific Techniques for Aligning Security and Usability 59
2.5 Prior and Related Work on Sanitization. 66
2.6 A Brief Survey of Regulatory and Other Non-Technical Approaches 79
2.7 Conclusion . 100

3 Sanitization and Visibility 1: Operating Systems 101
3.1 Background . 102
3.2 The Problem of Discarded Data . 105
3.3 Case Study: Remembrance of Data Passed 117
3.4 The Traceback Study . 127
3.5 Future Work: Cross-Drive Forensics . 132
3.6 Proposals for Addressing the Sanitization Problem 133
3.7 Patterns for User Visibility and Sanitization 138
3.8 The Policy Implications of “Clean Delete” 140

4 Sanitization and Visibility 2: Applications 143
4.1 Case Study: Sanitizing Web Browser History 143
4.2 Case Study: Failed Document Sanitization in Word and Acrobat 155

9

10 CONTENTS

4.3 Conclusion . 158

5 Solving Secure Email’s “Grand Challenge” with Signature-Only Email 161
5.1 Background: Three Decades in Pursuit of Secure Messaging 162
5.2 A Survey of Secure Email Capabilities and Attitudes 170
5.3 Signatures Without Sealing . 182
5.4 Hidden Signatures . 195
5.5 Conclusions and Recommendations . 196

6 The Key Certification Problem: Rethinking PKI 201
6.1 A Tale of Two Protocols . 201
6.2 Reinterpreting the History of PKI . 203
6.3 Alternatives to X.509 . 216
6.4 Fundamental Problems with PKI . 222
6.5 Making PKI Usable . 236

7 Key Continuity Management 241
7.1 Key Continuity Management . 241
7.2 Patterns for Improving Message Security 249
7.3 Testing KCM with Johnny 2 . 250
7.4 Walk-Through. 267
7.5 Results and Discussion . 272
7.6 Conclusion . 281

8 Regulatory Approaches 283
8.1 Patterns for Regulation . 284
8.2 The Security Lexicon . 285
8.3 Spyware and the “Pure Software” Proposal 291
8.4 RFID on Consumer Items: The “RFID Bill of Rights” 298
8.5 Conclusion . 301

9 Additional Techniques for Aligning Security and Usability 303
9.1 Additional Patterns for Enhancing Secure Operations 303
9.2 Other Applications of User Auditing . 304
9.3 Operating System Improvements . 310
9.4 Eliminating the Security Policy “Construction Kit”. 311

10 Design Principles and Patterns for Aligning Security and Usability 317
10.1 User Visibility and Sanitization Patterns 324
10.2 Identification and Key Management Patterns. 330
10.3 Patterns for Promoting Overall Secure Operation 340

CONTENTS 11

11 Future Work: an HCI-SEC Research Agenda 349
11.1 Short Term . 349
11.2 Long Term . 356
11.3 A Call for New Patterns . 365
11.4 In Conclusion . 370

A Hard Drive Study Details 371

B Mail Security Survey Details 375
B.1 Commercially Oriented Email . 375
B.2 Financial Communications. 378
B.3 Personal Email At Home and At Work 378
B.4 Communication with Politicians. 379

C Johnny 2 User Test Details 381
C.1 Description of Test Participants . 381
C.2 Description of the Testing Process . 384
C.3 Summaries of Test Sessions . 402
C.4 OpenSSL Configuration . 406

D Two Email Proxies 413
D.1 Proxy Philosophy . 414
D.2 Stream: A PGP Proxy . 416
D.3 CoPilot: A Proxy or Plug-In that Implements KCM 420

E Specific Recommendations to Vendors 425
E.1 Recommendations for Desktop Software 425
E.2 Recommendations for Organizations that Send Bulk Email 426
E.3 Recommendations for Webmail Providers 427

Colophon 471

12 CONTENTS

CHAPTER 1

Introduction

It is widely believed that security and usability are two antagonistic goals in system design. This
thesis argues that there are many instances in which security and usability can be synenergisti-
cally improved by revising the way that specific functionality is implemented in many of today’s
operating systems and applications.

To be sure, today’s systems often force users into a dilemma of choosing between security and
usability. But this is frequently a fool’s choice, for a system that is secure but not usable will not be
used, while a system that is usable but not secure will eventually be hacked and rendered unusable.

My thesis is that there is no inherent conflict between creating systems that are secure and systems
that are usable. Instead, I argue the reverse: Usability and security can be made synergistic
by redesigning systems with specific principles and through the adoption of well-defined
patterns.

In some cases it is possible to simultaneously increase usability and security by revisiting design
decisions that were made years ago. In other cases it is possible to align security and usability by
changing the regulatory environment in which the computers operate. To these ends, this thesis
presents principles and patterns that cover three specific areas: patterns that prevent the accidental
release of confidential information through remnant data; patterns that promote secure electronic
messaging; and patterns that reduce the danger of covert monitoring through software and radio
frequency identification (RFID) systems.

Throughout this entire body of work, the goal is not to make security invisible, but to make security
a natural result of normal computer operations. The goal is not to make systems that are theoreti-
cally securable—the goal is to make systems that are actually secure when they are used in common
scenarios.[Tog05] To accomplish this goal, techniques will be presented that make security auto-
matic, understandable, and auditable by non-expert computer users.

13

14 CHAPTER 1. Introduction

1.1 Security vs. Usability: The Need for Design Patterns
The need to make it easier for end-users to securely operate their own computers is increasingly
seen as one of the leading security problems of our time. For example, at the 2003 Computing Re-
search Association’s conference “Grand Challenges in Information Security & Assurance”[CRA03],
the need to create better end-user security controls was identified as one of four “grand challenges”
facing computer security researchers. In 2005, the President’s Information Technology Advisory
Committee identified improved techniques for end-user security as one of nation’s foremost priori-
ties for cybersecurity research.[Pre05]

The basic argument of this thesis is that common errors in system design, computer user interfaces,
and interaction design can lead to common errors in secure operation. By identifying and correcting
these errors, users can naturally and automatically experience more secure operation.

In principle is this not a new approach. Much security research over the past twenty years tried to
increase system security by identifying common flaws and errors, and then proposing solutions that
could be used in a variety of different circumstances. But while this cookbook-like approach has
been applied to common security problems such as buffer overflows[CPM+98] and the transmission
of passwords by cleartext protocols[FK96, Ylo96], it has not previously been applied to techniques
for promoting secure Human Computer Interaction (HCI).

1.1.1 Principles and patterns
Saltzer and Schroeder introduced the concept of using design principles to improve the security of
computer systems in the classic article, “The Protection of Information in Computer Systems.”[SS75]
Those principles crystallized years of experience resulting from the design and implementation of
the CTSS and Multics operating systems. They provide designers with a tool for applying the lessons
of those operating systems to future projects. They also provide a conceptual framework for teach-
ing the lessons to the next generation of designers and programmers—which is fundamentally the
only way to ensure that the knowledge is not lost.

But for all of their power, there is no obvious way to translate design principles into concrete code
or even into a specific element of system design. Because of their generality, design principles are
necessarily subject to interpretation.

Design patterns overcome this problem by providing specific solutions to commonly occurring prob-
lems. Good patterns are like recipes: they tell you what elements they require and then provide
step-by-step instructions on how to use them. The best patterns also include context information
about when they are applicable, when they are not, what they accomplish, and how to adapt them
to a specific situation. To continue the food analogy, these patterns are like the detailed plans for a
complex dinner party.

A brief history of patterns
Patterns are used in many human endeavors that require a combination of skill and training. For
example, Schmidt et al. note that textile designers choose fabric by its pattern and create patterns
for the design of clothes; pilots fly in patterns; and engineers make use of common circuit patterns
in the design of electronic devices.[SFJ96]

1.1. SECURITY VS. USABILITY: THE NEED FOR DESIGN PATTERNS 15

Architect Christopher Alexander pioneered the recognition, naming, and use of patterns while
working on urban planning in the 1970s. [Ale79, AIS77] In the late 1980s and early 1990s a num-
ber of computer scientists working in the field of object-oriented design discovered Alexander’s
work. They saw a strong similarity between Alexander’s reusable architectural patterns and class
libraries made possible by object-oriented languages such as Simula, SmallTalk, and C++: just as
Alexander’s patterns were generic architectural solutions, the class libraries could be thought of as
generic programmatic solutions.

Although many of the patterns presented in the 1990s could more properly be thought of as well-
justified class libraries, patterns can be developed at considerably higher levels than mere code.
Schmidt et al. argue that the real value of patterns is to encapsulate knowledge and understanding,
making it easier to teach and deploy solutions.[SFJ96] Patterns make it possible to reuse successful
practices, to reason about what is done and why, and to document abstractions other than algo-
rithms and data structures. For example, the patterns-based approach has been applied to a wide
variety of problems, including Avionics Control Systems [Lea94], System Reengineering [SP98],
and even Risk Management.[Coc05]

“Best practices” and patterns for computer security
At its very heart, computer security is an engineering discipline. It is impossible to have a computer
system that is completely secure. Instead, security practitioners and the organizations that employ
them must analyze their risks, the costs of proposed security measures, and the anticipated benefits.

While practitioners have long understood the theory behind conducting a formal cost/benefit anal-
ysis, it is exceedingly difficult to apply such approaches to security because the risks frequently
defy measurement or estimation. What is the risk that a piece of code will contain a buffer over-
flow? What is the risk that an attacker will discover the flaw and be in a position to exploit it?
What is the cost of a successful exploit? Unable to come up with hard numbers, in the 1990s an
alternative approach called “best practices” emerged. Briefly, this approach seeks to create a stan-
dardized catalog of the security practices that are used in an industry, and then employ that catalog
as a kind of security checklist. Although it has been broadly applied to computer security[SAN04],
the best practices approach has been applied to many other security-related fields, from financial
crimes[FC99] to terrorism.[Jen97]

The problem with the best practices approach—aside from the fact that the practices suggested
are usually “minimal” rather than “best”—is that mere catalogs do not explain how practices fit
together or what each practice accomplishes. Understanding what makes these practices the “best
practices” is literally left as an exercise for the reader.

Security patterns are an attractive supplement or alternative to best practices. Like best practices,
patterns provide a cookbook-like approach that can be used by those less-skilled in the field. But
unlike best practices, patterns can also provide a framework (a pattern language) that can aid in
teaching, understanding, and even in formal system analysis.

Smetters and Grinter specifically suggested that the field of usability and security “would bene-
fit from creating and using security-related idioms or ’patterns’ similar to the software use pat-
terns common in other areas of development. These could help developers less sophisticated
in the use of security technology to understand how to incorporate it more effectively into their

16 CHAPTER 1. Introduction

applications.”[SG02] Until now, the research community has largely ignored this suggestion.

1.1.2 Why patterns are needed for solving the usability and security problem
Patterns are an especially useful tool for solving multidisciplinary problems such as the alignment
of security and usability.

Both security practitioners and usability specialists have long argued that what they bring to the
development process—be it security or usability—cannot be easily added to a completed system as
an afterthought. Instead, security and usability must be designed into systems from the beginning.

Here, then, is the origin of the usability/security conundrum: very few developers are trained in
either security or usability, let alone both. Very few product teams have a security specialist or a
usability specialist, let alone one of each. There is a universe of developers with all kinds of skills—
graphics, microcoding, device drivers, compiler design, and so on. Given such a universe, and given
that security and usability are different skill sets, the number of individuals or teams that have in
both security and usability is likely to be quite small. (Figure 1-1)

By providing pre-packaged solutions to common design problems, patterns can address this deficit.
What’s more, patterns can boost innovation by making it possible for designers to build upon the
work of others in the field of usability and security (HCI-SEC1). Many patterns have been developed
and deployed over the past 20 years that have dramatically increased the usability of modern com-
puters; examples of these patterns include copy-and-paste, drag-and-drop, and even very specific
patterns such as the highlighting of misspelled words. Likewise, security patterns such as the use
of the Secure Socket Layer (SSL) to “wrap” cleartext protocols and Email-Based Identification and
Authentication for resetting passwords have allowed developers untrained in security to neverthe-
less increase the security of their systems. By creating and publicizing patterns that align security
and usability, it is reasonable to expect that progress will be made in this area as well.

1.1.3 Principles and patterns for aligning security and usability
This thesis shows that patterns which simultaneously promote security and usability can be devel-
oped in a variety of areas. For each set of patterns studied, it shows that these patterns can be
applied to multiple cases—bolstering the claim that these are general design patterns, rather than
a specific technique that works in but a single situation.

The patterns that are presented are grouped into three specific areas:

• Patterns for User Visibility and Sanitization

These patterns are aimed at eliminating various kinds of “hidden information” that is left-
behind on computer hard drives, in applications such as web browsers, and in complex docu-
ment files. Taken together, the patterns overcome a common problem in today’s computer sys-
tems: that the commands for performing “delete” and “erase” operations frequently remove
visible indication of the information’s presence, without actually removing the information
itself.

1HCI-SEC is a commonly used shorthand to describe the research field concerned with the alignment of security and
usability. The term HCI-SEC is a combination of the acronym HCI (Human Computer Interaction) with the abbreviation
SEC (Security). Whitten popularized this term when she created the HCISEC group on Yahoo! Groups.[Whi00]

1.1. SECURITY VS. USABILITY: THE NEED FOR DESIGN PATTERNS 17

expertise in
usability

expertise in
security

Universe of software
developers

usable security
overlap area

Figure 1-1: The usable security overlap area

Chapters 3 and 4 discuss this issue at length, showing that left-behind data is pervasive on
today’s computer systems, and that the failure of modern systems to properly sanitize media
and files has led to many cases in which confidential information was compromised.

Until now, the most common solution to the problem of data left behind was education: users
were warned of the risk and then told of specific third-party programs that could wipe or
otherwise sanitize computers, web browsers, and document files. For example, in 2004 the
Federal Trade Commission and other regulatory bodies adopted rules requiring that busi-
nesses acquire technology and train their employees in the use of such programs to ensure
that computers containing “consumer information” were properly sanitized prior to being
disposed.[Com04b]

A complementary approach, proposed in this thesis, is to rework the operating system file
deletion system calls so that the blocks corresponding to deleted files are actually overwritten.
But as this thesis will show, simply changing the behavior of these system calls is insufficient
for simultaneously promoting end-user security and usability. Unless all of the identified pat-
terns are implemented, specific cases will remain through which end-user security or usability
will be readily compromised.

• Patterns for Secure Messaging

Public key cryptography was invented by Diffie and Hellman in 1976 for the explicit pur-
pose of letting people exchange email without first requiring the exchange of shared secret

18 CHAPTER 1. Introduction

keys.[DH76] Yet the experience of the past 29 years is that public key cryptography has of-
ten just replaced the old problem of key distribution with a new problem—the problem of
key certification. Kohnfelder’s thesis[Koh78] showed that digital certificates could be used to
distribute keys signed by a trusted third party—what is today called a Certification Authority.
But while CAs have worked within organizations and for the certification of some business
web sites, the CA approach has generally failed to certify the keys of end-users.

This thesis investigates two aspects of the secure messaging problem: do-not-reply email
sent from large organizations, usually in response to some kind of e-commerce event; and
person-to-person email, such as email exchanged between co-workers.

In the case of do-not-reply email, this thesis argues that considerable improvements in overall
security could be realized today if such mail were signed with S/MIME digital signatures.
This argument is supported through a detailed analysis of mail clients, web mail systems, and
through the results of a survey that was conducted of 469 Amazon.com merchants. Finally,
the techniques that are specifically needed for mail signatures are clarified in a series of
patterns.

To support person-to-person secure messaging, this thesis presents patterns that refine an
alternative approach for securing public keys called Key Continuity Management[Gut04b]
(KCM). This approach replaces the Certificate Authority with a client-side database that is
used to maintain a binding between the key and the identity for which it was used. This
binding is then verified on each subsequent use of the key, and the user is alerted if the
binding changes. KCM is precisely the security model introduced by Ylonen in the SSH
application[Ylo96], although the term itself was coined by Gutmann.[Gut04b]

This thesis refines and analyzes Key Continuity Management, showing that it offers security
guarantees that are similar to and in some cases identical to the security guarantees provided
by traditional CA-based systems. It then presents the results of a user test of 43 subjects,
showing that Key Continuity Management can defend against a variety of spoofing attacks
that are affecting email users today.

• Patterns for Promoting Overall Secure Operation

The final patterns presented in this thesis are a collection of specific techniques and practices
which are designed to further promote overall secure operations without cost to usability.
These patterns are supported by a comprehensive review of the HCI-SEC literature and a con-
sideration of non-technical factors that have been shown to impede the usability of security
technology.

In addition to these patterns, this thesis also presents five principles upon which these patterns are
loosely based.

1.2 Computer Security at the Crossroads
Why has usability only recently emerged as an issue of concern for the security community?

One possible explanation for this recent interest is the changing nature of the world’s computing
environment. Poor security measures have historically been self-correcting events. Militaries and

1.2. COMPUTER SECURITY AT THE CROSSROADS 19

corporations that skimped on security suffered accordingly. Computer systems, meanwhile, were
administered by a relatively small group of technically proficient individuals. In such an environ-
ment, systematic problems in security usability could be overcome through training, the use of
consultants, or even the threat of punishment.

The proliferation of high-performance computers with high-speed Internet connections has changed
the calculus of security. Most of these systems are used on a regular basis, but their security is not
actively monitored. Once compromised, they become launching points for spam, denial-of-service
attacks, and even illicit web hosting. The shift is significant: Whereas poor security measures were
once the most damaging to the owner of the poorly administered system, they are now more dam-
aging to others on the Internet or to society as a whole. Indeed, the owner may not even directly
suffer from using an infected host unless the owner’s ISP notices the infection and terminates the
computer’s service.

To put this in biological terms, it was once the case that security threats were spot attacks that
put evolutionary pressure on computer systems and the organizations running those systems to be
secure or to die—it was a case of “evolution in action.”[NP81] Today’s security threats are more
closely modeled as communicable diseases that weaken but do not kill their hosts—at least, not
until the infectious agents have reproduced and spread to other hosts.

In September and October 2004, technical experts working for America Online examined 329 home
computers and found that 20% of them were currently infected by a virus; in interviews, 63% of the
computer owners acknowledged that their computer had been infected in the past. A whopping
80% of the systems were also infected with adware or spyware (a topic that will be addressed
in 8.3). And even though 85% of the machines surveyed had some kind of antivirus systems
installed, 67% of those systems lacked up-to-date antivirus signatures and were thus ineffective
against the latest threats. Ironically, 70% of those who participated in the survey believed that they
were safe from viruses and online threats—many people in that 70% were mistaken. [Rob04b]

All of the viruses identified in the AOL study were, by definition, viruses that were recognized
by existing antivirus software: the fact that the infections were not identified indicates that the
current model of defending against hostile software simply does not protect many home users. This
observation is echoed by Gutmann, who concludes that the Internet’s current plague of viruses,
worms and Trojan horses is not because of novel buffer overflows, rootkits, and hacks against
Microsoft’s operating systems, but because “existing mechanisms are too hard to use” and “existing
mechanisms solve the wrong problems.”[Gut04b]

1.2.1 Computer security: a definition
Phrases like security breaches and computer security mean different things to different people. These
days one might be tempted to define a secure computer as a computer that is not susceptible to
attack over the network. By this definition, a laptop that is not plugged in to a network could be
thought to be “secure.” But an owner who leaves such a laptop unattended at a hotel bar may
be disappointed to find that his or her “secure” computer has been stolen. Clearly, being able to
withstand an attack over a network is not the only measure of security.

One definition of security that seems to be widely accepted is this:

20 CHAPTER 1. Introduction

Computer Security: “A computer is secure if you can depend on it and its software to
behave as you expect it to.”[GS91]

This definition may seem overly broad, but it does force the practitioner to focus on such practical
goals as continuity of operation in addition to classical goals such as prevention against unautho-
rized disclosure.

1.2.2 User models for the 21st century
There appears to be no historic model for users of computer systems other than the tautology that
“computer users are people who use computers.”

Writing in 1979, Morris and Thompson discuss the predilections of PDP-11 Unix users to pick
passwords that are easily guessed, but they didn’t say anything about who those users actually
were.[MT79, p.596] In 1987 Brian Reid stated that “programmer convenience is the antithesis
of security, because it is going to become intruder convenience if the programmer’s account is
compromised.”[Rei87, p.105]. However, it is clear from a reading of Reid’s essay in Communications
of the ACM that when he wrote the word “programmer,” Reid actually was referring to people who
were system managers of Unix systems—people who in 1987 were frequently programmers like
Reid.

In fact, computers have had a wide range of user populations for decades—users consisting not only
of computer scientists and researchers, but also secretarial staff, emeritus professors, and even the
school-aged children of researchers who had access to computer systems through home terminals.

Nevertheless, there was almost certainly an implicit user model at work. That model saw the
computer user as an able-bodied, moderately educated English speaker, able to read, write, see,
hear, and type. This user model was so entrenched that only within the past decade have efforts at
accessibility and internationalization produced computers that can be readily used by people with
disabilities or who do not speak some amount of English.

In recent years we have seen the emergence of an expanded user model that includes users with
both physical and mental disabilities, users who do not speak English, users who are not literate,
and—in many cases—users who are not even human. It is hypothesized, for example, that within
a few years much of the information accessed over the World Wide Web will be accessed by agents,
robots, and other kinds of non-human savants.

This expanded user model has significant implications for computer security, not the least of which
is that usability will be far more important in the future than it has been in the past. Many observers
have noted that one of the things that makes security systems hard to use is that there are many
special cases which can only be properly handled with skill and training: if the cases were not
special, then their handling could be automated and the security problem would go away.

But whereas others have argued that the solution to this expanded user model is increased efforts
directed towards user education—for example, user interfaces that teach security concepts—I be-
lieve that the correct solution to the user diversity problem is to redesign our systems so that secure
operation emerges organically when users pursue their existing goals.

1.2. COMPUTER SECURITY AT THE CROSSROADS 21

Dollar Loss
Attack 2004 2003

Computer Virus $55,053,900 $27,382,340
Denial of Service $26,064,050 $65,643,300
Theft of Proprietary Information $11,460,000 $70,195,900
Insider Abuse of Net Access $10,601,055 $11,767,200
Abuse of Wireless Network $10,159,250
Financial Fraud $7,670,500 $10,186,400
Laptop Theft $6,734,500 $6,830,500
Unauthorized Access by Insiders $4,278,205 $406,300
Telecom Fraud $3,997,500 $701,500
Misuse of Public Web Application $2,747,000
Web Site Defacement $958,100
System Penetration $901,500 $2,754,400
Sabotage $871,000 $5,148,500
Active Wiretap $705,000
Passive Eavesdropping $76,000

Figure 1-2: Security threats facing US organizations and reported dollar losses, summary data from the 2003 and 2004
CSI/FBI Computer Crime and Security Surveys. Blanks indicate that the category was not included in the annual survey
or that no loss was reported. [CSI03, CSI04]

1.2.3 Threat models for the 21st century
It is somewhat easier to quantify the historical threat model, if only because there is a rich literature
of computer attacks from which to draw.

As will be discussed in Section 2.3.1, Clark and Wilson have argued that computer security re-
searchers have historically considered threats of data theft to be of primary concern and technolo-
gies for preventing disclosure of confidential material to be of preeminent importance.[CW87] This
concern is traced to the US intelligence community, which was traditionally one of the principle
funders of computer security research.

But while the user model is expanding, the threat model is changing. With each year, it seems, new
vulnerabilities are discovered and exploited, forcing a continual reassessment of security strate-
gies and expenditures. Few of these new threats represent the kind of data disclosure that was
of concern to funding agencies. For example, the CSI/FBI 2004 Computer Crime and Security
Survey defined 13 types of attacks or computer misuse resulting in direct financial loss to the sur-
vey’s respondents; three of these categories—abuse of wireless networks, misuse of public web
applications, and web site defacement—didn’t even appear in the 2003 survey. On the other
hand, two areas of demonstrated monetary loss in the 2003 survey—active wiretap and passive
eavesdropping—did not appear in the 2004 survey.[CSI03, CSI04] Figure 1-2 summarizes these
categories and the reported dollar loss for the years 2003 and 2004.

The majority of the threats identified by the CSI/FBI survey involve a failure of security according
to the definition presented in [GS91]. A computer that is “secure” is not a computer that allows the
theft of proprietary information, yes, but it is also not a computer that is susceptible to denial of

22 CHAPTER 1. Introduction

service attacks or computer viruses, it is not a computer that can be abused by insiders, and so on.
This is an expanded threat model that clearly considers attacks other than disclosure to be serious
attacks that are worth preventing.

1.3 Why Have Security Specialists Failed to Address Usability?
With the exception of Saltzer and Schroeder’s classic 1975 article[SS75] and a handful of others,
[Bor96, MT79, GLNS93, Rei87, Kar89, ZS96] an in-depth examination of the computer security
literature shows that the security community largely ignored usability issues until the late 1990s.
Likewise, an examination of the usability literature shows that the usability research community
did not actively research usable security solutions during that same period.

One explanation for the failure of security specialists to address usability issues is that security and
usability have traditionally been been as being mutually antagonistic. If true, then there would
be little conceivable motivation for one community to work on issues that would appear to have a
contradictory goal.

After some reflection, this explanation is clearly wrong. The research community is often interested
in technical trade-offs—for example, space-time trade-offs in algorithm design, or the difficulty
of performing high-strength cryptography on relatively slow and under-powered microprocessors.
The perceived antagonism between security and usability could have been taken as a challenge and
stimulated research, rather than deadened it.

A more plausible explanation is that researchers were busy exploring a wide range of questions in
both specialties that could be addressed without the need to become familiar with another disci-
pline. Development of secure operating systems and new encryption technologies was so demand-
ing that it left little time to work on usability issues.

Yet another explanation is the possibility of a culture clash or personal animosity between individ-
uals who engaged in security research and those who engaged in usability work.

1.3.1 The emphasis on cryptography
It is possible that the heavy emphasis on cryptographic techniques for protecting information in
computer systems is one of the elements responsible for lack of general attention to the issue of
usability.

Cryptography is a problem that is both difficult and deep: it is easy to imagine that the emphasis on
these important problems have diverted time, attention, and financial resources from other areas
of computer security research. For example, Morris and Thompson noted that there is a tendency
for computer scientists to focus on intellectual problems that are mathematically interesting to
the exclusion of messy real-world problems which must be solved in order to actually increase
operational security.[MT79, p.594]

There are other aspects of cryptography in particular which poses significant usability challenges.
As discussed in Section 8.2, cryptography’s terminology is complex and frequently used inconsis-
tently. Keys have a unique usability problems: a single flipped bit can be the difference between

1.3. WHY HAVE SECURITY SPECIALISTS FAILED TO ADDRESS USABILITY? 23

data that can be recovered and data that is lost forever. And revealing a key can have profound
impact, gives keys security properties that are very different from the house keys after which they
are named, and more similar to the security requirements required for a bio warfare pathogens.

1.3.2 Industry’s emphasis on bug fixing, rather than secure design
A second factor that may be responsible for the decreased stature of usability research in the field
of computer security is the industry’s emphasis on bug fixing rather than secure design. The stan-
dard approach for running secure systems is to make sure that virus definition files are up-to-date
and that all of an operating system’s latest patches and bug-fixes are downloaded and installed
on a regular basis. As a result, much research to date has been on techniques for automatically
implementing or eliminating these tasks, rather than looking for other opportunities to change the
underlying operating system to promote more secure operations overall.[SAN04]

Bug fixes and antivirus systems are a tactical, short-term approach to strategic, long-term problems.
They are band-aids rather than attempts to address underlying diseases. Training people to cope
with software that is difficult-to-use, rather than redesigning that software, is another such tactical
response. Nevertheless, it is a profitable opportunity that detracts attention from the fixing of
underlying causes.

1.3.3 Emphasis on new tools, rather than secure operations
Kim and Spafford have argued that many organizations are overly focused on security tools when
greater benefits can be achieved by focusing limited resources on controls and process improve-
ment. They advocate a methodology known as “Visible Ops” in which Information Technology
operations are broken into discrete steps. Each step is a project, “with a clearly defined objec-
tive and exit criteria.”[KBS04] Steps are ordered, each building on the previous step. Steps are
catalytic, each resulting in a benefit to the organization. They are sustaining, in that they create
enough value for the organization so that there is reason to keep each step even if a subsequent
step is abandoned. Finally, Visible Ops steps are auditable.

Kim, the co-author of the Tripwire integrity management tool,[KS94] has had an uphill battle in
his efforts to persuade organizations to focus their attention on secure operations. It’s easy for an
organization’s management to allocate budget to purchase new tools, with the hope that those tools
will improve overall security. It is much more difficult for an organization to commit to changing
its internal practices and procedures to an approach that will almost surely increase short-term
costs—even if long-term costs are significantly reduced.

1.3.4 Perverse market incentives
Complicating the problem of developing computers that align security and usability are a number
of perverse market incentives that paradoxically favor the development and deployment of systems
that are unwieldy and difficult to manage.

Innovation in the security marketplace is frequently driven forward by small companies that de-
velop so-called “point solutions” that address a specific problem. Over time other companies de-
velop their own versions of these point solutions, the product category matures, and eventually the
technology is built into the operating system (where the phrase “the operating system” refers both

24 CHAPTER 1. Introduction

to the actual operating system and to the suite of programs that accompany the operating system.)
This is the path that has been followed by firewalls, junk mail filters, spyware scanners, and now
by antivirus systems.

There are many reasons why this model of point solutions does not produce security systems that
are easy-to-use:

• Third-party point solutions typically need to be separately purchased and installed.

• Even when third-party solutions are pre-installed by hardware manufactures or IT depart-
ments, there is still a marketing incentive to make sure that the these products are noisy. The
solution must announce its presence and give the user the impression that it is active and
protecting the user’s interests. If the solution is silent, no one will know that the solution is
present.

• Third-party security solutions are necessarily created by different development teams and
shipped separately from the systems that they intend to secure. As a result, they frequently
have different user interfaces and may have problems integrating with some operating system
configurations.

• As both the number of third-party solution providers and the number of solution categories
increases, the number of possible combinations and permutations increases geometrically. In-
dividual users may deploy solutions that were not tested and which may not produce good
results, causing the tools themselves to contribute to system failures and a lack of usability.
For example, a user may install and run antivirus systems from Symantec and F-Secure, com-
bine this with pop-up blockers from Google and Microsoft, and throw in two home-firewalls
for good measure. The result may well be a computer system that is not usable. Such combi-
nations can happen even in a corporate environment, where deployment configurations are
not consistent or end-users seek to supplement the security systems issued by their IT support
staff.

David Clark tells an amusing story in which a friend discovered that her email was no longer filtered
for viruses after she enabled the “POP over SSL” feature in her mail client. Her antivirus system had
been screening her email through the use of a POP proxy.[Cla03] Once SSL was enabled, the POP
proxy couldn’t examine the contents of the mail stream because it was cryptographically protected
against such man-in-the-middle attacks!

1.3.5 Difficulty of conducting usability research
When computer security specialists are motivated to conduct research in the field of HCI-SEC, a
problem that they immediately face is that HCI-SEC research frequently requires the experimenter
to experiment on human beings in the form of user studies. The skills required for conducting
effective user studies, while learnable, are unlike other skills required for success in computer sci-
ence. In a university or government environment, user studies are further complicated by the need
to comply with federal regulations that govern the use of human subjects. The added paperwork
can introduce delays and scare off casual research that might lead to insightful new discoveries.

Researchers who are seriously interested in conducting user studies in a federally approved manner
have gone on to discover that it is difficult to test the usability of a security tool under realistic

1.3. WHY HAVE SECURITY SPECIALISTS FAILED TO ADDRESS USABILITY? 25

conditions. Although one approach is to subject users to hypothetical attacks, the attacks need to
be carefully calibrated so that they are not too weak and not too strong.[SG02] Many usability
issues only emerge when systems are used infrequently, an approach hard to replicate in a lab.
Sasse notes that in many cases it is necessary to followup a user test with a second test performed
after the initial training—otherwise “you have no data.”[Sas04a] But such protocols add to study
expense and difficulty.

1.3.6 The authentication conundrum
For security researchers who are interested in usability concerns and who have the ability to conduct
user tests, another factor is the strange attraction of HCI-SEC researchers to the authentication
problem—invariably resulting in the exclusion of other HCI-SEC issues because of limited research
time, attention, and budgets.

Authentication in computer systems is commonly described as being based on “something that
you know” (e.g., a password), “something that you have” (a token or smart card), or “something
that you are” (a biometric). Authentication systems frequently fail because they are actually based
on something that you have forgotten, something that you have lost, or something that you no
longer are. Performance-based biometrics (e.g. keystroke dynamics) fail when they are based on
something that you could once do well but can no longer do, or something that other people can
do consistently, but you do erratically.

Research on authentication is tremendously important. Without authentication, a computer system
frequently has no basis for determining if access should be granted or not. Even capability-based
systems that provide access without authentication need to have some kind of system for deciding
who gets the capabilities. What’s more, practically every modern computer user needs to authen-
ticate and re-authenticate themselves multiple times throughout the day. As the current state of
authentication systems is generally deplored and ridiculed, any advances in this field should have
a huge social benefit.

But authentication is a particularly difficult area of research because today’s authentication systems
do not fail gracefully. If a user can only remember eight characters of a nine-character password the
computer does not allow the user limited access to the system’s less critical files: access is simply
denied. This is very different than authentication in the offline world. A bank, for instance, might
allow a person who has only weakly authenticated herself to withdraw a few hundred dollars but
might require substantial proof of both identity and authorization to withdraw several hundred
thousand dollars in cash.

Not surprisingly, research into authentication has taken up an astounding amount of resources over
the past three decades but has produced few tangible results. For example, despite the tremendous
amount of effort that has been spent developing certificate-based authentication systems for SSL,
the majority of web sites operating on the public Internet appear to base their authentication on
usernames and passwords, and not on client-side certificates. This is the same authentication
technology that was used by CTSS in the 1960s! Even worse, organizations like VeriSign, Thawte,
and even MIT that actually issue client-side SSL certificates will frequently issue them to anyone
who has a correct username and password. (In the case of MIT, the “password” consists of the
student’s Kerberos password and their MIT ID number.)

26 CHAPTER 1. Introduction

The depth of the authentication conundrum is evidenced by disagreement on such fundamental
questions as password expiration policy, whether or not passwords are even a good idea, and
whether systems that supplement passwords with tokens can or should be deployed to a large
user base.[Ric05] Password use rules are inherently self-contradictory: many policies imply that
users must pick passwords that are impossible to remember (because they contain no patterns and
nothing of personal significance to the user) and then avoid at all costs the security risks inherent
in writing these passwords down!

Complicating matters is interest in biometric technology, which is simultaneously seen as a promis-
ing technology for authentication, a technology with inherent usability problems that has never
been deployed on a large scale, and a dangerous technology for social control if placed in the
hands of the government.[Cov05]

While this thesis notes the depth of the authentication problem, it will attempt to avoid addressing
the problem in any deep or profound way except for the material contained in this section. By
setting the authentication problem aside, significant progress can be made elsewhere.

1.3.7 Non-Technical Factors
In addition to technical issues, there may have been a variety of non-technical factors that have
hampered the deployment of systems that are both secure and usable. Such factors could include
concerns regarding liability, “turf-wars” and political battles within organizations, and the existence
of organizations that benefited from the current state of affairs.

This thesis takes a broad view of how regulatory issues have traditionally affected the interaction
of usability and security. It also finds that some traditionally difficult technical problems might be
solvable through the use of relatively modest regulatory mechanisms that have had considerable
success in other domains.

1.4 Why Have Usability Specialists Failed to Address Security Issues?
The previous section discussed some of the systemic reasons why traditional research on computer
security issues has frequently ignored the issue of usability. This section addresses the problem
from the opposite direction, and explores why usability researchers have generally ignored issues
of computer security.

Although research on computer security goes back for decades, research in the field known as Hu-
man Computer Interactions (HCI) is much more nascent. Section 2.1.3 traces the emergence of HCI
as a field from practitioners who were working in the field of “Social and Behavioral Computing” in
the 1960s. A careful reading of that section—and the literature of the field in general—will reveal
that issues involving computer security have received relatively little treatment over the past four
decades. This section proposes several hypotheses as to why this might be the case.

1.4.1 A definition of “usability”
Before addressing the question “why have usability researchers largely ignored the issue of com-
puter security,” it is useful to arrive at a definition for “usability.”

1.4. WHY HAVE USABILITY SPECIALISTS FAILED TO ADDRESS SECURITY ISSUES? 27

What Is Usability?

Usability is the measure of the quality of a user’s experience when interacting with a product or system—
whether a web site, a software application, mobile technology, or any user-operated device.

Usability is a combination of factors that affect the user’s experience with the product or system, including:

Ease of learning How fast can a user who has never seen the user interface before learn it sufficiently well
to accomplish basic tasks?

Efficiency of use Once an experienced user has learned to use the system, how fast can he or she accomplish
tasks?

Memorability If a user has used the system before, can he or she remember enough to use it effectively the
next time or does the user have to start over again learning everything?

Error frequency and severity How often do users make errors while using the system, how serious are
these errors, and how do users recover from these errors?

Subjective satisfaction How much does the user like using the system?

Figure 1-3: The definition of usability promoted by the US Department of Health and Human Services, [US 04] based
on [Nie93b]

Although many people use an informal and personal definition of “usability”—software is usable if
they can use it—a variety of more specific definitions of usability are available. For example:

• The US Government has adopted a formal definition of usability (Figure 1-3) based on
[Nie93b] which measures usability according to five measurable quantities.

• Apple’s documentation takes a holistic approach, which views application usability as encom-
passing everything from the consistent use of Macintosh technology to having applications
that are fast, responsive, and reliable.

• Whitten and Tygar propose a definition for usable “security software” that software can satisfy
if users understand the software’s tasks, if they can figure out how to use the software to per-
form those tasks, if users don’t make dangerous errors and if they are sufficiently comfortable
with the software to continue using it (see [WT99] and Figure 2-5).

.

1.4.2 Historical disinterest in security
Much of the early work on usability simply ignored security issues, even when security was clearly
part of the overall problem. In his paper “Iterative User-Interface Design,”[Nie93a] Nielsen presents
the results of four usability studies, three of which have security functions in a central role. Yet each
time there is an opportunity for Nielsen to comment on security issues, he avoids them:

• Nielsen attempts to establish the cost of user errors. “For example, an error in the use of a
print command causing a file to be printed on the wrong printer has a cost approximately cor-
responding to the time needed for the user to discover the error and walk to the wrong printer

28 CHAPTER 1. Introduction

to retrieve the output.”[Nie93a] But if the printout contains confidential information—for
example, an employee offer letter with salary information—the cost associated with that in-
formation’s disclosure can be significantly greater than the minor inconvenience of having to
walk to another printer.

• Nielsen discusses the examination of a “Home Banking” system under development. But while
Nielsen considers the speed of consumers using the system and the chance of making an error,
he fails to examine how users logged in, how they were authenticated, how passwords would
be reset, or how resistant the system would be to so-called “phishing” attacks.2

• Nielsen’s study of a “cash register” application examined operator errors and speed, but did
not examine the effectiveness of the authentication procedure. The “Security” application
examined the speed of users authenticating with a single-sign-on system for a mainframe
computer, but (at least his published report) didn’t examine issues such as spoofing, trusted
path, or account lockouts.

Perhaps the reason that Nielsen and others ignored addressing security issues is that there was no
need to do so. Sasse, for example, claims that most HCI-SEC problems are really conventional
usability problems and can be solved most of the time using conventional usability approaches.
She argues that many of the apparently insurmountable problems in HCI-SEC can be solved with
user-centered design principles. [Sas04b, Sas03]

For example, Sasse and Brostoff [BS03] show that the seemingly insurmountable problem of pass-
word memorization can be dramatically mitigated by allowing users ten incorrect password at-
tempts before performing account lockout, rather than the traditional three. The pair assert that
the increase from three to ten tries does not significantly reduce security if strong passwords are
employed.

1.4.3 Usability researchers were busy
One simple explanation for the lack of usability research addressing issues of computer security is
that the field of usability emerged in the 1980s and 1990s, and that researchers during this time
were busy exploring more fundamental usability questions, such as the appropriate way to make
use of graphical input and output devices, the potential for handheld computing, and effective
means for accessing the large amount of information that could be placed on CD-ROMs.

Yet another explanation is that security research was not a priority in the pre-networked world of
1980s and early 1990s because most computer systems were protected through physical security.
This explanation holds that it was only after the mass popularization of the Internet that the usa-
bility of security systems became a serious societal issue. Before it was necessary for people to
manage their own security in a networked environment, it was acceptable for security systems to
be complex and difficult.

2Although phishing attacks seem to be a recent occurance, attacks of this type were experienced at MIT in the 1980s,
when individuals posting as system operators sent email to computer users at the MIT Media Lab asking that the users
change their password to a specific word or else e-mail their password back to the attacker. The first automated phishing
system was the program AOHell, released in November 1994 by the hacker “Da Chronic.”[Gar95, Chr95, Raj03] Among
its other capabilities, AOHell included an automated “fisher” designed to assist in stealing credit card numbers and other
account information from other AOL users.

1.5. SECURITY PRINCIPLES 29

1.4.4 Psychological basis
It is also possible to suggest psychological explanations for the traditional disinterest in security
issues by usability researchers.

While most usability researchers have devoted their professional careers to making computers
easier-to-use, a sizable amount of computer security is devoted to making computers difficult for
attackers to use. If there were no attackers there would be no need for passwords, cryptography,
or antivirus systems. (Of course, there would still be need for backups and systems to protect
against natural disasters, but the threat level would be significantly reduced.) Given that usability
researchers want to be enablers, not barriers, it is entirely understandable that they would want to
avoid a part of the computer discipline that would require them to make computers harder-to-use
(at least, for the attackers).

Another psychological explanation is that usability researchers avoided security work because they
did not view the work as being important. It is well known that people exaggerate minor risks while
minimizing risks that are large but infrequent. Many usability researchers might have concluded
that security threats were over-hyped and, in fact, less important to solve than other usability
challenges.

Some usability researchers have further claimed that security researchers have been generally un-
interested in usability issues—or even about users in general. Given this attitude, why would any
self-respecting usability research want to work with a security professional?

1.5 Security Principles
The work presented in this thesis is based on six guiding principles for the aligning of security
and usability. These principles, in turn, are based on an in-depth review of more than 30 years
of computer security academic literature, face-to-face interviews (both formal and informal) with
hundreds of computer security practitioners, and roughly two decades’ experience working com-
puter security in both academia and industry. Although this thesis does not provide guidelines for
choosing security principles, the principles themselves provide guidelines for finding good patterns
that align security and usability.

Chapter 10 presents the six principles for aligning security and usability:

• The Principle of Least Surprise. This principle is a restatement of Saltzer and Schoreder’s
principle of “psychological acceptability.”[SS75] This principle holds that the computer should
not surprise the user when the user expects the computer to behave in a manner that is
secure. The Principle of Least Surprise is violated when there is a mismatch between the
user’s expectations and the computer’s implementation. One way to correct such a violation
is to educate the user; a second approach is to change the underlying computer system so that
security properties mesh naturally with user expectations. It is observed that many security
professionals spend the first decade of their career pursuing the first approach of educating
users, and the rest of their career pursuing the second.

• The Principle of Good Security Now. Computer security is an engineering discipline. Even
though it is impossible to have a computer system that is completely secure, there is always

30 CHAPTER 1. Introduction

a tension between deploying good systems that are available today and waiting for better
systems that can be deployed tomorrow. This principle holds that it is a mistake not to deploy
good systems that are available now: if good systems are not deployed, end-users who are
not trained in security will create their own, poor security solutions.

• Provide Standardized Security Policies. Today’s security subsystems provide too many
choices and configuration options that are relevant to security. These choices are frequently
overwhelming to end-users. Worse, relatively minor changes in a security policy or configu-
ration can have a drastic impact on overall security. Most users need security experts to make
decisions for them because—by definition—users are not experts.

This is not to say that users need to be locked in tight to a few inflexible policies from which
they can never deviate. What’s needed is a range of well-vetted, understood and teachable
policies, and then the ability to make understood, controlled, contained and auditable devia-
tions from these policies when needed.

• Consistent Meaningful Vocabulary. Usability is promoted when information is presented
with a vocabulary that is consistent and meaningful. But, as will be shown in Section 8.2,
there is a natural tendency among computer engineers to be loose with their choice of lan-
guage. A guiding principle for aligning security and usability is that security information, at
least, must be standardized and used consistently.

• Consistent Controls and Placement. In addition to standardizing vocabulary, it is important
that security-related controls in graphical user interfaces be likewise standardized, so that
similar functionality is presented in a similar manner and in a consistent location in user
interfaces.

• No External Burden. Security tools must not pose a burden on non-users who do not oth-
erwise benefit from their use. Otherwise, non-users will push back on users through social
channels and encourage the users to discontinue the use of the tools.

These principles must be adapted with reason to the tasks that are at hand. Grudin observed
that there are many cases in which a simple application of consistent user interface rules does not
lead to interfaces that are easy-to-use.[Gru89] Instead, he argues that consistency with simplistic
rules must often be violated in the interest of creating a user experience that it itself natural and
consistent.

1.6 Original Contributions
This thesis summarizes a significant body of research performed at MIT over the past three years.
Original contributions contained herein include:

General principles and literature review:

• A novel psychological and professional hypothesis for the traditional lack of work towards
the goal of aligning usability and security.

• One of the most comprehensive reviews to date of the literature in the field of usability and
security (excluding the literature that specifically addresses the issue of user authentication).

1.6. ORIGINAL CONTRIBUTIONS 31

• A detailed analysis and critique of the definitions, principles, and findings put forth by Whit-
ten and Tygar in their widely cited paper, Why Johnny Can’t Encrypt,[WT99] and elaborated
in Whitten’s PhD thesis.[Whi04a]

On the topic of sanitization:

• An analysis of 236 hard drives acquired on the secondary market to determine the amount
of confidential data left on the drives by their previous owners. (The Remembrance of Data
Passed study.)

• Tools and techniques for automatically classifying information in hard drive images.

• A study based on interviews with individuals identified from the 236 hard drives to determine
the individual or organizational failure that resulted in confidential information leaving the
individual or organization’s security perimeter. (The Trace Back study.)

• A study of how different operating systems handle file sanitization issues, and a proposal for
a new operating system service called a “Shredder” for solving the file sanitization problem
in a fashion than is both secure and usable.

• A study of how different web browsers leak personal information through improper sanitiza-
tion of browser resources, and a proposal to overcome this problem through the unification
of the browser cache and history facilities.

• A study of how improper sanitization in Microsoft Word and Adobe Illustrator documents has
similarity resulted in the leakage of confidential information.

On the subject of PKI and secure messaging:

• A survey of 469 Amazon.com merchants regarding their attitudes towards and use of mail
that is secured with cryptography.

• A novel technique for embedding digital signatures in Internet-standard email messages in a
manner that is invisible to MIME-compatible email readers that do not know how to verify
the signature.

• A statement and analysis of the Key Continuity Management (KCM) model for public key
certification.

• A technique for adapting S/MIME-compatible mailers to work with KCM.

• A user study of Outlook Express with KCM that contrasts this model with the PGP key-signing
model using the same protocol created by

• A meta-analysis of the E-Soft Secure Server Space for the period September 1998 through
September 2004, showing that self-signed certificates have steadily increased in popularity
over that time period.

Regulatory approaches for aligning security and usability:

• A “Bill of Rights” for the labeling and use of Radio Frequency Identification technology on
consumer products.

• A proposal for a technique that would make hidden features of software could be made visible
to computer users in a consistent manner through the use of visual warnings (icons).

32 CHAPTER 1. Introduction

• A novel analysis of how the ANSI Z535.4-2002 standard for Product Safety Signs and Labels
could be applied to software products.

Other approaches for aligning security and usability:

• An analysis of how the inconsistent use of vocabulary in computer security contributes to
usability problems, and an explanation as to why the use of inconsistent vocabulary is more
likely in software than in other engineering fields.

Finally, this thesis introduces a set of principles and patterns that have the goal of aligning usability
and security. This list, while not exhaustive, is designed to be something that can be given to
an engineering team and readily applied to existing and next-generation computer systems and
applications. The list includes:

—General Principles—

• Least Surprise / Least Astonishment: Ensure that the system acts in accordance with the
user’s expectations.

• Good Security Now (Don’t Wait for Perfect): Ensure that systems offering some security
features are deployed now, rather than leaving these systems sitting on the shelf while researchers
try to develop “perfect” security systems for deployment later.

• Provide Standardized Security Policies (No Policy Kit): Provide a few standardized security
configurations that can be audited, documented, and taught to users.

• Consistent Meaningful Vocabulary: Prevent confusion by using words consistently to convey
the same idea or concept in different programs and contexts. Likewise, prevent confusion by
assigning consistent meanings to the same word in different applications or contexts.

• Consistent Controls and Placement: Structure applications so that similar functionality is
location in similar positions on different applications—especially if those applications are manu-
factured by competitors.

• No External Burden: Design security systems to have minimal or no negative impact on the
friends, associates and co-workers of those using the technology, so that they do not push back
on the users of the tools and ask that the use be curtailed.

—User Visibility and Sanitization Patterns—

• Explicit User Audit: Allow the user to inspect all user-generated information stored in the
system to see if information is present and verify that it is accurate. There should be no hidden
data.

• Explicit Item Delete: Give the user a way to delete what is shown, where it is shown.

• Reset to Installation: Provide a means for removing all personal or private information as-
sociated with an application or operating system in a single, confirmed, and ideally delayed
operation.

• Complete Delete: Ensure that when the user deletes the visible representation of something, the
hidden representations are deleted as well.

1.6. ORIGINAL CONTRIBUTIONS 33

• Delayed Unrecoverable Action: Give users a chance to change their minds after executing an
unrecoverable action.

—Identification and Key Management Patterns—

• Leverage Existing Identification: Use existing identification schemes, rather than trying to
create new ones.

• Email-Based Identification and Authentication: Use the ability to receive mail at a pre-
determined email address to establish one’s identity or authorization to modify account parame-
ters.

• Send S/MIME-Signed Email: Send email signed with S/MIME signatures to increase confidence
in email, allow recipients to detect mail with forged From: headers, increase familarity with
secure email through causal exposure and the resulting“passive learning,” and give web-mail
providers incentive to support S/MIME.

• Create Keys When Needed: Ensure that cryptographic protocols that can use keys will have
access to keys, even if those keys were not signed by the private key of a well-known Certificate
Authority.

• Key Continuity Management: Use digital certificates that are self-signed or signed by unknown
CAs for some purpose that furthers secure usability, rather than ignoring them entirely. This,
in turns, makes possible the use of automatically created self-signed certificates created by in-
dividuals or organizations that are unable or unwilling to obtain certificates from well-known
Certification Authorities.

• Track Received Keys: Make it possible for the user to know if this is the first time that a key
has been received, if the key has been used just a few times, or if it is used frequently.

• Track Recipients: Ensure that cryptographically protected email can be appropriately processed
by the intended recipient.

• Migrate and Backup Keys: Prevent users from losing their valuable secret keys.

• Distinguish Internal Senders: Allow users to readily distinguish between mail that was gener-
ated from within an email system and mail that was injected from the outside but which claims
to have an internal address.

—Patterns for Promoting Overall Secure Operation—

• Create a Security Lexicon: Provide a single location where security-releated words are defined,
allowing the use of these words to be standardized within and between systems. The single lexicon
should be consistent across vendors as well.

• Disclose Significant Deviations: Inform the user when an object (software or physical) is likely
to behave in a manner that is significantly different than expected. Ideally the disclosure should
be made by the object’s creator.

• Install Before Execute: Ensure that programs cannot run unless they have been properly in-
stalled.

• Distinguish Between Run and Open: Distinguish the act of running a program from the
opening of a data file.

34 CHAPTER 1. Introduction

• Disable by Default: Ensure that systems does not enable services, servers, and other significant
but potentially surprising and security-relevant functionality unless there is a need to do so.

• Warn When Unsafe: Periodically warn of unsafe configurations or actions.

• Distinguish Security Levels: Give the user a simple way to distinguish between similar oper-
ations that are more-secure and less-secure. The visual indications should be consistent across
products, packages and vendors.

1.7 Thesis Roadmap

This thesis contains 11 Chapters and five Appendices.

Chapter 2: Prior Work
A comprehensive review of the literature in the field of usability and security, with special attention
to theories of HCI-SEC, a survey of existing HCI-SEC techniques, and a discussion of regulatory
solutions to the problem of unknown functions in programs and physical objects.

Chapter 3: Sanitization and Visibility 1: Operating Systems
An in-depth analysis of the data remanence problem—that is, data that is left behind on hard
drives after it is no longer needed and/or intentionally deleted. This chapter presents the results
of the “Remembrance of Data Passed” study in which 236 hard drives were purchased on the sec-
ondary market and analyzed to determine the information that had been left behind. Next this
chapter presents the results of the “Traceback” study in which some of the original data owners
were contacted to determine the reasons for the release of their confidential information. Finally,
this chapter considers changes to the operating system that would overcome the data remanence
problem.

Chapter 4: Sanitization and Visibility 2: Applications
This chapter shows how the patterns developed in Chapter 1 directly apply to other areas in which
confidential information has been compromised. This chapter considers the release of personal in-
formation in web browsers and the release of deleted information in the Microsoft Word and Adobe
Acrobat file formats. These inadvertent releases can be overcome through the use of the patterns
put forth in the previous chapter.

Chapter 5: Solving Secure Email’s “Grand Challenge” with Signature-Only Email
This chapter develops an argument that the use of digitally signed mail is a reasonable stepping
stone to the greater use of email security technology in general. The chapter begins with a re-
view of the 28-year-history of secure email technology. Next presented are results of a survey of
Amazon.com merchants, one quarter of whom had been receiving digitally signed VAT invoices for
approximately one year. The survey found that these merchants believe that digital signatures are
appropriate for the very kinds of email messages that they are sending and receiving. The survey

1.7. THESIS ROADMAP 35

also found that the merchants had no usability burdens in the receipt of mail that was digitally
signed. Finally, the chapter examines different failure modes for digitally signed mail on today’s
desktop systems and discusses ways that both the programs and the signature standards that they
implement could be improved.

Chapter 6: The Key Certification Problem: Rethinking PKI
This chapter examines what has been the primary stumbling block to the widespread use of secure
email technology: the perceived need to certify public keys with the legally determined identities
of the keyholders. It argues that this approach, put forth in the very first paper on public key
technology[DH76], may not be an achievable goal, and in any case is not needed for the deploy-
ment and use of secure email technology.

Chapter 7: Johnny 2: A User Study of the Key Continuity Model
This chapter puts forth an alternative strategy for certifying public keys: Key Continuity Manage-
ment (KCM). Next this chapter presents the findings of Johnny 2, a user study designed to test the
viability of KCM with näıve users. Johnny 2 replicates the scenario of Alma Whitten’s Why Johnny
Can’t Encrypt[WT99], but introduces attacks on the test subjects. The study finds that Key Conti-
nuity Management offers effective protection against some but not all kinds of spoofing attacks.

Chapter 8: Regulatory Approaches
This chapter explores non-technical approaches for aligning security and usability—specifically the
use of law and regulation to establish mandatory labeling regimes. These regimes are to expose
hidden features of products and programs. Analogies are drawn from the 100-year history of label-
ing foods and drugs.

Chapter 9: Additional Techniques for Aligning Security and Usability
The previous four chapters looked in detail at a variety of design techniques for aligning security
and usability. This chapter briefly considers some other approaches that appear promising and
which support the design patterns presented in Chapter 10.

Chapter 10: Design Principles and Patterns for Aligning Security and Usability
This chapter formally presents the design patterns for aligning security and usability. Each pat-
tern is presented in a stylized format that includes a specified Pattern name, Intent, Motivation,
Image, Applicability, Participants (both other patterns and human actors), Implementation, Results
and Known Uses.

Chapter 11: Future Work: An HCI-SEC Research Agenda
This concluding chapter suggests areas for future work in the short and long term. Finally, it sug-
gests a number of preliminary patterns that could be further developed.

36 CHAPTER 1. Introduction

Appendix A: Hard Drive Study Details
This appendix presents details of the hard drive study presented in Chapter 3.

Appendix B: Mail Security Survey Details
Additional information and findings from the study of 469 Amazon.com merchants.

Appendix C: Johnny 2 User Test Details
This appendix presents technical details of the Johnny 2 user test.

Appendix D: Two Email Proxies
This appendix provides technical details of two proxies that were designed and implemented for
this dissertation: Stream and CoPilot.

Appendix E: Specific Recommendations to Vendors
This appendix presents specific recommendations to Apple, Microsoft, and the Mozilla Foundation
based on the work in this thesis.

Bibliography, Referenced Authors, Colophon Following the Appendices are the thesis references,
a listing of references by last name, and a colophon that describes the book production with
pdfLATEX.

CHAPTER 2

Prior Work

Many people believe that software developers have a hard time creating systems that are both
usable and that provide strong security. Many researchers in the newly emergent field of usability
and security (HCI-SEC) claim that security issues have been largely ignored by usability researchers,
and that usability issues having been largely ignored by security professionals.

Section 2.1 shows that HCI-SEC issues, while underplayed, have not been ignored entirely for
the past thirty years. Section 2.2 examines specific rules, techniques and principles that have
emerged in the field of HCI-SEC. Section 2.3 discusses properties, models, and principles that have
been developed for software that aligns security and usability. Section 2.4 discusses some of the
specific techniques that have been identified for creating systems that are both secure and usable.
Section 2.5 discusses prior work on the problem of media sanitization. Section 5.2.1 discusses
prior surveys on security attitudes and email usage. Section 2.6 discusses prior work on regulatory
and other non-technical approaches for aligning security and usability. Throughout this entire
discussion, the reader will note that what has been lacking has been a systematic approach for
taking research on security and usability and moving it into the marketplace. We argue that such
movement has been hampered by the lack of patterns that are specifically designed to aid this
transition.

2.1 Early Work in HCI-SEC
Whitten and Tygar observe in their 1999 paper “we have found very little published research to date
on the problem of usability for security.”[WT99, p.183] In her PhD thesis, Whitten observes that
the computer industry has had substantial success designing web browsers, email clients, and in-
stant messaging systems that are used daily by “people who have very little technical background.
But when similar user interfaces have been created for security, they have had little or no suc-
cess.” [Whi04a, p.1]

37

38 CHAPTER 2. Prior Work

1975 1980 1985 1990 1995 2000 2005

Saltzer &
Schroeder

The Protection
of Information
in Computer

Systems
1975

Whitten & Tygar
Why Johnny Can't Encrypt

1999

Adams & Sasse
Users are Not The Enemy

1999Morris &
Thompson
Password

Security: A Case
History

1979

DoD STD-002
 Password Guidelines

1985

Clark & Wilson
Commercial vs. Military

1987

FIPS 112
 Password Usage

1985

Karat
Iterative Usability

Testing
1989

Perrig & Song
Hash Visualization

1999

Yee
User Interaction

Design for
Secure Systems

2002

Diffie-Helman
RSA

Certificates

PEM
PGP

S/MIME
Morris Worm SSL

Reid
Reflections on Break-ins

1987

Leeder
Pitfalls
2004

Zurko & Simon
 User-Centered

Security
1996

FIPS 181
 Password Generator

1993

Figure 2-1: A timeline showing some of the significant HCI-SEC literature from the security field.

This analysis is largely correct. A review of the history of both the security and usability literature
reveals that while many security researchers have long considered usability issues, and usability
researchers have long considered security issues, the topic has only rarely received significant at-
tention as a subject of primary study. Further hampering such research has been the fact that
HCI-SEC was not recognized as an independent field. Formal usability tools have rarely been used
to analyze security software in the open literature.

For example, Adams and Sasse correctly note that “[T]o date, research on password security has
focused on designing technical mechanisms to protect access to systems; the usability of those
mechanisms has rarely been investigated.”[AS99] But even though it is true that there were few
published user studies that had investigated the usability of password systems, the usability of such
systems had long been considered.

For example, the 1985 US Department of Defense Password Management Guideline noted that se-

2.1. EARLY WORK IN HCI-SEC 39

curity was improved by adopting “user-friendly passwords that were easier to remember:”[DoD85,
p.15]

A.4 “User-Friendly” Passwords

To assist users in remembering their passwords, the password generation algorithm
should generate passwords or passphrases that are “easy” to remember. Passwords
formed by randomly choosing characters are generally difficult to remember. Passwords
that are pronounceable are often easy to remember, as are passphrases that are formed
by concatenating real words into a phrase or sentence.[DoD85, p.15]

Certainly, work on HCI-SEC has been dwarfed by work in practically every other field of com-
puter science, computer security, or usability, but to say that there was no work between the time
that Saltzer and Schroeder identified the principle of “psychological acceptability” in 1975 and the
resurgence of interest in security and usability at the end of the 1990s is a vast exaggeration.

2.1.1 Early recognition of the HCI-SEC problem
As noted above, Saltzer and Schroeder identified the need to consider usability as a primary factor
in developing secure systems in their landmark 1975 paper.[SS75] That paper identified eight de-
sign principles for building systems that can protect information: Economy of mechanism; fail-safe
defaults; complete mediation; open design; separation of privilege; least privilege; least common
mechanism; and psychological acceptability. For the last principle, the authors wrote:

h) Psychological acceptability: It is essential that the human interface be designed for
ease of use, so that users routinely and automatically apply the protection mechanisms
correctly. Also, to the extent that the user’s mental image of his protection goals matches
the mechanisms he must use, mistakes will be minimized. If he must translate his image
of his protection needs into a radically different specification language, he will make
errors.[SS75]

In their seminal article on password security, Morris and Thompson wrote that the underlying goal
of passwords is to provide “security at minimal inconvenience to the users of the system.” The
authors conducted a study and found that 2,831 out of 3,289 examined passwords were easy to
find through a dictionary attack. The authors notes that “users could be urged (or forced) to use
either longer passwords or passwords chosen from a larger character set, or the system could itself
choose passwords for the users.”[MT79]

Perhaps the most important lesson of the Morris and Thompson article is contained in the last
paragraph of the paper’s introduction:

“Although the security of a password encryption algorithm is an interesting intellectual
and mathematical problem, it is only one tiny facet of a very large problem. In practice,
physical security of the computer, communications security of the communications link,
and physical control of the computer itself loom as far more important issues. Perhaps
most important of all is control over the action of ex-employees, since they are not
under any direct control and they may have intimate knowledge about the system, its
resources, and its methods of access. Good system security involves realistic evalua-
tion of the risks not only of deliberate attacks but also of casual authorized access and
accidental disclosure.”[MT79, p.594]

40 CHAPTER 2. Prior Work

That is, Morris and Thompson acknowledge that the most intellectually interesting problems to
solve in the area of computer security are not necessarily the questions that are the most relevant
to overall system security! (Of course, the authors then proceed to attack the tiny facet that they
find intellectually interesting.)

Reid considered the issue of security and usability in 1987 and concluded that “programmer con-
venience is the antithesis of security, because it is going to become intruder convenience if the
programmer’s account is ever compromised.”[Rei87] Implicitly assuming that usability and secu-
rity are antagonistic, Reid argued that Unix should be made less usable and more secure:

“UNIX was created as a laboratory research vehicle, not as a commercial operating
system. As it has become more widely used commercially, many of the properties that
made it attractive in the laboratory have created problems. For example, the permission
file mechanism described above lets me easily give my colleagues full access to the files
on my computer. When UNIX systems are installed in non-laboratory applications by
people who are not trained to think about operating system security, however, the same
mechanism that is convenient in the laboratory becomes dangerous in the field. There is
no way to assign fault or blame for these security problems, because if the UNIX system
is used as its designers intended, security is not a problem.”[Rei87, p.104]

Wood et al. relate a story in which a file containing two years worth of research data was inadver-
tently deleted because of a usability problem resulting from wildcard expansion.1 Apparently the
research organization had neglected to back up this critical file onto another media. Attempts to re-
cover the file with an “unerase” command failed because the deleted file was so big that it had been
fragmented into many different locations on the disk. Fortunately, two local data recovery experts
working for 70 hours were able to recover the file’s fragments and restore most of the information.
The authors conclude that systems must include provisions for making backups of critical files and
that potentially dangerous commands should have protections.[WBG+87, pp.123–124]

Gong, Lomas, Needham and Saltzer discuss how poorly chosen passwords can be made resistant
to “guessing attacks” through the use of advanced cryptographic protocols. Although this perhaps
seems obvious now, it was not at the time. For example, as the authors note, Project Athena’s
Kerberos system does not have such protections: any client on the network can request a Kerberos
ticket and then mount a guessing attack against this ticket until the correct password is found. After
discussing this flaw, the authors go on to present a series of protocols that do not have this flaw and
are thus resistant against such attacks.[GLNS93] This paper is important because it shows how an
apparently secure protocol—in this case, Kerberos—might need to be hardened to protect against
the way that real systems are used by real people.

This sampling of security literature is not meant to imply that usability has been an ever-present
theme in the history of computer security research: clearly it has not. But it is also incorrect to
argue that the issues of usability have been generally ignored by security researchers.

1In the case described, the computer operator had told the computer to erase the file specification “FAULTS*.DBS”
with the intent of erasing the files “FAULTS1.DBS” and “FAULTS2.DBS”, without realizing that the file “FAULTS.DBS”
would also be erased by the wildcard. On this system there was no confirmation for deletions and nor provisions for
easily undoing file system modifications.

2.1. EARLY WORK IN HCI-SEC 41

2.1.2 Work on HCI-SEC from usability researchers
Just as security researchers have long been aware of usability issues, usability researchers have
long drawn on examples from the world of computer security in their writings and research.

For example, Norman’s 1983 article discussing design rules to accommodate user error (see sec-
tion 2.2 below) specifically addresses the question of file deletion and the tension between the
desire to actually erase information to prevent malicious recovery and the techniques that allow
a user to recover a file in the event of accidentally deletion.[Nor83, p.258] (This topic will be
discussed at length in Section 3.6.1.)

In Usability Engineering, Nielsen notes in a somewhat resigned tone that security realities frequently
require that systems be made less helpful than they might otherwise be. His example is password
authentication: it is widely accepted that systems requesting a username and a password should
give users the same feedback whether the username is valid or not. Otherwise, an attacker could
probe the system to determine a list of valid usernames, and then target those usernames for a
password-guessing attack.[Nie93b, p.42]

Nielsen also addresses the issue of file deletion in his book, arguing that operating systems should
not use icons such as a paper shredder to represent file deletion because these icons imply that the
file contents are actually destroyed:

“Users with sensitive data on their disks can therefore not rely on file deletion to safe-
guard their data in cases where others have access to the disk—for example, because
it is sold or sent in for repair. The paper-shredder icon may give users a false sense of
security due to the connotations of physical paper shredders with respect to the destruc-
tion of confidential paper documents. In contrast, the trash-can icon at least implicitly
suggests that others might look through the discarded documents.”[Nie93b, p.128]

Johnson holds up security-related user interfaces as objects of scorn and ridicule in his collection of
the 82 common usability failings that are common in programs with graphical user interfaces.[Joh00]
For example, Johnson describes an application that he oversaw in which the user was presented
with a dialogue that appeared if the session was idle for too long:

Your session has expired. Please reauthenticate. OK

Johnson commented:

“When users acknowledge the message by clicking OK, they would be returned to the
‘User Authentication’ page. I advised the developers to get rid of the word ‘user,’ change
all uses of the term ‘authenticate’ to ‘login,’ and increase the automatic timeout of the
servers (since they didn’t want to eliminate it altogether).” [Joh00, p.206]

But despite this obvious attention to security-related issues both in his book and in his consulting
practice (from which many examples in the book were drawn), the word “security” does not even
appear in the book’s index.

42 CHAPTER 2. Prior Work

Johnson and other usability specialists have long delighted in making fun of the poor interfaces
surrounding the security-relevant parts of systems. The fact that such interfaces are jeered at,
rather than simply ignored, shows that the specialists were frequently thinking about HCI-SEC.

2.1.3 HCI-SEC emerges as a distinct field

While HCI-SEC is not a new field, there is certainly truth to the notion that HCI-SEC has only
recently emerged as an independent discipline. One reason is likely the late emergence of usability
as an academic discipline itself.

Although humans have interacted with computers since the first machines were created, it was
only in the 1980s that the field of Computer Human Interaction emerged as one that was distinct
from other fields of computer science research. The Association for Computing Machinery’s Special
Interest Group on Computer Human Interaction (SIGCHI) traces its history to the ACM’s Special
Interest Group on Social and Behavioral Computing (SIGSOC).

SIGSOC started in 1969, when ACM members who were using computers to further professional
interests in the social and behavioral sciences decided to start their own special interest group.
The first panel presentation on the computer-human interface was probably at the December 1978
ACM Conference in Washington DC entitled “People-oriented Systems: When and How?” The
following year Communications of the ACM appointed an Editor for Human Aspects of Computing.
In February 1982 Allen Newell was an invited speaker at the Computer Science Conference with
the topic: “Human Interaction with Computers: The Requirements for Progress.”[Bor96, p.4]

In 1982 “a conference on human factors in computer systems was planned and conducted by volun-
teers” in Gaithersburg, MD, without support of the parent organization.[Bor96] That year SIGSOC
changed its name to SIGCHI. The first SIGCHI Conference on Human Factors in Computing Sys-
tems, CHI’83, took place in December 1983, with SIG GRAPHICS providing assistance.

Nevertheless, researcher interest in formally studying the interaction of security and usability was
slow to mature. It wasn’t until 1989 that Karat presented her paper “Iterative Usability Testing
of a Security Application” at the 33rd Annual Meeting of the Human Factors Society. [Kar89] Ten
years passed before Whitten conducted her Johnny experiment in 1998. [WT98] The following year
Adams and Sasse published their study of password behavior, Users Are Not The Enemy. [AS99]

Whitten created the “hcisec” mailing list of Yahoo! Groups in May 2000.[Whi00] Andrew Patrick, A.
Chris Long, and Scott Flinn organized a “Workshop on Human-Computer Interaction and Security
Systems” at CHI2003. [PLF03]

In 2004 IEEE Security and Privacy Magazine published a special issue on the topic of Security and
Usability, with contributions by 13 researchers in the field. [BDSG04, YBAG04, Jus04, PKW04,
Yee04]. Later this year, O’Reilly will publish a volume of edited papers entitled Usability and Secu-
rity, with contributions from more than 50 researchers in the field.[CG05] So while it is true that
usability issues have long been important to security researchers, and vice versa, it is also true that
the field of HCI-SEC is now well on its way to being a recognized specialty all its own.

2.2. RULES AND PRINCIPLES FOR DESIGNING USABLE SYSTEMS 43

2.2 Rules and Principles for Designing Usable Systems
There are of course no set of rules, principles or formalisms that, when followed, are guaranteed
to produce usable computer systems. If such rules existed, we would almost certainly all be using
them, and the usability problem would be solved.

The most common methodology for building usable systems appears to be a combination of task
analysis followed by an iterative process involving interface redesign and user testing. It is com-
monly accepted that paper prototypes should be employed early in the process because they are
easier to change than code; as a result, test subjects confronted with these prototypes are more
likely to suggest big changes that could represent usability breakthroughs. This is the methodology
described at length by Karat, Brodie and Karat, who argue that the iterative approach dramatically
cut the post-release technical support costs for the application, resulting in a return-on-investment
of at least 10:1.[KBK05]

But as Cooper points out, simply “iterating until something works” can be wasteful without un-
derstanding the flaws in the current system and having some idea of where you want to be
going.[Coo99, p.50] Ideally this kind of navigation is informed through a user-centered design pro-
cess, which evaluates software from the user’s point of view. Zurko and Simon introduced the
phrase “user-centered security” to describe this process applied to security problems.[ZS96]

2.2.1 Norman’s design rules and error analysis
Norman observed in 1983 that many users new to a computer system will make the same com-
mon errors. “Experienced users ... often smiled tolerantly as new users repeated well-known
errors.” [Nor83]

Arguing that errors were probably the result of design flaws, rather than poor training or user
ineptitude, Norman classified errors as being either mistakes or slips. A mistake occurred when a
user’s intended action (the intention) was itself in error. A slip, on the other hand, occurred when
the user’s intention was correct but an error was made in the intention’s execution.

Because mistakes are frequently the result of poor training, Norman’s analysis concentrated on
slips. He classified slips into three categories, each of which he divided into further subcategories.
He argued that many slips with computers arise from either the existence of modes or the inability
of people to correct their errors—that is, actions that cannot be undone.

“People will make errors, so make the system insensitive to them,” wrote Norman. What’s needed,
he argued, is software “safeties” that make irreversible actions difficult, and improved undo systems
so that fewer actions are in fact irreversible.

In applying Norman’s work to the subject of this thesis, one of Norman’s most important observa-
tions is that so-called activation errors can be overcome through the use of memory aids. As Norman
defined the term, an activation error is an inappropriate action being performed or an inappropri-
ate action being activated. Memory aids in the form of on-screen notices, status indicators, or
pop-up warnings can overcome activation errors by activating the correct response. “In many ways
the old saying, out of sight, out of mind, is apt,” writes Norman, who argues that “a good system
design” will give the user visual reminders of actions that need the user’s attention (e.g., partially

44 CHAPTER 2. Prior Work

Figure 2-2: Microsoft Windows XP SP2 warns the user if their antivirus system has been disabled, an example of a
memory aid.

completed tasks that need to be finished.)

An example of such a memory aid is the task bar status indicator in Windows XP SP2, indicating
that the computer’s antivirus system has been disabled and needs to be re-enabled (Figure 2-2).
In this case the computer’s antivirus system was disabled in order to work with a disk image that
contained several viruses. A few hours later, with the task completed and the antivirus still disabled,
Windows XP displayed a pop-up message to warn of the potential risk.

2.2.2 Nielsen’s heuristics for usability engineering
Nielsen has developed a technique he calls “Discount Usability Engineering” that he argues can dra-
matically improve the return on investment when applied to product development.[Nie89, Nie90,
Nie94] The approach includes a set of “Usability Heuristics” that he employs for evaluating the
usability of interfaces:

• Simple and natural dialogue: Dialogues should not contain information that is irrelevant
or rarely needed. Every extra unit of information in a dialogue competes with the relevant
units of information and diminishes their relative visibility. All information should appear in
a natural and logical order.

• Speak the users’ language: The dialogue should be expressed clearly in words, phrases, and
concepts familiar to the user, rather than in system-oriented terms.

• Minimize the user’s memory load: The user should not have to remember information from
one part of the dialogue to another. Instructions for use of the system should be visible or
easily retrievable whenever appropriate.

• Consistency: Users should not have to wonder whether different words, situations, or actions
mean the same thing.

• Feedback: The system should always keep users informed about what is going on, through
appropriate feedback within reasonable time.

• Clearly marked exits: Users often choose system functions by mistake and will need a clearly

2.2. RULES AND PRINCIPLES FOR DESIGNING USABLE SYSTEMS 45

marked “emergency exit” to leave the unwanted state without having to go through an ex-
tended dialogue.

• Shortcuts: Accelerators—unseen by the novice user—may often speed up the interaction for
the expert user such that the system can cater to both inexperienced and experienced users.

• Good error messages: They should be expressed in plain language (no codes), precisely
indicate the problem, and constructively suggest a solution.

• Prevent errors: Even better than good error messages is a careful design that prevents a
problem from occurring in the first place.

• Help and documentation: Even though it is better if the system can be used without doc-
umentation, it may be necessary to provide help and documentation. Any such information
should be easy to search, be focused on the user’s task, list concrete steps to be carried out,
and not be too large.

Nielsen’s recommendations on “language” and “consistency” are especially critical in HCI-SEC,
where it is common for developers to use terminology that is complex and inconsistent. This is
discussed in Section 8.2. The security-relevance of his “feedback” recommendation was made clear
during the Johnny 2 study (see Chapter 7), in which many users wanted some kind of feedback
from Outlook Express that email sent when the “encrypt” button was pressed would actually be
encrypted.

2.2.3 The Apple Human Interface Guidelines
The Apple Human Interface Guidelines [App04a] and Apple Software Design Guidelines [App04d]
stand alone in the computer industry as a single comprehensive document describing a wide va-
riety of aspects of computer-human interaction in a desktop environment. In addition to detailed
chapters on the working of user interface elements such as buttons, scrollers and windows, the
Guidelines has chapters on human interface design principles and philosophy; the development
process; and the importance of guiding the user’s attention through a complex system.

Apple’s guidelines are important because of their breadth of coverage, their quality, and because of
Apple’s longstanding commitment to both usability and “friendliness” towards novice users.

Interviews conducted at Apple Computer on January 12, 2004 with Apple’s security group, the
developers of its Mail application (which includes support for S/MIME), and its Vice President of
Software Technology revealed that Apple places a priority on security that is either invisible or, at
very least, exceedingly easy-to-use. The developers, for example, were particularly pleased with
their work on Apple’s keychain and its authentication panels—two subsystems that are designed to
provide protection against an array of automated attacks while simultaneously conveying benefits
to the user. The developers explained how they had struggled hard with HCI-SEC issues, looking
for ways to align the two apparently disparate fields.

Given such statements on the part of Apple employees, it is surprising that so little of the com-
pany’s user interface guidelines specifically address security issues. For example, the word “secu-
rity” does not appear in the 255-page Human Interface Guidelines at all! The 81-page Software
Design Guidelines has one page discussing security issues—mostly advice to factor out code that

46 CHAPTER 2. Prior Work

requires privileges, to use the Apple Keychain Services to store passwords, and to use the Apple-
provided authentication interfaces. In contrast, searching for the word “usability” in the Human
Interface Guidelines brings the reader to three different sections on the importance of keyboard
shortcuts, icon design, and menu design for improving usability. Searching the Software Design
Guidelines brings the reader to a page on the importance of conducting user testing (with step-
by-step instructions), a section explaining that “aesthetic integrity” can either enhance or detract
from usability, and a plea to use the standard interface elements and only create new ones when
necessary. “Usability testing is essential for determining whether a new element works.”[App04d,
p.29]

Apple does spend some time discussing its security Keychain, a single encrypted storage area for
passwords and other secrets:

“The keychain mechanism in MacOS X adds value because:

• It provides a secure, predictable, consistent experience for users to deal with pass-
words.

• Users can modify settings for all of the passwords as a group (the default behavior)
or set up different keychains for different activities with unique activation settings.

• The Keychain Access application provides a simple user interface for users to man-
age their keychains and their settings, relieving you of this task.”[App04b, p.67]

A more detailed discussion of the Apple keychain can be found in Enabling Secure Storage With
Keychain Services.[App04e]

Despite this lack of emphasis on HCI-SEC, the topic appears several times in Apple’s Human Inter-
face Guidelines—even when the examples in the guidelines inadvertently contradict the philosophy
of usability that Apple is trying to convey:

• The triangular disclosure button is used by Apple as an example of helping the user to manage
complexity by hiding information. Interestingly, the example used in the discussion of the
disclosure button is Apple’s Authenticate panel—a system that allows the user to perform
tasks that require privilege without having the user “su” to root or having setuid programs.

The information hidden inside the disclosure triangle apparently has a lower standard of usa-
bility than information that is prominently displayed. In both [App04b, p.37] and [App04c,
p.192], the information revealed by clicking on the disclosure panel, shown in Figure 2-3 is
quite cryptic.

• In its description of Alert panels, Apple notes that “In dangerous situations, the default button
may be Cancel but, it should not be the action button and it should not be located in the action
button position.”[App04c, p.212]. Interestingly, the illustration that Apple uses to illustrate
this point (Apple’s Figure 11-10) is a screen shot from the Safari Web Browser’s dialogue,
“Are you sure you want to empty the cache storing the contents of web pages.” As will be
discussed in Chapter 4, there are many HCI-SEC problems with this panel, including both its
language and its failure to actually sanitize the web pages that are “emptied” from the cache.

• Apple recommends that when passwords are entered into a text field, “each typed character
s should appear as a bullet, matching the number of characters typed by the user.”[App04b,

2.2. RULES AND PRINCIPLES FOR DESIGNING USABLE SYSTEMS 47

Requested right: system.preferences

Application: /Applications/System Preferences.app

Figure 2-3: The information revealed by the Apple Authenticate panel when the disclosure triangle is clicked. This
means that the program “System Preferences.app” has requested the right to modify the database of system-wide
preferences. The value here to a Macintosh security expert is that a trusted channel is indicating that an application
installed in the /Applications directory is asking for more privileges—rather than some other application, such as
one in the browser’s cache directory. Although this highly granular information is presented to the user, its interpretation
is not discussed in Apple’s documentation.

p.97][App04c, p.41] Pressing the Delete key should delete a single bullet. Finally, “when the
user leaves the text field . . . , the number of bullets in the text field should be modified so that
the field does not reflect the actual number of characters in the password.”

Overall, it seems, the usability community has generally done a better job is establishing guidelines,
methodologies, and procedures for achieving their goals than the security community has. Security
practitioners and researchers are well advised to consider the body of usability work—not just to
explore ways that the usability guidelines can be reworked to integrate more secure operations, but
also to look for ways that the specific developer education techniques can be adopted to security.

2.2.4 Federal Information Processing Standards
“Federal Information Processing Standards Publications (FIPS PUBS) are issued by the National
Institute of Standards and Technology after approval by the Secretary of Commerce pursuant to
Section 111(d) of the Federal Property and Administrative Services Act of 1949, as amended by the
Computer Security Act of 1987, Public Law 100-235.”[NIS85]

Two FIPS directly relate to the interaction of usability and security. FIPS PUB 112, Password Usage
Standard,[NIS85] specifies standards for password composition, length and lifetime. The pass-
words specified by this standard are not strong: the standard specifies that passwords shall have a
minimum range of 4 characters and a minimum of 10 possible symbols per character, for a mini-
mum number of 104 (10,000) possible passwords. The standard specifies that passwords should be
changed once a year, passwords for “medium protection requirements” should be changed every
six months, and passwords for “high protection” should be changed every month.

FIPS PUB 181, Automated Password Generator (APG),[NIS93] specifies an algorithm in C based
on the Data Encryption Standard (DES), for creating pronounceable and therefore more easily
remembered passwords. FIPS PUB 181 actually specifies the algorithm in C, but because of export
restrictions in place at the time of the publication and the algorithm’s use of DES, the algorithm
was not distributed in electronic form.

Porter has reimplemented the FIPS PUB 181 algorithm in the Perl programming language.[Por00b]
Instead of using DES, Porter uses Perl’s built-in random number generator (Figure 2-4).

In general, although the FIPS have been very successful in standardizing encryption algorithms,
it appears that they have not been successful in helping to secure the adoption of usable security
technology.

/Applications

48 CHAPTER 2. Prior Work

% perl RandPasswd.pm --count 10< /dev/null
ghepevef (ghep-ev-ef)
anckye (anck-ye)
inkilj (ink-ilj)
jeerea (jeer-ea)
fijisung (fij-is-ung)
ciebyegu (cieb-yeg-u)
ojexuno (oj-ex-un-o)
hiedilva (hied-ilv-a)
garnufa (garn-uf-a)
rokukiks (rok-uk-iks)
%

Figure 2-4: Ten randomly generated passwords using a modified version of FIPS 181[NIS93] that appears in [Por00a].

“Definition: Security software is usable if the people who are expected to use it:
• are reliably made aware of the security tasks they need to perform;

• are able to figure out how to successfully perform those tasks;

• don’t make dangerous errors; and

• are sufficiently comfortable with the interface to continue using it.”

Figure 2-5: Whitten and Tygar’s definition of usable security software.[p.170][WT99]

2.3 Properties, Models and Principles for Usable Security
Is there something about security software that makes it fundamentally more difficult to make
usable? This section reviews recent work in the emerging HCI-SEC community that seeks to see if
there are particular properties, models or principles that can be used to understand the interaction
of usability and security.

2.3.1 Whitten and Tygar’s properties of security software
Whitten and Tygar have argued that software with security-related features is somehow different
from other kinds of software. They call such software security software.

Although the researchers do not define what usable software is, they do create a definition for
usable security software. That definition appears in Figure 2-5.

Using this definition, the pair argue that inherent properties in security software make such soft-
ware inherently difficult for user interface design. The names and definitions of these properties,
first presented in [WT99], are renamed and subtly modified in [Whi04a] and are summarized in
Figure 2-6.

Taken together, these properties can argue for either removing the user from security-critical deci-
sions whenever possible, software modifications to increase the usability of this security software,
or increased user training to make errors and mishaps less likely. After raising and then discarding

2.3. PROPERTIES, MODELS AND PRINCIPLES FOR USABLE SECURITY 49

Property Explanation
The secondary goal property
(previously “The unmotivated
user property”[WT99])

Security is (at best) a secondary goal of users. “People do not
generally sit down at their computers wanting to manage their
security; rather, they want to send email, browse web pages, or
download software.” [Whi04a, p.7] “If security is too difficult
or annoying, users may give up on it altogether.”[WT99, p.3]

The hidden failure property
(previously “The lack of feed-
back property”[WT99])

It is difficult to provide good feedback for security management
and configuration because configurations are complex and not
easy to summarize.

The abstraction property Security policies are usually phrased as abstract rules that are
easily understood by programmers but “alien and unintuitive to
many members of the wider user population.”a[WT99]

The barn door property Once a secret gets out, it’s out. Information disclosure cannot
be reversed. Even worse, there is no way to know if an un-
protected secret has been compromised is being privately circu-
lated by others. “Because of this, user interface design for se-
curity needs to place a very high priority on making sure users
understand their security well enough to keep from making po-
tentially high-cost mistakes.”[Whi04a, p.8]

The weakest link property The security of a system is like a chain: it is only as strong as the
weakest link. “If a cracker can exploit a single error, the game
is up.”[WT99, Whi04a]

aAlthough Whitten and Tygar do not provide an example of the abstraction property, Straub and Baier argue that
“Especially in the field of public-key cryptography and PKI, it is a difficult task to find intelligible yet precise (real world)
metaphors for abstract mathematical objects like key pairs or certificates.[SB04]

Figure 2-6: Whitten and Tygar’s properties that make usability for security software fundamentally different than usability
for non-security software.

the possibility of “making security invisible,” Whitten introduces her two techniques for “making
security usable:” Safe Staging and Metaphor Tailoring.

Several critiques with this part of Whitten’s otherwise excellent contribution will be described in
the remainder of this section.

Critique #1: the term “security software”
The first problem is the use of the phrase “security software.” What is it? Much of Whitten’s
research focuses on email encryption software such as PGP. Clearly PGP is “security software.”
The Johnny study used PGP to manage cryptographic keys and perform cryptographic functions.
But the Johnny study also used the popular Eudora program to actually send and receive email.
Users received a five-minute tutorial in the use of Eudora in an effort to minimize the chances that
usability problems with Eudora would affect her results. So Eudora must not be security software,
at least not for the purpose of Johnny.

But what about Microsoft’s Outlook Express (OE)—is Outlook Express security software? Like PGP,
OE provides facilities for managing S/MIME certificates (called “Digital IDs”) and for sending email

50 CHAPTER 2. Prior Work

that is digitally signed and sealed.

Are Microsoft Internet Explorer and Microsoft Word examples of “security software?” Given the
orientation of Whitten’s research, it is hard to imagine that IE and Word could be considered secu-
rity software. But given the number of security problems that have plagued both IE and Word—
including remote attacks and the release of confidential information—it is hard to imagine that they
are not. What’s more, Word has provisions for both encrypting and digitally signing documents.
What about the Palm operating system? In 2001, researchers at the security firm @Stake found
a way to bypass the Palm’s password lockout feature and allow attackers to expose information
that the Palm’s owner had declared “private.”[Kin01] A fundamental flaw such as this in the Palm
system is certainly an example of the “hidden failure property” and “weakest link property.” The
fact that the flaw is the result of a fundamental design error on the part of the Palm’s designers
might be an example of the “secondary goal property” on the part of the designers—when these
designers set out to create a revolutionary handheld computer, security was not their primary goal.

One way to save this term “security software” would be to reinterpret it to apply to the components
of any system that provides security services. Alas, much of the last 15 years of research in the
field of computer security has been aimed at showing that a flaw in practically any part of any
program can have a devastating impact on overall system security. Consider a hypothetical bug in the
Microsoft Windows operating which would cause the string “-R” on a button to be displayed as “-I”,
but only on the first Tuesday in November of each year. Such a bug could have a significant impact
on voting software built on top of Windows and would almost certainly be considered a security
bug. On the other hand, if the term “security software” needs to be expanded to include the entire
graphical user interface library, then it is a hard to imagine what would not be part of the security
system.

It appears that the Whitten/Tygar properties are general properties should not be restricted to
“security software,” but instead should be applied to software in general. As developers have
repeatedly learned in recent years, security suffers when security is not a primary concern—of
developers or users.

Critique #2: the emphasis on disclosure control
Textbooks on computer security typically use terms such as Confidentiality, Integrity, Availabil-
ity and Audit to describe the discipline’s goals.[GS91] The second major problem with the Whit-
ten/Tygar contribution is that the “properties of security software” emphasize disclosure control—
the goal of “confidentiality”— above all others.

Disclosure control is a goal that is fundamentally different from the other goals of computer security
and, in many ways, a goal that is significantly harder to achieve. Disclosure control is indeed hard
for all of the reasons that Whitten and Tygar identify: it is hard to know if a system is properly
configured to prevent private information from being disclosed, it is impossible to know when
information is stolen, and once information is stolen, closing the barn door is no longer relevant—
the data is out.

But is disclosure control the most important goal of computer security? Clark and Wilson argue
that the emphasis on disclosure control comes from the role that military users have played in the
development of computer security requirements. The researchers argue that commercial users have

2.3. PROPERTIES, MODELS AND PRINCIPLES FOR USABLE SECURITY 51

different priorities and requirements, giving goals such as integrity management a higher priority
than disclosure control.[CW87]

It’s easy to understand why the military has focused so heavily on disclosure control. Although
there are surprisingly few areas in which the disclosure of information is an unrecoverable event,
military intelligence is one such an area. If a Russian operative learns the name of a person in the
Kremlin who is on the payroll of the US Central Intelligence Agency, that person will probably be
killed. It is better for a computer system that contains such powerful information to destroy itself
rather than to release this information to an adversary.

On the other hand, few personal or commercial operations require such drastic means to prevent
the disclosure of information. Leder et al. describe Faces, a cellphone-based system that provides
location information to friends and family. The Faces system keeps a log of what kinds of disclosures
are made—for example, telling Tina’s mother that Tina and her friends went to the mall after
school—and then gives the user a control for blocking such disclosures from happening again in
the future:

“Some might object to the Faces disclosure log by claiming that informing the user about
a disagreeable disclosure after the fact is too late to be useful. While this may apply to
highly sensitive disclosures, a significant component of privacy maintenance is the reg-
ulation of mundane disclosures over time to influence observers’ historical, evolving
impressions of one’s self. People are remarkably capable of finessing the consequences
of the occasional—and inevitable—disagreeable disclosure, and they learn to minimize
repeat occurrences. The Faces disclosure log was intended to help users transfer such
iterative behavior refinement to the domain of the sensed environment.”[LHDL05] (em-
phasis in original)

Although it is unfortunate and costly if a database containing thousands or millions of credit card
numbers is stolen, many opportunities exist to recover from such an event. For example, the stolen
credit card numbers can be monitored with increased vigilance for evidence of fraud. Alternatively,
the credit-card numbers can be canceled, for instance, and new credit cards can be issued to the
affected consumers. The disclosure of RSA Security’s RC2 and RC4 algorithms in the 1990s did
not stop the company from successfully asserting trade secret status of the algorithms and stopping
their incorporation into the products of companies that had not obtained licenses for them—at
least for a period of time until there was no longer an incentive for RSA to be licensing proprietary
encryption algorithms.

Whitten argues: “As with safeware, computer security users must avoid making a variety of dan-
gerous errors, because once those errors are made, it is difficult or impossible to reverse their
effects.”[Whi04a, p.6] This statement is hard to reconcile with Matt Bishop’s statistic that “configu-
ration errors are the probable cause of more than 90% of all computer security failures”[Bis96]—a
statistic that Whitten cites. Configuration errors, when they are made, can persist for many weeks
or months without being exploited. Yet once discovered, they can be readily corrected.

Configuration errors can result in a number of different kinds of security problems. Some, like
disclosure, can be exploited without detection. But others, such as assaults on integrity, can be

52 CHAPTER 2. Prior Work

readily detected through integrity management tools such as Tripwire.[KS94] Sometimes reversing
a configuration error is as simple as re-enabling one’s own antivirus protection.

Although the discussion of disclosure control is interesting and important, by ignoring other impor-
tant goals of computer security, Whitten and Tygar miss the opportunity to identify other properties
of software that make it difficult to align security and usability.

Critique #3: the case against making security invisible
Before she can discuss techniques for “Making Security Usable” (the title of her dissertation) Whit-
ten briefly discusses and then discards another approach: “Making Security Invisible.”

To the uninitiated, making security invisible certainly sounds like an attractive approach. Program-
mers should work hard to make the system always do the right thing, and eliminate the possibility
of any security problem. Unfortunately, she writes, making security invisible is a tempting but un-
workable proposal. “In practice, making a particular component of security invisible will often lead
to a different set of security risks, equally as serious as any that were prevented.”[Whi04a, p.8]

Instead of making security invisible, Whitten argues that it is better to teach users to manage their
own security. Her thesis contains four such arguments supporting this cause:

1. The argument for making security invisible is “self-perpetuating: if security is hidden from
users, then users will remain ignorant about security technology, and their continuing igno-
rance will be used to justify continuing to hide security from them.”

2. The argument for making security invisible contains a conflict-of-interest on the part of man-
ufacturers: “to argue that users cannot manage their own security is to argue that software
manufacturers must manage users’ security for them. Those same software manufacturers of-
ten have a strong financial interest in collecting data on users’ habits, actions and preferences,
and in privileging their own software over that of competitors in matters of access control. To
put them in control of the very security policies that are intended to guard user privacy and
resources is thus to put the fox in charge of the henhouse.”

3. Telling users that security should be invisible because visible security will annoy users is both
a self-perpetuating and “risky” argument “in which software manufacturers make security
invisible, despite the risks that creates, market their products as protecting user security,
and thus generate and support a widespread user expectation that security can be provided
invisibly.”

A telling footnote in her thesis elaborates on this point:

“This phenomenon was frequently observed during the software user testing that will be
described later in this dissertation; when presented with a software program incorporating
visible public key cryptography, users often complained during the first 10-15 minutes of the
testing that they would expect “that kind of thing” to be handled invisibly. As their exposure
to the software continued and their understanding of the security mechanisms grew, they
generally ceased to make that complaint.”[Whi04a, p.11, footnote]

4. Security should not be made invisible until there are better tools for assessing the success
of such designs. “We need to be wary of assuming success based on a lack of negative
feedback.”[Whi04a, pp.10-11]

2.3. PROPERTIES, MODELS AND PRINCIPLES FOR USABLE SECURITY 53

1. If a user action in the application depends on a particular security function for protection, and
there is any possibility that the security function may sometimes not be able to be executed,
then, in the case that the security function cannot be executed, one of the following clauses
MUST be met:

a. The user action MUST be completely disallowed, both inside and outside the application.
b. Or, the lack of protection for the user action MUST be made visible to the user, and tools

for remedying the problem that prevents the execution of the security function SHOULD
be made available to the user.

2. If a security policy in the application determines who is granted access to resources that the
user owns, then both of the following clauses apply:

a. That security policy MUST be made visible to the user.
b. Tools for modifying that security policy SHOULD be made visible to the user.

Figure 2-7: Whitten’s rules for making security invisible[Whi04a, Figure 2-2, p.9]

The argument for making security visible and managed by the user is not surprising, given that
Whitten’s dissertation presents a system designed to teach the fundamentals of public key cryp-
tography. These arguments seem similar to those of a mathematics teacher arguing that students
should learn how to perform long division rather than relying on handheld calculators. Yes, it is
intellectually interesting and perhaps even important to learn long division, but most people rely
on their calculators, even though most calculators present quotients as truncated decimal represen-
tations rather than as rational numbers or repeating decimal fractions.

The problem with these rules is that they assume that users will always make decisions correctly:
security cannot be made invisible if there is a chance that the automatic system will make a mistake.
But what if there is a class of attacks against which machines consistently make better judgments
than humans? In these cases, it may make more sense to make the security policy and decisions
visible, but not to allow the policy to be modified.

2.3.2 Yee’s Actor-Ability model
Yee notes that secure usability is a system property, observing that “correct use of software is just
as important as the correctness of the software itself:”

“[T]here is nothing inherently incorrect about a program that deletes files. But when
such a program happens to delete files against our wishes, we perceive a security viola-
tion. In a different situation, the inability to command the program to delete files could
also be a serious security problem.[Yee03]

What is at issue, Yee argues, is not the mere abilities of a program or a process, but how those
abilities compare with the expectations of the user.

This insight is the basis of Yee’s Actor-Ability Model [Yee02, Yee03], which he uses to describe the
apparent conflict between the way that users expect their computers to operate and the ways that
they can actually operate.

54 CHAPTER 2. Prior Work

If:

actors A = {A0, A1, . . . , An}
perceived abilities P = {P0, P1, . . . , Pn}

real abilities R = {R0, R1, . . . , Rn}

Then the no surprise condition requires that:

P0 ⊆ R0 and

Pi ⊇ Ri for i > 0

Figure 2-8: Yee’s No Surprise Condition states that the computer user should be more powerful than she imagines, and
that all of the software running on the computer should be less powerful than she imagines.

The Actor-Ability Model is based on the capabilities available to the discrete actors resident on the
user’s computer. The computer’s primary actor, A0, is the computer’s user. But all computers have
other actors—programs like Microsoft Word, and web browsers—which are capable of their own
actions. Yee calls these actors A1 . . . An.

Yee proposes that there are a set of perceived abilities that the user believes each actor i can perform,
which he calls Pi. He notes that the range of actions available to the actor doesn’t necessarily match
the range of actions that the user believes the actor is capable of: he defines the range of actions
that the actor can actually perform as Ri. He then argues that there is a no-surprise condition
(Figure 2-8) that is true when the user is more powerful than she realizes and the other actors on
the system are less powerful than she believes.

Using this model as a basis, Yee developed a list of ten “suggested principles” or “goals” for “secure
interaction design.” He divides these principles into Fundamental Principles, Actor-Ability State,
and Input and Output principles. In [Yee05a], he augments each goal with a test that can be used
to determine if the goal is realized in a piece of secure, usable software. These goals are not the
result of a systematic investigation, but are instead based on discussion with “security experts about
their experiences designing software that had to be both usable and secure.” Yee’s goals appear in
Figure 2-9.

Many of Yee’s goals cannot be accomplished on today’s Windows or MacOS-based computers. For
example, Ye and Smith [YS02] note that today’s browsers make it possible for a hostile web site
to use a combination of JavaScript and loadable images to simulate an entire web browser user
interface, complete with address bar, pull-down menus, bookmarks, and even the SSL lock or key
icon. As a result, they argue, creating a trusted path between the web browser and the user requires
extraordinary measures. An approach that they suggest is a constantly changing visual context that
is inaccessible to the spoofing web site. Another approach would be a shared-secret between the
browser and the user—for example, a trusted icon or photograph created by the user and displayed
by the browser.

Some of Yee’s goals are in fact achieved in today’s operating systems — although perhaps not in
Windows. For example, the so-called Document-Modal Dialogs (Sheets) in MacOS X satisfy Yee’s

2.3. PROPERTIES, MODELS AND PRINCIPLES FOR USABLE SECURITY 55

Fundamental Principles
Safe Path of Least Resistance Is the most comfortable way to do any task also the safest way?
Relevant Boundaries Does the interface draw distinctions along boundaries that matter for

the user’s task?

Actor-Ability State
Active Authorization Is the user’s access given out without the user’s active consent?
Visibility Can the user view the authority relationships that affect security deci-

sions?
Revocability Can the user revoke access that he or she previously granted?
Accurate Expectation of Ability Does the interface cause the user to overestimate his or her own abili-

ties?

Input-Output Principles
Trusted Path Is the user’s communication channel to an authority-manipulating agent

vulnerable to interception or impersonation?
Identifiability Can objects or actions have misleading or confusingly similar names or

appearances?
Expressiveness Are users given the means to express safe security policies in terms that

fit their tasks?
Clear Consequences Is the user aware of the consequences of authority-manipulating actions

before they take effect?

Figure 2-9: Yee’s Goals for Secure, Usable Software

Identifiability and Clear Consequences requirements, by clearly indicating which document window
will respond to the buttons clicked on the modal dialog.[App04b]

Yee goes on to argue that one of the most common security violations today—the propagation of
e-mail attachment viruses—do not obviously violate any security policy. “The e-mail client correctly
displays the message and correctly decodes the attachment; the system correctly executes the virus
program when the user opens the attachment. Rather, the problem exists because the functionally
correct behavior is inconsistent with what the user would want.”

According to Yee, the fundamental problem with today’s operating systems is that programs run
with the user’s full set of capabilities that may be applied to any object under control of the user.
An alternative is to restrict application capabilities to a small set of objects that are designated by
the user through some kind of trusted channel. This approach will be discussed in Section 2.4.4.

Yee’s created his principles by considering the problem of computer viruses. Although they work
well in this space, it is more difficult to apply them to other security requirements such as Audit or
Availability.

2.3.3 Lederer et al.’s “Five Pitfalls in the Design for Privacy”
Lederer et al. have identified five “pitfalls” in the design of applications that are designed to protect
privacy. These pitfalls were discovered while working on a program called “Faces” which controls
the presentation of personal information in a ubiquitous computing environment. In [LHDL04]
and [LHDL05] the authors generalize their collection of “pitfalls” and cite examples from other
privacy-enhancing tools.

56 CHAPTER 2. Prior Work

The pitfalls that Lederer et al. identify include:

• Obscuring potential information flow. Many systems that maintain and attempt to protect
personal information do a poor job explaining when the potential for information flow exists.
“Making the scope of a system’s privacy implications clear will help users understand its
capabilities and limits. This in turn provides grounds for comprehending the actual flow of
information through the system.”

For example, Internet Explorer’s control panel allows the user to set a degree of privacy
protection, but the meaning of Microsoft’s scale—from “Low” to “High”—is not clear to many
users. Second, even though the control appears on a system control panel, it in fact only
applies to Internet Explorer’s management of browser cookies—and not even to other privacy
issues in the browser, such as the cache or the history of visited sites.

• Obscuring actual information flow. Many systems do not make clear what information is
being conveyed to whom. For example, web browsers do not tell users about the existence
of cookies and web bugs, let alone report when these devices are used to report personal
information from the user back to the primary or a third-party web site.

• Emphasizing configuration over action. Systems exhibit this pitfall in two ways. First, many
users are unable to clearly articulate their privacy needs in advance: few have ever been asked
to do so. Second, even if users could predict their future privacy preferences, users are then
forced to specify those preferences in detail using some kind of rule-based logic that is far
removed from the day-to-day task of using a computer and then being frustrated by a privacy
(or security) setting.

• Lacking coarse-grained control. Users frequently want a simple, obvious control that they
can use to “make it safe” or “make it private”—even if pressing this button results in making
their computer generally unusable. One obvious way to do this with today’s computers is
by turning off the power or by pulling out the network cord. Zone Alarm provides a more
elegant way of doing this: a button, accessible from the Windows toolbar, which logically
disconnects the network.[Ber05b] A simple coarse-grained control for digital cameras is a
mechanical shutter, as discussed in Section 9.2.1 on page 304.

• Inhibiting established practice. Society and individuals have developed techniques for pro-
viding privacy and security: systems should support these practices, but frequently inhibit
them. Examples of such practices include plausible deniability, “whereby the potential ob-
server cannot determine whether a lack of disclosure was intentional,” and the disclosure
of ambiguous information such as pseudonyms and imprecise location. Lederer et al. note
that “Technical systems are notoriously awkward at supporting social nuance.” Examples of
systems that fall into this pitfall are location-based tracking devices which always disclose the
user’s location. An example of a system that preserves such nuance are instant messing sys-
tems that allow a user to avoid responding to an invitation to chat without having to explain
why.

2.3.4 The danger of hyperconfigurability
Sometimes approaches that are intended to promote both security and usability result in the re-
verse. Section 9.4 makes the argument that an over-indulgence in configuration options has actu-
ally made it harder to achieve either goal. Although this is a result that seems obvious to many

2.3. PROPERTIES, MODELS AND PRINCIPLES FOR USABLE SECURITY 57

people, there seems to be surprisingly little academic work on the direct impact of hyperconfigura-
bility.

Zurko [Zur05a] describes how the database ACLs used by the Lotus Notes/Domino server were
made made more complex over time in response to pressure from customers and standards com-
mittees. According to Zurko, the original Domino database ACLs were quite simple. “The general
approach here and elsewhere was to provide something basic, secure and usable.” The system
provided a single list of users and groups who had access to the database; each user could be given
one of nine different access “levels” on a scale form “No Access” to “Manager.”

Over time, however, customers have requested the ability to create “custom access levels.” Although
this is a useful idea in principle, Zurko writes, “each customer has its own notion of how fine grained
permissions should be allocated across their organizational roles.”

To provide for greater flexibility, Lotus layered support for the LDAP ACL standards developed by
the IETF[WKH97], resulting in “a substantial increase in complexity over what we had provided
before.”

Realizing that fine grained control ‘might present usability problems, Lotus conducted a test of four
experienced Notes administrators to see if they could complete thirteen tasks making use of the
extended ACLs (xACLs). Although some straightforward user interface problems were fixed and
addressed as a result of the user test, the experienced users nevertheless had difficulty auditing the
fine-grained permissions provided by the xACLs. Writing about a test that involved auditing the
xACLs, “only one of the four test subjects was able to complete that task successfully.”

Rather than remove support for xACLs from the product, Lotus added a button labeled “Effective
Access” to the user interface “to help with that confusion.” The button determines what accesses a
specific individual or group will have to the database.

Jendricke and Markotten discuss the issue of hyperconfigurability in [JtM00]. Arguing that Internet
Explorer’s “low-medium-high” settings are too coarse to provide useful control, and that few users
have the knowledge necessary to configure IE’s “custom security settings,” the authors instead
argue for the creation of an “identity manager” that interposes itself between the user’s computer,
the outside world, and all data stored on the system. This identity manager (Figure 2-10) has a
task-oriented user interface (Figure 2-11) that keeps track of the role that the individual is playing
and ensure that only the appropriate personal information will be shared with the appropriate
web-based entities.

Cooper argues that the temperament of most programmers is to add controls. Without a strong
manager, controls tend to proliferate. [Coo99, p.96] Indeed, experience has shown that even user
interfaces that were deliberately made simple, such as those on the Macintosh and the Palm oper-
ating system, have become dramatically more complex with each successive product release.

2.3.5 Security engineering with patterns
There is a small but growing body of work that applies design patterns to security engineering.

58 CHAPTER 2. Prior Work

User Interface

Identity-Manager

Interface for Generic Security Mechanisms

MIXX.509 …PGP

Personal
Data IDs URL&

Context

Rules

P3P

WWW
WWW

...

E-Mail

Ports

Virus & Content Filter

Figure 2-10: The structure of the Jendricke/Markotten
iManager, from[JtM00, fig. 8]. Reprinted with permis-
sion.

Your current ID:

Appl: URL:Netscape Communicator www.securitygate.de

Personal Data

Name

Address

Email

Telephone

Account No.

Social Security No.

Nickname

Signing

Apply

Change ID

New

My partner gets an
acknowledgement of receipt

I sign

I get an acknowledgement
of receipt

My partner signs

Shopping-ID

Peter Smith
3, Main Street
Oakland, California 94999
peter@securitygate.de

Credit Card: 0342-3762-3431-1234

Signing

My partner signs
I get an acknowledgement
of receipt

Default-ID

Shopping-ID

Shopping-ID
New ID

Credit Card No.

Peter Smith
3, Main Street
Oakland, California 94999
peter@securitygate.de

Credit Card: 0342-3762-3431-1234

Signing

My partner signs

I get an acknowledgement
of receipt

Your current ID:

Appl: URL:Netscape Communicator www.securitygate.de

Shopping-ID
Your current ID:

Appl: URL:Netscape Communicator www.securitygate.de

Shopping-ID

Figure 2-11: The iManager prototype user interface,
from[JtM00, fig. 9]. Reprinted with permission.

The formal study of design patterns

It is generally recognized that the formal study of patterns themselves as a tool for design was
initiated by architect Christopher Alexander in his books The Timeless Way of Building[Ale79] and
A Pattern Language: Towns, Buildings, Construction.[AIS77] Alexander found that common archi-
tectural techniques—for example, an alcove with a window and a window seat—could be identi-
fied, evaluated, and even decomposed into smaller patterns. Alexander coined the phrase pattern
language to mean a collection of interrelated design patterns that work together to accomplish a
specific aim.

Schumacher traces the introduction of patterns into object-oriented design through the work of
Ward Cunningham and Kent Beck, who experimented with design patterns in 1987 while working
on a user interface consulting job.[Sch03b, p.12] This work was presented at the ACM OOPSLA
Conference and published in a technical report.[BC87] Coad took up work and wrote an article
popularizing the pattern-based approach.[Coa92]

Patterns took hold at the OOPSLA workshops organized by Bruce Anderson in 1991 and 1992. It
was at these meetings that Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides—the
so-called Gang of Four (GoF)—met and began working together. They began by collecting patterns
and best practices in C++ and object-oriented programming, and ultimately published the textbook
Design Patterns: Elements of reusable Object-Oriented Software.[GHJV95]

In August 1993 Kent Beck and Grady Boch organized a retreat in Colorado and formed the Hillside
Group, which has become the leading force in the movement to integrate design patterns with
object-oriented programming. The Group sponsored numerous gatherings that investigated the
use of patterns, including the first Pattern Language of Programs (PLoP) conference.[Hil05]

2.4. SPECIFIC TECHNIQUES FOR ALIGNING SECURITY AND USABILITY 59

Security patterns
There have been limited efforts in applying the patterns approach to computer security. The most
significant contribution to date is Schumacher’s treatise, Security Engineering with Patterns: Origins,
Theoretical Model and New Applications[Sch03b]. Based on Schumacher’s dissertation,[Sch03a] this
book starts with a history of patterns and pattern ontologies. Schumacher then analyzes the secu-
rity process, techniques used for improving security, and a security-specific ontology. Although
Schumacher does have a chapter on usability, the chapter merely argues that usability is important
for security. Finally he presents foundations of security patterns, a theoretical model for creating
security patterns, and an example of ways that these patterns can be employed. Although com-
prehensive from a theoretical point of view, this work suffers from a lack of specific patterns that
practitioners can use to actually improve the security of real-world systems.

While Schumacher devotes an entire chapter to the subject of usability and security—Chapter 4,
“The Human Factor”—at no point does the book present a pattern for simultaneously improving
security and usability. True to its title, Security Engineering with Patterns is a thorough treatment of
how to do conventional security engineering with patterns—but it is security engineering from the
point of view of security researchers who acknowledge the importance of the human factor, and
then proceed to ignore it.

Others who have applied patterns to security engineering includes Mouratidis et al. , who have
developed security patterns for agent systems[MGS03]; and Blakley et al. , who authored the book
Security Design Patterns for The Open Group.[BHm04]

2.4 Specific Techniques for Aligning Security and Usability
This section reviews some of the techniques that have been identified for aligning security and
usability. Many of the techniques in this section draw on the models and principles presented in
the previous section.

2.4.1 “User-Centered Security” (Karat, Zurko, Simon)
Perhaps the most straightforward approach to aligning security and usability is to use a traditional
user-centered design approach to develop both the non-security aspects and the security aspects
of user-facing software. Karat pioneered writing about this approach, if not the approach itself,
in her 1989 article “Iterative Usability Testing of a Security Application”[Kar89]—a paper that
was significantly presented at the annual meeting of the Human Factors Society, rather than at a
security conference. In this paper Karat describes how traditional human factors engineering of an
IBM mainframe application, including user interviews, paper mock-ups, and the use of prototypes
in user studies, resulted in substantial tech support savings and enhanced user acceptance.

Eight years later Zurko and Simon formally introduced the term “user-centered security,”... “to refer
to security models, mechanisms, systems, and software that have usability as a primary motivation
or goal.”[ZS96] Arguing that “users will not purchase or use security products they cannot under-
stand,” they proposed a framework by which security researchers could return to the emphasis on
usability that Saltzer and Schroeder had set forth in 1975.[SS75]

60 CHAPTER 2. Prior Work

Figure 2-12: The “Making yourself a key pair” screen from Whitten’s “Lime” public key encryption simulation appli-
cation demonstrates Safe Staging and Metaphor Tailoring, the two techniques that Whitten developed as part of her
dissertation. [Whi04a] Used with permission.

2.4.2 “Safe Staging” (Whitten & Tygar)
Whitten and Tygar’s CHI2003 workshop presentation [WT03] introduced a technique called safe
staging, refined in Whitten’s dissertation, “that can be used to structure a user interface so that
users may safely postpone learning how to use a particular security technology until they decide
they are ready to do so.” [Whi03]

Safe Staging is a reaction to the user interface of PGP 5.0, which Whitten and Tygar criticize for
providing tools without explanations. Safe Staging is implemented as a series of help screens that
appear when the user attempts to create a new key; at this point the program provides documen-
tation and gives the user the choice between creating a key pair, creating a “custom key pair using
advanced options” (one with higher levels of security), and loading an existing key pair from a file.
Figure 2-12 illustrates Whitten’s Safe Staging concept.

2.4.3 “Metaphor Tailoring” (Whitten & Tygar)
Metaphor Tailoring is the second “specialized user interface design technique” that Whitten and Ty-
gar developed. Presented in Whitten’s dissertation, “Metaphor tailoring uses conceptual model
specifications that have been augmented with security risk information to create visual repre-
sentations of security mechanisms and data that incorporate as many desirable visual cues as
possible.”[Whi04a, p. iii] Metaphor tailoring is best illustrated by Whitten’s key pair diagram with

2.4. SPECIFIC TECHNIQUES FOR ALIGNING SECURITY AND USABILITY 61

the black secret key and the white public key that fit together with Ying-Yang handles, as shown in
Figure 2-12.

2.4.4 “Security Through Designation” (Yee)
Yee argues convincingly that many of the issues regarding the access to resources by actors on
a computer system can be overcome by giving most actors a minimal set of abilities and then
expanding this set item-by-item in response to user actions.[Yee05b]

For example, Yee is critical of the way that programs such as Microsoft Word open files on today’s
desktop operating systems. Briefly, programs run by the user have the ability to read or write any
file belonging to the user. Thus, when the user wishes to open a file, the following sequence of
actions takes place:

1. The user choose the “Open...” command from the “File” menu.

2. Microsoft Word instructs the operating system to display an “Open” dialogue.

3. The user selects the file that is to be opened.

4. The “Open” dialogue returns the name of the file to be opened to Microsoft Word as a string.

5. Word uses the OpenFileEx() Win32 API to open a file.

6. Word reads the file contents using ReadFileEx() .

7. Word closes the file with CloseFile() when it is finished.

The problem with this approach is that there is nothing to stop Word from opening a different file
on the user’s hard disk; indeed, there is nothing to stop Word from opening every file, scanning for
confidential information, and then posting this information to a web site in another country.

An alternative formulation that Yee proposes would remove from Word the ability to open a file by
name. Instead, the application would only be able to access files that were opened by the operating
system and were then presented to the Word application in the form of a file handle. Thus, the new
sequence of actions would look something like this:

1. The user choose the “Open...” command from the “File” menu.

2. Microsoft Word instructs the operating system to display an “Open” dialogue.

3. The user selects the file that is to be opened.

4. The “Open” dialogue returns a file handle of the already-opened file to the Microsoft Word
application.

5. Word reads the file contents using ReadFileEx() .

6. Word closes the file with CloseFile() when it is finished.

The advantage of this approach is that the word processor would be unable to open a file that was
not specified by the user. (In such a system, Word would need to be given read-write access to
a directory where preferences, templates, and other kinds of long-term persistent information is
kept.)

62 CHAPTER 2. Prior Work

Yee’s chapter makes other observations on how security by designation could be easily incorporated
into today’s existing systems. For example, closing a window is a simple act of revocation that
seems implicitly clear to most users: when a document window is closed, the program has lost
its authority to access the contents of the document. If the program’s main window is closed, the
program has lost authority to continue executing and should terminate.

2.4.5 “Rolling Blackouts” for password entry (Tognazzini)
Password entry has been a persistent usability problem for more than four decades. Passwords, by
their nature, need to be entered perfectly in order to be used, yet need to remain secret.

Multi-user systems that ran on half-duplex printing terminals in the 1960s always printed what the
user typed on the paper, leaving an indelible record. To prevent a user’s printout from compro-
mising his or her account, operating systems that used these terminals would prepare a password
entry area by overprinting multiple symbols in a single spot. Typically, these systems would com-
bine characters such as the *, M, W, and O, resulting in 8 black boxes over which passwords could
be typed.

Full-duplex printing terminals can disable character echo altogether when passwords are typed.
This is the approach that many operating systems took in the 1970s when such terminals became
available. Although it was not strictly necessary to disable password display on video terminals,
this was commonly done as well because of the so-called “shoulder surfing” problem: users didn’t
want their passwords echoed on the screen where they might be seen by another person sitting at
the terminal.

An alternative approach popularized by many web browsers in the 1990s is to echo passwords as a
series of dots, one dot for each character typed. This allows the user to confirm each character typed
has been received by the computer, but doesn’t allow a nearby attack to observe which character is
being typed from the screen. An attacker can, however, determine how many characters are in the
password.

Apple’s Human Interface Guidelines states that each character of the typed password should appear
as a bullet, but that when the user leaves the password field the field should be filled with as many
bullets as will fit, in order to obscure password’s length.[App04c]. This behavior is confusing to
some people, however.

Tognazzini presents yet another alternative for improving the typing of passwords: the rolling
blackout. Tognazzini’s password field shows the last three password characters typed using low-
contrast light gray characters on a white background. When the fourth character of the password
is typed, the first character is changed to bullet. Testing found that this compromise allowed users
to visually verify and correct their passwords, but still prohibited shoulder-surfing.[Tog05]

2.4.6 Hash visualization and graphical authentication (Lotus, Perrig and Song)
It is desirable to give users some sort of visual indication that the password they have typed is
actually the password that they intended to type. This is especially important for systems that
will lock out user accounts when an incorrect password is attempted on multiple occasions. Early
versions of Lotus Notes included a system the designers called “password hieroglyphics.” As the

2.4. SPECIFIC TECHNIQUES FOR ALIGNING SECURITY AND USABILITY 63

(a) (b)
Figure 2-13: The so-called “password hieroglyphics” in the Lotus Notes client allows the user to see a visual hash of the
password that has been entered. The hope is that users will learn their password icons and be able to tell in advance if
the password that they have typed doesn’t match before they press the OK button.

Figure 2-14: In Notes 6 the password hieroglyphics
were replaced with a more culturally sensitive key-
chain display.

Figure 2-15: The Secure CRT license wizard displays
a checksum of the user’s typed Name and Company
to facilitate correct entry of these items.

user typed each key of the password, a hash of the typed letters is computed and used to display a
set of four glyphs, as shown in Figure 2-13.

In the latest release of Lotus Notes the hieroglyphics have been replaced with a more culturally
sensitive display based on a set of cartoons, as shown in Figure 2-14. These can be combined to
generate a large number of different password hashes, as shown in Figure 2-16.

Displaying a hash or checksum of what the user types is a useful technique whenever information
must be typed precisely. The popular Secure CRT virtual terminal program uses a license manage-
ment system where license strings are keyed to the exact spelling of a person’s Name and Company.
To facilitate proper entry, the program displays a “Checksum” of the user’s typing to the right of the
input field, as shown in Figure 2-15.

Perrig and Song propose using these kinds of visualization techniques to allow people to visually
compare the hashes associated with cryptographic keys. The reason is that it is relatively easy for
an attacker to create a key that has a chosen set of hexadecimal digits at the beginning and at the
end as a target key but which differs in the middle. It is possible, the pair asserts, that many hu-
man beings will think that the fingerprints F1=51:86:E8:39:87:87:F3:87:83:10:AA:87:
35:98:E0:AA and F2=51:86:E8:45:88:F0:F3:F9:F3:31:99:33:5F:98:E0:AA are the
same, when in fact they are different.

51:86:E8:39:87:87:F3:87:83:10:AA:87:35:98:E0:AA
51:86:E8:39:87:87:F3:87:83:10:AA:87:35:98:E0:AA
51:86:E8:45:88:F0:F3:F9:F3:31:99:33:5F:98:E0:AA

64 CHAPTER 2. Prior Work

Figure 2-16: A selection of 14 visualized password hashes from the Lotus Notes 6 Client. Different bits of the hash
appear to select different keychain fobs (e.g., a ball, a tag, etc.), the coloring of the fob, the number of keys, and
the placement of those keys. Although Lotus has apparently not documented the algorithm or the visual keyspace, it
appears that at least 232 different keychains can be displayed from the variety present in these 14 images. Courtesy
Henry Holtzman, MIT Media Lab. Reprinted with permission.

Instead of using computer-generated cartoons, Perrig and Song use random “art” that is generated
using a set of mathematical functions that are controlled by a set of parameters (Figure 2-17).
The idea is to use the hash to specify the parameters: in these sorts of chaotic systems, very small
changes can have very large effects. The pair also suggest that palettes of computer generated art
can be used as the basic building-block of a picture-based authentication system.[PS99]

Widespread use of random art for hashes has a number of potential problems, as Laurén noted in
a recent posting to the HCI-SEC mailing list:

• If random art is used as the primary visualization, it is important that all possible values be
distinguishable: no two different hashes can have representations that are visually indistin-
guishable.

• Reproducing visual hashes on business cards might be problematic.

• Individual and corporations might be concerned if the visualizations of their identifiers or
keys are not aesthetically pleasing or that do not match the color schemes employed by the
key holder’s web site.[Lau05]

There are also concerns that the random art might not look truly different for different hash values.
If true, then it might be possible for an attacker to create two very different keys that nevertheless
have very similar, and possibly indistinguishable, visual hashes.

Some of these concerns could can be overcome if a strong visual hash algorithm were standardized.
Such an algorithm would presumably not have the collision problem. Furthermore, an organization
could keep creating new public keys until it found one with an attractive hash representation.
On the other hand, an organization that changed the color scheme of its web site might wish to
simultaneously change the its public key to match the new scheme; such changes would defeat the
purpose of human-verifiable hash visualizations in the first place!

2.4.7 “Instant PKI” (Balfanz, Durfee and Smetters)
Balfanz, Durfee and Smetters at PARC have demonstrated that PKI systems can be made dramati-
cally easier to configure and deploy by replacing certificates designed to convey identity with single-
use certificates that are treated as capabilities. They call this approach “Instant PKI.”[BDSG04]

The PARC implementation is designed to provide a laptop with an X.509 certificate that can be

2.4. SPECIFIC TECHNIQUES FOR ALIGNING SECURITY AND USABILITY 65

Figure 2-17: “Random art” images, courtesy of Adrian Perrig. Reprinted with permission.

used for authentication on a 802.11x EAP-TLS network. Although the technology to issue and
install these certificates is widely available, there are many acknowledged usability problems with
current implementations.

In their original experiment, eight subjects—most holding Ph.D.’s in Computer Science—were pro-
vided with a set of instructions that clearly described the 38 distinct steps required to configure
Microsoft Windows XP to authenticate over a wireless 802.11x network. The average time for
subjects to request and retrieve their certificates, then configure their laptops, was 140 minutes.
Several of the subjects reported that the process was “the most difficult computer task that PARC
had ever asked them to do.”[BDSG05]

The revised system, based on the Instant PKI concept, authenticates not individuals but the laptops
themselves. The laptops are given a helper application that communicates with a local CA over
an infrared link in a secure room. The laptop creates a public/private key pair, sends it over the
wireless link to the CA, receives in response the signed certificate, and installs it. The total time
from beginning to end is approximately 32 seconds.[BDSG05]

The PARC system is important because it shows that many concepts being discussed in the HCI-SEC
community actually work in a commercial environment. These concepts include:

• The use of single-purpose, identity-free certificates.

• The leveraging of existing social methods of authentication. In this case, anyone who could
convince the network administrator to open the locked room was assumed to be allowed
access to the wireless network.

• The use of physical proximity as a surrogate for trust.

2.4.8 E-mail Based Identification and Authentication (Garfinkel)
Gutmann observes that E-mail based identification and authorization (EBIA)—the ability to receive
email at a previously registered address—has been widely adopted for automated password resets
and mailing list subscriptions. Essentially, EBIA delegates web site identity management to the
Internet Service Provider of the user’s choice. Such authentication techniques are probably “good
enough,” Gutmann observes, “unless the opponent is the ISP.”[Gut04b] (Although there is one case
in which the enemy was in fact the ISP [USA04], this does not seem to be the general case.)

66 CHAPTER 2. Prior Work

A detailed analysis of EBIA options and present best practices is presented in [Gar03a]. E-mail
Based Identification is one of the design patterns outlined in Chapter 10.

2.5 Prior and Related Work on Sanitization
There exists a significant body of work in the academic, commercial and hobbyist communities on
the topic of disk sanitization. This body of work is surprising when one considers that sanitization
tools are rare in commercial operating systems and automatic sanitization is all but nonexistent.

2.5.1 PGP’s -w option
PGP version 1.0 supported a “-w” option to “wipe” information from the computer’s hard drive.
When used in conjunction with an encryption function, the “-w” option would “destroy every trace
of plaintext,” according to a comment in the program’s source code.[Zim91a] The “-w” option could
also be used without the encryption function, in which case its performed a sanitized erasure of
the file whose name was provided on the command line. PGP version 1.0 implemented file wiping
in a function called wipeout() that moved the file pointer to the beginning of the file and then
overwrote the contents with repeated calls to the fwrite() command using a zero-filled buffer.
As discussed in Chapter 3, there are many cases in which this approach would have silently failed.

2.5.2 Secure file deletion under Linux
Remy Card introduced support for Linux file attributes with release 0.4 of ext2fs. [Car96] Card
created three attributes: the “c” attribute, which marked a file for automatic compression, the
“s” attribute, which marked the file for secure deletion, and the “u” attribute, which marked the
file for undeletion.2 Although all were documented, only the “s” secure deletion attribute was
implemented in version 0.4.

The implementation of the “s” attribute required minor modifications to just four locations of the
ext2fs code. But support for the “s” attribute was removed from the Linux kernel “as of Linux
2.2,” according to the Linux 2.4 chattr man page (Figure 2-18). An examination of the current
Linux ext2fs source code shows no trace of Card’s original implementation. It is likely that support
for secure deletion was removed when the file system’s block-handling routines were rewritten to
achieve higher performance.

Bauer and Priyantha describe a modification to the Linux operating system to support secure dele-
tion. Whereas Card’s implementation set a flag that required the blocks be zeroed before they
were placed on the freelist—something that Card implemented in the file system itself—Bauer and
Priyantha’s implementation overwrote deleted files asynchronously using a kernel thread. The au-
thors correctly note that “an asynchronous overwriting process sacrifices immediate security but
ultimately provides a far more usable and complete secure deletion facility.”[BP01]

Despite being distributed under the Gnu Public License,[Sta01] Bauer and Priyantha’s implemen-
tation was not incorporated into the Linux kernel. What’s more, the technology cannot be easily
incorporated at this time, owing to the fact that the kernel has changed significantly in the years
since Bauer and Priyantha did their work.

2“when the file is deleted, its contents are saved to allow a future undeletion.”[Car96]

2.5. PRIOR AND RELATED WORK ON SANITIZATION 67

CHATTR(1) CHATTR(1)
NAME

chattr - change file attributes on a Linux second extended file
system

SYNOPSIS
chattr [-RV] [-v version] [mode] files...

DESCRIPTION
chattr changes the file attributes on a Linux second extended file sys-
tem.

The format of a symbolic mode is +-=[ASacDdIijsTtu].

The operator ‘+’ causes the selected attributes to be added to the
existing attributes of the files; ‘-’ causes them to be removed; and
‘=’ causes them to be the only attributes that the files have.

...
ATTRIBUTES
...

When a file with the ‘s’ attribute set is deleted, its blocks are
zeroed and written back to the disk.

...
BUGS AND LIMITATIONS

As of Linux 2.2, the ‘c’, ’s’, and ‘u’ attribute are not honored by
the kernel filesystem code. These attributes will be implemented in
a future ext2 fs version.

Figure 2-18: The documentation for the Linux “chattr” command promises an “s” attribute that, when set, causes files
to be securely deleted. Only at the bottom of the page does the document make it clear that the feature has yet to be
implemented. From [Car02]

Despite the fact that the Linux ext2fs and ext3fs file systems no longer provide secure deletion
facilities, the “s” file attribute is still supported by the chattr command. It is only in the “BUGS
AND LIMITATIONS” section of the command’s document does one learn that this attribute is ignored
by the operating system (Figure 2-18). Given the way that security vulnerabilities seem to be
understood in the Open Source community, the failure to implement a documented security feature
is a missing feature, and not a security flaw, and is not likely to be fixed anytime soon.

2.5.3 Apple’s “Secure Empty Trash”
Following the initial publication of the sanitization work that will be presented in Chapter 3 of
this thesis, Apple Computer added a “Secure Empty Trash” function to the Finder component of
its MacOS operating system. According to interviews conducted with Apple’s security group on
January 12, 2003, the group had long wanted to put a secure file delete function in the operating
system’s interface: such efforts had been deemed low priority by Apple’s management until the

68 CHAPTER 2. Prior Work

Figure 2-19: Apple added the “Secure Empty Trash” feature to the MacOS 10.3 operating system following the publica-
tion of the Remembrance of Data Passed paper. Apple’s addition of this feature was incomplete: although the feature
was added to the Finder menu (left), it was not added to the control-click menu on the Apple trash can (right).

Figure 2-20: Choosing “Empty Trash...” from the File
menu of MacOS 10.3’s Finder application causes this
alert panel to be displayed.

Figure 2-21: Choosing “Secure Empty Trash” from the
File menu of MacOS 10.3’s Finder application causes
this alert panel to be displayed.

Remembrance paper was published.

Apple implemented “secure file delete” as a modification to its Finder program, rather than as a
modification to the operating system’s kernel. After files are dragged to the Trash, the user may
choose either the “Empty Trash...” or the “Secure Empty Trash” options from the Finder menu,
as shown in Figure 2-19 (left). Choosing these options, respectively, causes the confirmatory alert
panels shown in Figures 2-20 and 2-21 to be displayed.

Although it is personally rewarding that a paper published in January 2003 would result in a
significant modification to an operation system used by tens of millions of people in less than a
year’s time, there is much to critique in Apple’s initial implementation of secure file deletion.

Most obviously, the labeling in the Finder menu items and on the modal alert panel have the
obvious marks of a rushed job—perhaps a direct result of the short time between the publication
of the Remembrance paper and the release of MacOS 10.3:

• The menu title for the item “Empty Trash...” includes three trailing periods, indicating that
running the command will not result in the command being run but will result instead in a
dialog being displayed. On the other hand, the menu title for the item “Secure Empty Trash”
does not include three trailing periods, leading the user to believe that the command will be
instantly acted upon by the operating system. The lack of the ellipsis may make the user less

2.5. PRIOR AND RELATED WORK ON SANITIZATION 69

inclined or even fearful to choose the command.

• The subtle difference in text between the two modal panels does not convey the actual differ-
ence between the “Empty Trash...” and “Secure Empty Trash” commands. While both actions
“remove the items in the Trash permanently,” the “Empty Trash” operation cannot be undone,
whereas files deleted with the “Secure Empty Trash” command cannot be “recover[ed].”

Although subtle, the text is literally accurate: MacOS does not provide tools for undeleting
files once the files have been removed from the Trash (that is, unlinked from the ˜/.Trash
directory), but third-party utilities do exist for recovering deleted files. These utilities will
recover files that have been deleted with “Empty Trash...” but not recover files that have
been deleted using “Secure Empty Trash,” as “Secure Empty Trash” overwrites the file blocks.
This distinction is made clear by typing “Secure empty trash” into Apple’s Help Viewer and
choosing the first answer that comes up. (See “Deleting files and folders” in Figure 2-22.)

• The “Secure Empty Trash” feature is not available from the Trash can’s context menu. A
person who only empties the trash by control-clicking on the Trash can’s icon in the MacOS
Dock will not discover the feature.

• “Secure Empty Trash” is a very slow procedure, during which time the Finder’s Trash may
not be otherwise used: Attempting to drag a file to the Trash causes the Finder to display
the message “You cannot move any items to the Trash because it is being emptied.” Double-
clicking on the Trash icon causes the Finder to display the message “You cannot open the
Trash because it is being emptied.” This is a disincentive to using the “Secure Empty Trash”
sanitization facility.

• Because “Secure Empty Trash” is such a slow procedure, it seems that it would be advanta-
geous to be able to specify files to be securely erased on a file-by-file basis. However, there is
no way to make such distinctions.

• Likewise, there is no way to securely erase a specific file but leave the other files in the Trash
untouched. This is poses an inconvenience to users who habitually keep hundreds or even
thousands of files in their Trash directories and who wish to securely delete a single file from
time to time.3

• If the user inadvertently chooses “Empty Trash...” instead of “Secure Empty Trash,” there is
no way to go back and securely overwrite the disk blocks once the files have been unlinked
from the Trash directory.

• Implementing “Secure Empty Trash” in the Finder, rather than in the operating system’s ker-
nel, means that there is no way to securely delete files that are deleted by programs other
than the Finder (e.g., using rm or Emacs).

• There is no way to remove from a disk the information that was contained in files that have
been “overwritten” using the “Save As...” feature.

Section 3.6.1 proposes another technique for implementing the functionality of file sanitization that
should deliver a more usable solution in a way that builds upon both Bauer and Priyantha’s work
with Linux [BP01] and Apple’s work with MacOS.

3There is a rather straightforward albeit annoying work-around for this problem: Simply move all of the files that are
in the Trash into a second, temporary directory, leaving behind the files to be sanitized. Choose “Secure Empty Trash.”
Finally, move the files from the temporary directory back into the Trash.

~/.Trash

70 CHAPTER 2. Prior Work

Figure 2-22: Typing “Secure empty trash” into the MacOS 10.3 Apple Help Viewer causes the application to display this
help page describing the difference between Empty Trash and Secure Empty Trash.

2.5.4 Cryptographic file systems
As discussed in Section 3.2, cryptographic file systems provide a partial solution to the data rema-
nence problem: data is simply stored on a cryptographic file system. When it is time to throw away
the drive, the user only needs to ensure that the key that was used to encrypt the data is properly
destroyed. Once that key is gone, there should be no chance of recovering the data.

In practice the use of cryptographic file systems is slightly more complicated. Apple’s MacOS 10.3
operating system contains a cryptographic file system called File Vault. This system is implemented
through Apple’s “Disk Utility” subsystem that allows a disk file to be mounted on the MacOS desk-
top as if the file were an external device. When used with File Vault, each block of the file is
encrypted with the AES-128 cipher. The key, encrypted with the user’s login password, is stored at
the beginning of the disk file.

File Vault is designed to be used with home directories on laptops and desktops. When the user
logs in, MacOS automatically uses their login password to decrypt the key used for the particular
File Vault file. The file is then mounted as the user’s home directory and login proceeds. By
design MacOS applications keep all user-specific data inside the user’s home directory. For example,
the popular Firefox web browser for MacOS keeps each user’s browser cache in the directory ˜/
Library/ApplicationSupport/Firefox/Profiles/ .

Although File Vault is very easy-to-use—once it is enabled, the user is more or less oblivious to its

~/Library/Application Support/Firefox/Profiles/
~/Library/Application Support/Firefox/Profiles/

2.5. PRIOR AND RELATED WORK ON SANITIZATION 71

Figure 2-23: Apple’s File Vault cryptographic file sys-
tem is enabled and controlled through the System
Preferences panel.

Figure 2-24: When File Vault is first enabled, it cre-
ates a cryptographically protected virtual disk, copies
the user’s files to that disk, and then deletes unen-
crypted the files. Analysis of a disk revealed that File
Vault does not use Compete Delete to delete the un-
encrypted files. As a result, they can be recovered
using forensic tools.

presence—it does not implement the sanitization patterns described in Chapter 10. Using these
patterns to guide an analysis of File Vault, the following problems were observed:

• When File Vault is first enabled for a user, a cryptographic volume is created, the user’s files
are copied to the volume, and finally the files are deleted but not overwritten. (File Vault will
not engage unless the amount of free space on the hard drive is larger than the amount of
space taken up by the user’s directory.) As a result, after File Vault is engaged, unencrypted
copies of all of the user’s files can be recovered from the hard drive using standard “undelete”
programs. (This claim was verified by recovering 100% of the blocks in a 512MB file that was
in a user’s home directory prior to File Vault being enabled.)

• After File Vault is enabled, there is no way for an unassisted end-user go back and use the
MacOS “Secure Empty Trash” to actually overwrite the deleted files. This is because files,
once deleted, cannot be unerased using the tools provided by the operating system. (The
Disk Utility command of MacOS 10.4 includes the ability to erase the unallocated space on a
volume. The function is implemented by a small program that creates a big file on the disk,
then deletes the files after the disk is filled up. This is the approach used by \W switch of
Microsoft’s CIPHER.EXE, described in the next section, and is likely to have similar security
problems.)

• There is no indication that the cleartext copies of the files deleted by the File Vault enabling
process can still be recovered using forensic tools, a violation of the “User Audit” pattern.

• File Vault does not have clean integration to support media disposal. Ideally the operating
system would have a simple provision for securely overwriting the File Vault encryption keys

72 CHAPTER 2. Prior Work

when the computer is no longer needed. Because this functionality is missing, it is possible
for an attacker who recovers a discarded computer to mount a guessing attack against the
user’s File Vault password. Such attacks are frequently successful.

But the most important reason that cryptographic file systems are not a solution to the file saniti-
zation problem is that deleted files can be recovered from such a file system when the volume is
mounted. A shared computer that is running in a library or in an office will still have files that are
deleted but recoverable on its hard drive, even if password needs to be typed when the system is
first turned on. An attacker who has access to such a system will be able to recover data that was
intentionally deleted but not overwritten.

2.5.5 Microsoft’s CIPHER.EXE
After a talk on the Remembrance of Data Passed project at Microsoft Research in July 2002, a mem-
ber of the audience stated that Microsoft had already addressed the problem of deleted data with
a command-line utility called CIPHER.EXE. This assertion was repeated during two days of inter-
views performed at Microsoft in January 2004.

CIPHER.EXE is a command-line tool for controlling aspects of the Microsoft Cryptographic File
System (CFS) that was introduced with Windows 2000. A feature of CFS is that it can be enabled
on a disk-by-disk or directory-by-directory basis. When CFS is enabled for a directory, the oper-
ating system encrypts each of the files in the directory and then unlinks the plaintext files when
the encryption is done. This behavior generated consternation within the CFS group that the un-
encrypted files were still on the computer’s disk at the end of this process—the files were deleted,
but recoverable. (This is, in fact, the exact security problem that was discovered with Apple’s File
Vault, as discussed in the preceding section.)

Microsoft’s solution to this problem was to add an option to the CIPHER.EXE that would sanitize
deleted information on the hard drive, thus erasing the contents of the deleted files. Documentation
for this option appears in Figure 2-25. The program accomplishes this goal by opening a single file
for writing and then writing to that file until there is no more space on the device. This is the
same procedure that several free and commercial tools use. Unfortunately, it does not fully sanitize
sensitive information from the disk, as is discussed below.

Following the release of Windows XP with the improved CIPHER.EXE command, Guidance Soft-
ware, makers of the EnCase forensics tool, published a provocative whitepaper entitled “Can Com-
puter Investigations Survive Windows XP.” In that whitepaper authors Stone and Keightley evalu-
ated the sanitization capabilities of CIPHER.EXE and found them lacking:

“Results: All unallocated space was filled with random values (which greatly affected
file compression in the evidence file); however, the cipher tool affected only the unal-
located clusters and a very small portion of the MFT4; 10–15 records were overwritten
in the MFT, and the majority of the records marked for deletion went untouched). The
utility does not affect other items of evidentiary interest on the typical NTFS partition,
such as: file slack, registry files, the pagefile and file shortcuts.

4Master File Table

2.5. PRIOR AND RELATED WORK ON SANITIZATION 73

“In terms of its anticipated end-user adoption, the cipher feature is a burdensome
command-line utility that is difficult to find and operate. Notably, the cipher function is
available on the Professional version, but not included in the Home version of XP and
Windows 2000. Despite some speculation, the function is not set by default.”[SK03]

The white paper concludes:

“. . . The scrubbing feature is part of Windows XP, but it is not all that it was initially
thought to be. It is a command line tool that is difficult to use, time consuming and
nothing more than a good wiping utility. The average computer user will not know
how to use it, and even if it is used, evidence artifacts still remain in certain system
files.”[SK03]

As with Apple’s “Secure Empty Trash,” CIPHER.EXE is an example of a program that literally solves
the problem that the operating system vendor set out to solve. However, the solution is limited in
scope, burdensome to use, and ultimately doesn’t provide users with the protection that would be
afforded by a more comprehensive solution.

2.5.6 Microsoft’s “Remove Hidden Data” tool
Starting in August 2004 Microsoft prepared a series of Knowledge Base articles that instruct users
on fast saves and the proper procedure for removing metadata from their Word and PowerPoint
documents. [Cor04a, Cor04b, Cor05b, Cor05c, Cor05a]

In August 2004 Microsoft also released its “Remove Hidden Data tool for Office 2003 and Of-
fice XP.”[Cor04c] This tool is designed to remove much of the metadata, revisions, and other poten-
tially embarrassing information that had been the source of so many media reports. The Remove
Hidden Data tool automatically removes more than a dozen kinds of hidden information and meta-
data, including:

• Comments

• Previous authors and editors

• The User name

• Personal summary information.

• Revision marks (if there are revisions
pending in the document, the tool auto-
matically accepts all revisions)

• Deleted text

• Previous versions and versioning informa-
tion.

• Descriptions and comments are removed
from Visual Basic Macros and modules

• The ID number used to identify the doc-
ument (ID numbers are used by Word to
allow changes to be automatically merged
back into the original document using
some document management systems)

• Routing slips

• E-mail headers

• Scenario comments

• Office 97 unique identifiers (these identi-
fiers were removed from later versions of
Word)[Cor04c]

Even though Microsoft sells a version of Word that runs on the Macintosh operating system, the
Remove Hidden Data tool is only available for Microsoft Windows.

74 CHAPTER 2. Prior Work

C:\Documents and Settings\simsong>cipher /?
Displays or alters the encryption of directories [files] on NTFS partitions.

CIPHER [/E | /D] [/S:directory] [/A] [/I] [/F] [/Q] [/H] [pathname [...]]

CIPHER /K

CIPHER /R:filename

CIPHER /U [/N]

CIPHER /W:directory

CIPHER /X[:efsfile] [filename]
...
/W Removes data from available unused disk space on the entire
volume. If this option is chosen, all other options are ignored.
The directory specified can be anywhere in a local volume. If it
is a mount point or points to a directory in another volume, the
data on that volume will be removed.
...

directory A directory path.
filename A filename without extensions.
pathname Specifies a pattern, file or directory.
efsfile An encrypted file path.

Used without parameters, CIPHER displays the encryption state of
the current directory and any files it contains. You may use multiple
directory names and wildcards. You must put spaces between multiple
parameters.

Figure 2-25: The /W option added to CIPHER.EXE in Windows XP Professional

Overall, the Remove Hidden Data tool has the look of a rush job (Figure 2-26) and does not have
the level of professionalism evident in other parts of the Office application.

Evaluation of the Tool
One problem with the “Remove Hidden Data” tool is that there is no obvious way to look at a Word
file and determine if it has been processed with the tool or not. This is similar to the problem of
being unable to determine if a hard drive has been properly sanitized after an overwriting program
has allegedly been run.

It’s important to note that “Remove Hidden Data” doesn’t protect a publisher from accidentally
publishing a document with confidential content that was constructed with the malicious intention
of defeating Microsoft’s sanitization system. For example, a document could be created using a
Word Macro that displays confidential material after a certain date. Because “Remove Hidden
Data” does not remove macros from documents, the hidden content in such a document will not
be removed because it is not technically “hidden:” it is simply active content that changes in form
at a previously designated time.

2.5. PRIOR AND RELATED WORK ON SANITIZATION 75

Figure 2-26: Microsoft’s Remove Hidden Data before (left) and after (center) a file is sanitized. After the program runs,
the program’s log file is opened in the Windows Notepad application (right).

2.5.7 Rivest’s incremental key forgetting proposal

An excellent way to implement a sanitizing delete is to store files encrypted and then, when the
files are no longer needed, both sanitize the key and unlink the files. This avoids what is sometimes
known as the “Oliver North Problem”—deleting documents only to be done in by data stored on
backups (Figure 2-27). Of course, it is important that the key actually be deleted and that it not be
backed up in any location itself.

Instead of throwing away the key, Rivest proposed the idea of throwing away bits of the key on
some sort of schedule.[Riv04] For example, if the document in question were encrypted with a
128-bit AES key, and if a modern computer can try 100,000 AES keys per second, then throwing
away 24 bits of key would protect the data to be sanitized from most casual attackers (and certainly
from a large-scale analysis of several hundred disk drives) yet require at most 168 seconds try all
224 possible keys. If the key recovery operation had not be initiated within an hour, the computer
could proceed to throw away another 9 bits (for a total of 33 bits discarded), which would slow
the data recovery time to roughly a day. If the data wasn’t needed for another month, another 3
bits could be discarded, increasing the recovery time to a little less than a week, and so on.

The advantage of this approach is that the encrypted data is increasingly rendered difficult to re-
trieve as more and more bits of the key are thrown away, but the data is never placed beyond
recovery if one is desperate enough. The theory is that the computer user will have the determi-
nation to recover the key (and the data) only if it is really needed—but a casual attacker (or an
automated program) will not have the needed determination. Another advantage is that, although
it is possible to recover an individual file or two, it becomes progressively harder over time for an
attacker on a limited budget to recover all of the data that has been processed in this manner.

76 CHAPTER 2. Prior Work

Figure 2-27: ‘We all sincerely believed that when we send a
PROFS message to another party and pressed the button
’delete’ that it was gone forever.” — Lt. Col. Oliver North
testifying before Congress, July 8, 1987 [Sip95]

Figure 2-28: The hypothetical Shredder Control Panel. Car-
toon shredder by Clay Bennett, The Christian Science Mon-
itor. Used with permission.

2.5.8 Ephemeral communications
Another approach to the data remanence problem is to use an ephemerizing service. Such a service
creates secret encryption keys that have widely publicized expiration dates. To create a message
M that will be unreadable after a particular date D the user simply encrypts a document with key
K and then sends K to the ephemerizer with a request that K be encrypted with KD, the key that
expires

〈{M}K , {K}KD
, D〉

A commercial system based on this approach was fielded in the late 1990s by a company called
Disappearing Ink which changed its name to Omniva and was acquired by Liquid Machines in
2004. Omniva’s technology is described in [GS02b, pp.280-283] Perlman presents an improved
solution to this problem in her technical paper The Ephemerizer: Making Data Disappear. [Per05a]

2.5.9 Understanding data lifetime via whole system simulation
Chow et al. have examined the lifetime of sensitive and confidential information in the Unix oper-
ating system using an approach they call “TaintBochs” which are tracked through a simulation of
a running system.[CPG+04] Using their system, they have determined that conventional systems
scatter sensitive data such as passwords, credit card numbers, and encryption keys throughout the
system’s kernel memory, user memory, and swap space. Unless specific measures are taken to sani-
tize these memories, the researchers have found that such information may persist for the lifetime
of the computer system. They have also found that relatively simple measures—such as explicitly
overwriting memory that is freed—can drastically reduce the extent of the problem.

2.5. PRIOR AND RELATED WORK ON SANITIZATION 77

2.5.10 Other work on Disk Sanitization
There are a substantial number of programs available for sanitizing sensitive files and/or entire
disk drives. Some of these programs are free, while others are commercial.

In general, programs that sanitize the entire hard drive are easier to write and easier to verify than
programs that attempt to sanitize individual files. Horn has created an excellent program called
DBAN that boots a customized version of Linux from a floppy disk or CDROM and proceeds to erase
the computer’s hard drive (after first asking for confirmation, of course!)[Hor05] The MacOS 10
Disk Utility program includes the ability to overwrite a disk with a pass of “zeros” (ASCII NULs),
with eight passes of random data, or (in version 10.4) with 35 passes of data, when a disk is
formatted; Figure 2-29 shows a screen shot of the version 10.3 Disk Utility at work. (The origin of
the 35-pass process and the fact that it was never necessary to subject any given hard drive to 35
passes of overwriting is discussed at length in [Gut96].) The default is not to overwrite the media
but to simply write a new root directory.

Programs that attempt to selectively sanitize some information have a much harder time—the
problem is allowing the user to specify what information is to be sanitized in a manner that is
usable. AccessData’s Secure Clean and PGP Personal Privacy load an extension to the Windows File
Manager that allows any file to be sanitized through right-clicking on the file and then choosing a
menu option. More challenging is the job of programs that claim to generically remove private or
compromising information. Geiger reviewed three such tools in December 2004 and found that all
of these programs left significant amounts of information on the computer’s hard drive that they
claimed to sanitize. He concludes that reviews written in magazines and by users of these programs
are based on product claims and feature comparisons, rather than on an actual evaluation of the
program’s abilities. He is conducting further research in this area.[Gei04]

Crescenzo et al. discuss the need to scrub a computer’s storage after a cryptographic key is no
longer needed and present a theoretical model for determining when media is sanitized.[CFIJ99]

78 CHAPTER 2. Prior Work

Figure 2-29: The Apple MacOS 10.3 Disk Utility (left) has an “Options” button which, when pressed, displays a subpanel
(upper right) gives the user the option to overwrite the disk with zeros or eight passes of random data. The subpanel
is displayed on the main window as a “Sheet” (lower right). Considering how much empty space is in the Disk Utility
window, it probably would have made more sense—and been more usable—to display the options on the main panel
and to have removed the “Options” button.

2.6. A BRIEF SURVEY OF REGULATORY AND OTHER NON-TECHNICAL APPROACHES 79

2.6 A Brief Survey of Regulatory and Other Non-Technical Approaches
There is a long history of both successful and unsuccessful attempts to control computer systems
through the use of defacto or dejure regulations. Although some argue that it is inappropriate to
have government regulation on technology because the market can solve technological problems
faster and more effectively than the heavy hand of government, others argue that markets fre-
quently fail to make optimum solutions when it comes to detailed technological issues.

Morgan and Newton argue for a middle ground, stating that “market-based standards are not
relevant to most issues involving information technologies.”[MN04] In part, they write, this is
because markets are simply not equipped to deal with the nuances and long-term implications of
technological decisions. Instead, markets tend to focus on short-term results.

Of course, regulation can itself be ineffectual or produce unintended consequences. It is widely
acknowledged that unsolicited email sent over the Internet did not stop after Congress passed
the CAN-SPAM act.[CAN03] Likewise, an unfortunate byproduct of the regulations prohibiting the
export of software containing strong cryptographic algorithms in the 1980s was that less software
was made available inside the US that implemented those algorithms.[Koo99] Thus, any regulatory
proposal should carefully consider the potential for both intended and unintended consequences.
It is also useful to consider voluntary “regulations” that are backed by some kind of industry or
even moral authority, rather than by the force of law.

To that end, Morgan and Newton describe a series of escalating approaches for the adoption of
design principles to regulate technology so that it can achieve socially relevant ends:

1. Best professional practice, adopted by professional societies.

2. Certification of systems, attesting that the systems conform to the design principles.

3. Acquisition specifications used by purchasers to decide which products are considered for
purchase and which are rejected.

4. Legal frameworks built upon proven best professional practice and certification standards.
[MN04]

The patterns introduced in this thesis fit into the Morgan/Newton framework as well-developed
best professional practices, and as templates for legal frameworks.

The remainder of this section explores a variety of past regulatory efforts, with specific attention to
the regulation of drugs and warning labels.

2.6.1 Fair Information Practice
After nearly a decade’s worth of public disclosures and congressional hearings about the increased
use of consumer databanks, the U.S. Department of Health, Education and Welfare issued a report
in 1973 about the impact of databanks in American society.[UDoHoAPDS73] At the time, the con-
sumer reporting industry was in the middle of a transition from manual records to computerized
records. Some people believed that the federal government needed to adopt laws and regulations
that would guarantee the right of individuals to access information about them stored in the data-
banks of American businesses. As a result of these concerns, the report’s authors recommended
that a Code of Fair Information Practice be adopted. (See Figure 2-30.)

80 CHAPTER 2. Prior Work

“The Code of Fair Information Practice is based on five principles:
1. There must be no personal-data record-keeping systems whose very existence is a

secret.
2. There must be a way for a person to find out what information about the person is

in a record and how it is used.
3. There must be a way for a person to prevent information about the person that was

obtained for one purpose from being used or made available for other purposes
without the person’s consent.

4. There must be a way for a person to correct or amend a record of identifiable
information about the person.

5. Any organization creating, maintaining, using, or disseminating records of identi-
fiable personal data must ensure the reliability of the data for their intended use
and must take reasonable precautions to prevent misuse of the data.”

Figure 2-30: The Code of Fair Information Practice. [UDoHoAPDS73]

While the Code was not adopted in the United States, it became the basis for more than 30 years
of privacy regulation in Canada, Europe and Asia.

The 1973 Code of Fair Information Practice can be applied to the many HCI-SEC issues involving
the recording and display of sensitive information in computer systems. Much of the work in this
thesis on the topic of sanitization (Chapters 3 and 4) and covert monitoring (Chapter 8) is based
on a direct application of these principles to desktop computer systems.

2.6.2 Product labeling as a precedent for software labeling
Cranor suggests that it might be useful to take food nutrition labels as a starting point for the design
of any privacy labeling system.[CAG02] This section is based on that suggestion.

There are in fact many similarities between the way that drugs work on the human body and the
way that software works on computer systems. Both are made by individuals or organizations that
are separated in space and time from the user. Both have stated actions and side-effects. And both
have actions that are are fundamentally unpredictable: while the user usually knows the trademark
or brand name of what was consumed and what claims were made, the drug or software may or
may not have these effects. There may be undisclosed parts or ingredients. There may also be
unexperienced consequences as well.

The Pure Food and Drug Act of 1906
By the end of the 19th Century, consumers in the United States faced a serious problem: many
foods, tonics and drugs contained significant quantities of addictive substances such as codeine or
cocaine. Often these substances were placed in the foods specifically for the purpose of addicting
consumers, so that consumers would have unexplained cravings for the products and continue to
purchase them. Addictive drugs such as morphine, heroin, opium and laudanum were even put
into “soothing syrups” designed to help babies cope with the pain of teething. (See Figure 2-31.)

After much public outcry, Congress passed The Pure Food and Drug Act of 1906 to deal with the

2.6. A BRIEF SURVEY OF REGULATORY AND OTHER NON-TECHNICAL APPROACHES 81

Figure 2-31: “Soothing syrups” containing morphine, heroin, opium, or laudanum (a mixture of alcohol and opium)
were packaged for babies to stop their crying at the turn of the 20th Century. The Pure Food and Drug Act of 1906
required that the names of the narcotics and their dose be indicated on product labels. Once the information was made
public, newspapers, magazines, and the American Medical Association could began the fight against these so-called
“soothers.” Image c.1910 from [oM98].

problem of food and drug adulteration. The 1906 Act did not outlaw the addition of addictive
substances to foods or tonics: it simply mandated that any food or drug containing specific addictive
drugs—such as alcohol, codeine, or cannabis—disclose the presence of those drugs on the package
label. The words “may be habit forming” also had to be prominently displayed.

The Act also required that labels explicitly mention any artificial colors and flavors. After the law’s
passage, drinks couldn’t be sold as “orange soda” unless that drink had flavoring that came from
genuine oranges. Otherwise the drink had to be labeled with the words “imitation” or “artificial.”

The Act required that every bottle, box, and bag of food be clearly labeled to indicate the precise
weight of the food that it contained.

In the case of drugs, the Act further specified that consumer packaging had to specify the strength,
quality, and purity of the pharmaceutical the package contained if it differed from accepted stan-
dards. The dose of the drug had to be clearly printed on the outside of the package.

Although such labeling was designed to let consumers make informed decisions, in practice the
disclosure caused many manufacturers to remove the addictive substances from their products.
For example, following the passage of the 1906 law, cocaine was removed from the formula for

82 CHAPTER 2. Prior Work

Coca-Cola, a popular beverage of the time.

Product labels made it possible for scientists and the nascent consumer groups to rapidly collect
information over a broad segment of products—far more than could have been collection through
laboratory investigation, spot inspections, or litigation. This information ultimately provided law-
makers with additional evidence that was used to justify future legislation that outlawed many of
the more excessive practices.

Food labels today
Today the product labels of the 1906 law have been expanded to include a more complete list of
ingredients and nutritional information. The intent is for consumers themselves to read these labels
and make their own decisions about diet and health.

But while food labels have proved to be a boon for government regulators, food scientists and
academics, there is a growing body of research that finds these labels to be infective in reaching
the very consumers who could benefit the most from the information that they contain.

A study of 631 shoppers in Sydney by Worsley found that there was no clear consensus as to what
information should appear on food labels.[Wor96] Instead, the kind of information that people
thought should be present tended to break down along “gender, educational background, and
other demographic characteristics.” Worse, there were sharp disagreements between consumers
and experts as to what information should appear on labels so as to be useful to consumers.

What’s more, consumers seem to be poor judges as to what information would best satisfy their
needs. Given the labels that they prefer, consumers actually did worse on an “information-intensive
task” than given labels that experts thought would be appropriate to the task, according to a study
of shoppers over 18 years old conducted by Levy, Fein and Schucker.[LFS92]

A metanalysis study of 130 nutritional labeling studies (from a universe of 307 papers) published
in June 2003 by the European Heart Network found the following summary results:

• “Most people claim to look at nutrition labels often or at least sometimes. Some claim that
looking at labels influences their purchases, especially for unfamiliar foods.”[p.20]

• ... but while many people say that they look at labels in self-reported studies, analysis suggests
that many people “look” at the nutrition information panel but do not actually process the
information.

• The most common reason the people look at labels is to avoid certain nutrients or to assess
nutrient content.

• ... but people do not look at labels when they are pressed for time or when they doubt the
accuracy of the label information.

• Men are less likely than women to look at labels. Women who have higher income and people
who have higher levels of education are more likely to read labels.

• People on special diets or who are interested in their health are more likely to read labels
than the average consumer.[EHN03]

2.6. A BRIEF SURVEY OF REGULATORY AND OTHER NON-TECHNICAL APPROACHES 83

Figure 2-32: Representative warning designs used in the United States.[WCSJ02] Used with permission

These studies imply that labels conveying information about privacy or security aspects of software
or services might be helpful for consumer activists or perhaps an elite subset of computer users, but
alone they will not provide a general panacea to privacy or security problems.

On the other hand, these studies do not consider another widely recognized result of mandatory
labeling: by forcing manufactures to label content that might be objectionable, such regulations
frequently result in the removal of the objectionable material so that it will not have to appear on
the label.

2.6.3 Safety and warning labels
Whitten and Tygar suggest that security warnings in consumer software applications could be in-
formed by current research on standardized warning labels (e.g., Figure 2-32).[WT99, WT03] This
section is based on that suggestion.

Visibility of warning labels
Wogalter and Young conducted a study of 44 college students to see if which of three presentations
of warnings would achieve the highest degree of compliance. The warning was straightforward:
“Glue can burn and kill skin on contact. Wear supplied gloves when using glue.”

This warning was presented to subjects in three ways: along the side of a small glue bottle (the
control); along wings molded into the bottle’s body; and on a tag that was visible when looking
down on the bottle. These bottle designs and the typography utilized in the study are shown in
Figure 2-33.

The study found that tag presentation was dramatically more effective than the alternatives: 80%
of those who were presented with the warning on the “tag” followed its instructions and put on
supplied gloves when they were asked to use the provided glue to assemble a model airplane.

84 CHAPTER 2. Prior Work

Figure 2-33: Wogalter and Young’s three bottles experimented with different placement of warning labels (left). The
researchers found that the “tag” style worked much better than the “Control” and “Wings” styles because subjects
were forced to look at the warning as they opened the bottle. The warning is shown at the right. [WDL99] Used with
Permission.

By contrast, only 35% of those presented with the label on wings followed the instruction, and
only 13% presented with the traditional (control) label complied. Significance of these results was
reported at χ2 = 14.05(2, N = 44), p < 0.001.

Wogalter and Young attributed the high rate of compliance to two facts. First, the tag warning
was more readily seen: 100% of those in the tag group noticed the tag, compared with 50% of
the wings group and 26% of the control group, χ2 = 17.39(2, N = 44), p < 0.001. Second, safety
gloves were provided on the same table as the glue and the model airplane kit and required “little
effort to don,” [p.56], so the cost of compliance was relatively low. The authors indicate that
this finding is in conformance with their other research on compliance, which finds that “social
influence” [WFSB93], the cost of compliance, and whether or not the subject notices the warning
all affect overall compliance. [WY94, p.56]

The results of this research imply that warning labels that are readily apparent to the user may have
a positive impact on performance, but that compliance with warning labels will be more likely if
compliance is easy. Pop-up warnings that tell the user “you are about to engage in a dangerous
operation: continue?” probably won’t be effective unless they give the user a low-cost alternative
to the objectionable operation that will still accomplish the user’s overall goal.

Wogalter, Conzola and Smith-Jackson have produced a set of guidelines for creating warnings
and evaluating their use in research.[WCSJ02] Good warnings, they argue, are salient (they are
immediately noticed and attended to); have effective wording; have clean layout and placement;
and incorporate pictures or symbols (to increase the likelihood of being noticed, to improve memory,
and so they can be used by those who are illiterate in the warning language). The wording itself
consists of four message components: “(1) signal word to attract attention, (2) identification of
the hazard, (3) explanation of consequences if exposed to hazard, (4) directives for avoiding the
hazard.”[WCSJ02, p.221]

2.6. A BRIEF SURVEY OF REGULATORY AND OTHER NON-TECHNICAL APPROACHES 85

Product safety labels: ANSI Z535.4-2002
Whitten and Tygar suggest that the American National Standards Institute standard ANSI Z535.4
for Product Safety Signs and Labels [Ins98] might have application to computer security, as the
standard explains how to present warning information so that it is understandable by those who
are relatively untrained.[WT99, WT03] Unfortunately, they did not follow this suggestion with an
examination of the standard in question. Such an examination follows.

While the recommendations in Z535.4 have little to do with software, an analysis of Z535.4 for
this dissertation found 15 specific recommendations in the standard that are directly applicable to
the presentation of security warnings in desktop software. Those recommendations are presented
in Figure 2-34.

In industry, the widespread adoption of Z535.4 by manufacturers dramatically increased the oppor-
tunities for passive learning because safety-critical information encountered by individuals in one
context is relevant when the same symbols are used to present safety-critical information in other
contexts.

It seems reasonable to suggest that software practitioners could similarly benefit from the standards
recommendations that specific typography, graphic presentation, symbols, and “signal words” be
used for the universal presentation of safety-critical messages.

2.6.4 Existing information technology labels
There is a small but growing collection of instances in which the labeling approach has been applied
to information technology. A representative list appears below.

Cranor et al. ’s Technology Inventory Icons
In a report that cataloged tools available to parents for choosing or controlling online content for
their children,[CRG97] Cranor et al. introduced six icons for describing the capabilities of the 41
tools that they evaluated:

Suggest
Used for web sites, printed publications, and filtering software that suggests sites for
children to explore.

Search
Indicates a search service that can restrict its content to material that is appropriate
for children.

Inform
Provides information about content. This includes PICS labels,[KMRT96] reviews, and
other kinds of descriptive content.

Monitor
Records for later inspection information a list of the content accessed by the user.
The record may consist of all content accessed or simply the content that is deemed
inappropriate.

86 CHAPTER 2. Prior Work

Section Page Recommendation
4.10 3 The Safety alert symbol (a equilateral triangle surrounding an exclamation

mark) should only be used to alert individuals to a potential personal injury
hazard; it should not be used to alert persons to property-damage-only acci-
dents.

4.13 4 The signal words for product safety signs are DANGER, WARNING and CAU-
TION. “DANGER” is to be used for imminent hazard which, if not avoided, will
result in death or serious injury. “WARNING” indicates a potential hazard which
could result in death or serious injury. “CAUTION” indicates a potential hazard
which may result in minor or moderate injury. “It may also be used to alert
against unsafe practices.”

6.4 5 Signs should have contrasting borders to achieve distinctiveness from their
background.

7.2.1 5 The word “DANGER” shall be in safety white letters on a safety red background.
7.2.2 6 The word “WARNING” shall be in safety black letters on a safety orange back-

ground.
7.2.3 6 The word “CAUTION” shall be in safety black letters on a safety yellow back-

ground.
8.1.1 6 Signal words shall be in sans serif letters in upper case only.
8.1.2 7 Message panels should be printed in a combination of upper and lower case

letters.
B3.2 15 Hazard messages should come first, followed by action/avoidance messages—

but only “if there is enough time to read the entire word message and still avoid
the hazard.”

B3.3.1 16 Write short messages using “headline style.” For example, use “Moving parts
can crush and cut” instead of “This machine has moving parts that can crush
and cut.”

B3.3.2 17 Write in the active voice, rather than the passive voice.
B3.3.3 17 Avoid prepositional phrases.
B3.3.5 17 Write in outline format with bullets to enhance readability.
B3.3.6 18 Use left-aligned, ragged right text.
B3.3.10 19 Use black type on a white background or white type on a black background.

Figure 2-34: Specific recommendations found in ANSI Standard Z535.4 that are applicable to the presentation of
security information in computer interfaces.

2.6. A BRIEF SURVEY OF REGULATORY AND OTHER NON-TECHNICAL APPROACHES 87

Warn
Provides information about content and warns the user against accessing content that
is deemed inappropriate.

Block
Block the user from accessing information that is deemed inappropriate.

The primary use of the icons in the report are on the report’s first page, as an attention-getting
mechanism, and on pages 5 and 6, where the capabilities are introduced. The report does not use
the icons on the pages describing the individual products that are reviewed, nor does the report
recommend that standardized icons appear on produces or on web sites describing the products.
Nevertheless, this appears to be the first use of icons to describe generic functionality that might
exist within a range of different software products.

The Platform for Privacy Preferences Project (P3P)
Developed under the auspices of the World Wide Web Consortium, P3P is a standard that allows
web sites to publish privacy policies in machine readable form.[CDE+05] These policies can then
be read either by P3P “user agents” built into web browsers such as Internet Explorer. The policies
can also be used by search engines to automatically screen results—for example, so that a results
page for a search of online merchandise will not display merchants who would share details of the
sale with third parties, if the person making the purchase is opposed to this kind of secondary use.

TRUSTe’s “trust marks”
TRUSTe is an independent organization dedicated to helping individuals and organizations “estab-
lish trusting relationships based on respect for personal identity and information in the evolving
networked world.”[TRU04] TRUSTe is best known for its green and black seal which it licenses for
use on the web sites of organizations that have a privacy policy, that agree to be audited by TRUSTe
or by an outside third party, and that agree to participate in TRUSTe’s dispute resolution processes.

Today TRUSTe offers five licensable seals:

• Web Privacy Seal

• Children’s Privacy Seal (COPPA Safe Harbor)

• eHealth Seal

• EU Safe Harbor Seal

• Japan Privacy Seal

Each of the TRUSTe seals have specific minimum privacy standards such as allowing consumers
to unsubscribe from email newsletters and to opt-out from the sharing of personally identifiable
information. The seals also require that the organizations abide by specific minimum security mea-
sures and post a privacy statement which makes specific disclosures. A full list of the requirements
appears at http://www.truste.org/requirements.php . The Web Privacy Seal trustmark is
shown in Figure 2-35; other seals are similar, but with different lettering along the bottom.

TRUSTe also manages a “Bonded Sender” program. This program lists organizations that follow

http://www.truste.org/requirements.php

88 CHAPTER 2. Prior Work

Figure 2-35: The TRUSTe “trustmark.” Reprinted with permission.

specific mailing guidelines and, as a result, are placed on a special whitelist so their mail is not
blocked by mail filters.

When TRUSTe launched in June 1997 with the name eTRUST (the name was changed due to
trademark restrictions), the organization’s original plan was to have different licensable seals called
“trustmarks” that organizations could use to indicate the content of their privacy policies. Three
trustmarks were proposed:

“No Exchange” No personally identifiable information would be collected by the site.
“One-to-One” The site would collect information, but not share it with others.
“3rd Party” The site would both collect information and share it with others.

TRUSTe ultimately dropped its plans to use these informative icons. At the time, TRUSTe’s execu-
tive director said that the change was being made in the interest of simplicity.[Mac97] In fact, the
real reason that the practice-specific icons were dropped is that there was no incentive for organi-
zations to voluntarily license and display a mark indicating that they shared information with third
parties—no matter how beneficial that sharing might actually be to the consumer.[Hod05]

The fact that TRUSTe was unable to find support for these highly informative icons in 1997 is
an example of market failure—the very kind of market failure that typically justifies the need for
regulation.

EPCglobal guidelines
The Electronic Product Code (EPC) is a system that applies Radio Frequency Identification (RFID)
technology to the task of supply chain tracking and supermarket check-out. Proponents of RFID
describe a world where small EPC tags will be built into the packaging of consumer goods much in
the way that barcodes are placed on packages today.

EPCglobal Inc. is an membership organization that oversees the development of EPC standards.
The organization has adopted a set of “Guidelines on EPC for Consumer Products” which includes
four key elements governing the use of radio frequency identification technology (RFID) in con-
sumer products:

• Consumer Notice. Consumers must be given notice that a product contains an EPC tag that
is embedded or in the product’s packaging. Notice is given through the use of the licensed
EPC logo, the use of which is tightly controlled by EPCglobal.

2.6. A BRIEF SURVEY OF REGULATORY AND OTHER NON-TECHNICAL APPROACHES 89

• Consumer Choice. Consumers must be told that they are allowed to disable or discard the
EPC tags that they receive.

• Consumer Education. Consumers must have the opportunity to obtain information about
EPC tags.

• Record Use, Retention and Security. “Companies will publish, in compliance with all appli-
cable laws, information on their policies regarding the retention, use and protection of any
personally identifiable information associated with EPC use.”[EPC05]

These guidelines fall short of the RFID Bill of Rights discussed in Section 8.4. For example, the
“Consumer Choice” principle says that consumers are allowed to disable or remove the EPC tag—
but what if removing the tag voids the product’s warrantee? On that topic the guidelines are silent.

The second problem with the guidelines is that they lack any enforcement power. There is nothing
to prevent a manufacturer from using EPC technology without abiding by the guidelines. Although
such a manufacturer might be prohibited from using the EPC logo on their product, the manufac-
turer might not be concerned.

Nevertheless, the EPCglobal guidelines are a significant first step in an industry that has generally
shied away from many other kinds of disclosure requirements. It will be interesting to see if this
effort is successful.

Hosmer’s attack icons
Hosmer proposed that icons could be used for visualizing risks and attack scenarios. Using icons,
Hosmer argued, allows for “rapid comprehension and presentation of information security” in a va-
riety of environments. “Visual attack scenarios help defenders see system ambiguities, imprecision,
vulnerabilities and omissions, thus speeding up risk analysis, requirements gathering, safeguard
selection, cryptographic protocol analysis, and INFOSEC training.”[Hos00]

In her paper, Hosmer presents more than 50 icons and rules for combining the icons to graphically
depict scenarios. Although it is unlikely that the kinds of icons that Hosmer presents would be part
of any mandatory labeling regime—it is clearly unreasonable to expect software pirates to label
their warez sites with “piracy” icons—Hosmer’s work shows that reasonable icons can be used to
rapidly convey a variety of security-critical events.

Williams’ software ingredients and software facts
Jeff Williams, the CEO of Aspect Security, a Columbia Maryland consulting firm, has suggested that
software vendors adopt literal software labels showing the ingredients and the results of automated
threat analysis.[Wil05] An example of the figures from Williams’ presentation appear in Figures 2-
37 and 2-38.

Drawing upon analogies from automobile safety and food labeling, Williams argues that today’s
software is unsafe because of hidden internal failures. Arguing that manual auditing code is very
difficult, Williams’ firm is currently developing a system that will issue these labels for any Java
application that is uploaded. His labels are intentionally designed to resemble food nutrition labels,
Williams says, because most people are familiar with food labels and are immediately curious as

90 CHAPTER 2. Prior Work

? ?
 Malicious Intruder Buffer Overflow Data Scavenging

Theft Poorly Installed Software

Figure 2-36: Hosmer’s visual attack scenarios.[Hos00]

to how the concept could be applied to software. It is unclear whether or not this project will be
successful.

2.6.5 Regulations addressing the data sanitization problem
Although no regulations have mandated that computer manufacturers provide systems that are
easier to sanitize and easier to verify when sanitization has not occurred, a number of regulations
have been passed that nevertheless mandate that sanitization must take place.

NSA IAM Section 15
Presidential Decision Directive 63 (PDD 63) signed by President Clinton on May 22, 1998, outlined
civilian and governmental responsibility to protect the US Critical Infrastructure and established
the framework of the National Infrastructure Assurance Plan. Under this plan, the National Secu-
rity Agency (NSA) was mandated to perform information security assessments of US Government
Systems. This assessment has since been standardized as the NSA Infosec Assessment Methodology
(IAM). Section 15 of the NSA IAM discusses media sanitization and disposal.

As many organizations are now training individuals in the NSA IAM, it is likely that there are a
growing number of computer security consultants and practitioners who are aware of the data
sanitization issue.

BS 7799 and ISO 17799
On December 1, 2000, the International Standards Organization adopted ISO/IEC 17799:2000(E),
“Information technology—Code of practice for information security management.” (ISO 17799 is
based on and supersedes BS 7799, which was passed in 1995.)

Section 7.2.6 of the standard addresses the issue of media sanitization prior to disposal:

“7.2.6 Secure disposal or re-use of equipment
Information can be compromised through careless disposal or re-use of equipment (see

2.6. A BRIEF SURVEY OF REGULATORY AND OTHER NON-TECHNICAL APPROACHES 91

Ingredients: Sun Java 1.5 runtime, Sun
J2EE 1.2.2, Jakarta log4j 1.5, Jakarta
Commons 2.1, Jakarta Struts 2.0,
Harold XOM 1.1rc4, Hunter JDOMv1

Figure 2-37: A “software ingredients” label developed
by Jeff Williams; used with permission.

Software Facts

Figure 2-38: A “software facts” label developed by Jeff
Williams and used in his PowerPoint presentation to
argue that programs should be given “software facts”
labels in a manner similar to the way that foods are
given nutritional labels today. Used with permission.

also 8.6.4)5. Storage devices containing sensitive information should be physically de-
stroyed or securely overwritten rather than using the standard delete function.

“All items of equipment containing storage media, e.g. fixed hard disks, should be
checked to ensure that any sensitive data and licensed software have been removed or
overwritten prior to disposal. Damaged storage devices containing sensitive data may
require a risk assessment to determine if the items should be destroyed, repaired or
discarded.”[ISO00]

Unfortunately, the distribution of ISO standards are tightly controlled by the copyright holder and
are extraordinarily expensive to purchase. For example, the web site www.standardsdirect.
org sells ISO 17799 as a downloadable PDF for £110 (approximately $209). Nevertheless, the
fact that organizations can be certified to be ISO 17799 compliant has created a growth industry
in ISO 17799 training and certification courses. In March 2005 a Google search found 179,000

5Section 8.6.4, “Security of system documentation,” has nothing to do with sanitization. This section states that
system documentation should be stored securely, protected from unauthorized access, and restricted to the minimum
possible number of authorized individuals. The validity of such advice will not be considered in this thesis.

www.standardsdirect.org
www.standardsdirect.org

92 CHAPTER 2. Prior Work

web pages that included the term “ISO 17799,” of which 35,200 specifically addressed the issue of
ISO 17799 certification and compliance.

VISA’s Cardholder Information Security Program (CISP)
Since June 2001, merchants that accepted VISA cards and service providers that perform payment
card processing have been required to follow VISA’s 12-point Cardholder Information Security Pro-
gram (CISP). [VIS05] In December 2004, the VISA CISP standard was folded into the Payment
Card Industry Data Security Standard. [U.S04]

Although these standards apply to all merchants and processors, different levels of security are
required for merchants of different sizes. Key elements that apply to all merchants are standards
that protect the merchant’s network, cardholder data, the institution of a vulnerability management
program, access controls, requirements to monitor and test the network, and maintenance of an
information security policy.

In conducting the Traceback study, disk #21 was determined to come from a major supermarket
firm. The disk, which contained 3,722 credit card numbers, was removed from service in May
1999. The disk was acquired on November 11, 2000 and included the notation “Pulled from
working system and tested good.”

In discussions with the senior manager at the company responsible for information security at the
company, it was learned that the firm had adopted a data sanitization process as a result of the
VISA CISP requirement. According to the manager, in 2000 the company had just started its data
sanitization process and it is possible that some drives fell through the cracks. The company now
wipes all of its hard drives with Norton Disk Wipe and it has a forensics department which, among
other things, samples the wiped drives to make sure that they are actually wiped. “It really is a
problem, asset disposal. The assets have little or no value by the time they depreciate. From an
accounting perspective, no one cares. But the value of the data on these disks is really, really high.
It just has to be managed.”[Gar04b]

Federal regulations on consumer information and records disposal
The Fair and Accurate Credit Transactions Act of 2003 (FACTA) amended the Fair Credit Reporting
Act to require that “any person that maintains or otherwise possesses consumer information, or any
compilation of consumer information, derived from consumer reports for a business purpose” to
“properly dispose of any such information or compilation.”[US03, §216, 15 U.S.C. 1681 w(a)(1)]
On November 18, 2004, the Federal Trade Commission issued its Final Rule implementing the
requirements of the FACTA.[Com04b] The Securities and Exchange Commission issued its own final
rule on the “Disposal of Consumer Information” three weeks later on December 8.[SC04] Other
Federal bodies charged with regulating portions of the nation’s financial industry, including the
Federal Reserve Board, the Office of the Comptroller of the Currency, the Federal Deposit Insurance
Corporation, the Office of Thrift Supervision, and the National Credit Union Administration, have
adopted consistent and comparable rules.

Designed to help combat the growing tide of identity theft, these rules cover a broad range of
businesses and financial institutions in the United States that have sensitive consumer information
on their computers. For example, the FTC Rule covers not only consumer reporting agencies, but

2.6. A BRIEF SURVEY OF REGULATORY AND OTHER NON-TECHNICAL APPROACHES 93

also “lenders, insurers, employers, landlords, mortgage brokers, car dealers, and other businesses
that use consumer reports.”[Sot05]

Organizations collecting “consumer reports” are now required to properly dispose of that infor-
mation “by taking reasonable measures to protect against unauthorized access to or use of the
information in connection with its disposal.” The law specifically considers “abandonment ... as
well as the sale, donation, or transfer” as forms of disposal. The term “consumer reports” is broadly
defined in the law to include pretty much any personally identifiable information that could be
used to make a decision in granting credit or insurance.

The rules apply both to paper and electronic records. While the rules to do not specify what
constitutes reasonable measures, they give examples. For paper records the FTC Rule notes that
generally appropriate measures would include shredding or burning and parenthetically notes that
a paper shredders are “available at office supply stores for as little as $25.” For electronic records,
the FTC notes that a “small entity” could comply with the disposal rule by a variety of means:

“If a small entity has stored consumer information on electronic media (for example,
computer discs or hard drives), disposal of such media could be accomplished by a small
entity at almost no cost by simply smashing the material with a hammer. In some cases,
appropriate disposal of electronic media might also be accomplished by overwriting
or ‘wiping’ the data prior to disposal. Utilities to accomplish such wiping are widely
available for under $25; indeed, some such tools are available for download on the
Internet at no cost. Whether ‘wiping,’ as opposed to destruction, of electronic media is
reasonable, as well as the adequacy of particular utilities to accomplish that ‘wiping,’
will depend upon the circumstances.”[Com04a, p.30]

According to the FTC, the Rule covers far more than just a person’s name and social security num-
ber, but also includes driver’s license numbers, phone numbers, physical addresses, and e-mail
addresses. Significantly, the Rule also covers so-called “credit header” information—the portion
of a credit report that does not actually have any credit information. It even covers information
from public records, although the Commission noted that businesses may consider the sensitivity
of consumer information when determining what sort of disposal methods should be used.

In its report, the FTC wrote that businesses would need to educate and train employees on how
to properly dispose of paper and electronic records. But despite the requirements for new training
and the purchase of paper shredders, the FTC noted that most of the organizations filing comments
“stated that the proposed Rule would not create any undue burdon for small businesses.”

All businesses that maintain consumer reports must comply with the FTC rule on June 1, 2005.
Compliance for the SEC rule starts July 1, 2005.

2.6.6 Regulating accessibility with Section 508
The user interface of a surprising number of software, web sites, and telecommunications devices
came under de facto Federal regulation in June 2001 when Section 508 of the Workforce Investment
Act of 1998 (29 U. S. C. (SS) 794.d) came into effect. The law contained wide-ranging standards
mandating that information technology be usable, where possible, by individuals with a variety

94 CHAPTER 2. Prior Work

of disabilities. For example, Section 508 requires that the functionality of operating systems like
Windows and MacOS be accessible without the use of a mouse or other pointing device because
many people lack the manual dexterity or vision to use such devices properly. Likewise, Section
508 requires that web sites be accessible by someone who cannot read text that is embedded in
downloaded images—as is the case for a blind person attempting to navigate a web site with a
screen reader.

Making products accessible to those with disabilities is not merely a question of legality, compliance
and markets. Many individuals view making systems accessible for those who are less fortunate as
“morally the right thing to do.”[TR03]

Nevertheless, prior to the passage of Section 508, there was little or no support for screen readers
in Microsoft Windows or for using Macintosh computers without a mouse. Thus, it seems that the
moral argument needed the legal requirement to become a powerful driving force. There is also
the issue of competitive pressure: Once support for accessibility moves forward on one platform,
other vendors feel compelled to work harder.

Regulations such as Section 508 can have far-reaching impact because they affect not only end-
user applications but also the tools that are used to create applications and the instruction of
future application developers. Ludi reports that accessibility APIs were added to Java, Macromedia
Shockwave, Flash, and Adobe Acrobat Reader only after the passage of Section 508. The popular
Dreamweaver web site authoring tool was modified to do Section 508 compliance checking. Stu-
dents in Ludi’s course “do seem to get the message, at least in the short term,” that it is important
to design web sites for equal access by all. [Lud02]

Of course, it may be that Section 508 is not the cause of these changes, but instead reflects a
growing awareness within our society of the need to design products so that they can be used by
the disabled. It is impossible to say for sure whether the passage of Section 508 was the cause
of these changes. But many people in the industry have written that they believe Section 508 is
causative.

For example, the task of creating Section 508-compliant software was eased significantly over the
past few years by the inclusion of new functionality within systems such as the Java Swing and
TrollTech’s Qt[Tro05] application toolkits. Although Section 508 may not be the reason that the
accessibility functionality was added to these systems, it is almost certainly the reason that the
functionality has been widely used.

As a result of Section 508, much of the commercial software sold in the United States can now
be readily used by people who have significant disabilities, whereas a decade ago this was not the
case.

Procurement mandates
Section 508 is a procurement law: its sole power comes from its prohibition on the Federal Gov-
ernment from purchasing technology for information services that do not meet its accessibility
requirements.6 Given that the Federal Government is the largest purchaser of information tech-

6Like many Federal regulations, the law includes a system for requesting waivers and obtaining practical exclusions.

2.6. A BRIEF SURVEY OF REGULATORY AND OTHER NON-TECHNICAL APPROACHES 95

nology in the United States—accounting for 10% of all information technology expenditures—few
manufacturers are willing to give up this market.

Artman suggests that mandating specific usability requirements in law and regulation is more
effective than delegating this function to contract officers. That’s because contract officers fre-
quently have little or no training in these issues. “If the contract does not contain explicit require-
ments for usability, it is generally one of the first considerations to be cut if time or finances are
constrained.”[Art02]

What Section 508 covers
Previous attempts at using federal regulation to force the industry to comply with accessibility
guidelines were less successful than Section 508. For example, Section 504 of the 1973 Reha-
bilitation Act had mandated that those with disability receive equal treatment—for example, that
they have an equal opportunity for a full education—and Title II of the Americans with Disabilities
Act (ADA) of 1990 required that people with disabilities have the same access to communications
technologies as those without. But neither law provides clear and specific guidelines regarding
how which barriers should be addressed and how.[OR04] Section 508 does, as evidenced by the
standards shown in Figure 2-39

Corporations are free to create two different versions of their products: one for people who have
disabilities and one for people who do not. But economics of software makes this approach less
attractive. Once a product is adapted for use by those with disabilities with functionality that can
be switched on or off, there is only a tiny incremental cost associated with putting that function-
ality into all versions of the company’s product.7 This tiny cost is invariably less than the cost of
maintaining two separate product lines.

Universal design
It is generally acknowledged that the beneficiaries of accessible design go far beyond the commu-
nity originally targeted. For example, the keyboard controls built in to the Windows operating
system are essential for those who cannot use a mouse, but they are also useful for “walk-about”
mobile computing when no mouse is available, or for when the computer’s mouse breaks. “Goods
designed inclusively for all people inevitably lead to products and services that benefit not only the
original target markets but other, mass markets as well.”[Mar03]

To those who work in the field of accessibility, designing a product so that it can be used by either
those with or without a disability is called universal design.

Coombs says that universal design can have immediate and far-reaching positive effects on a
much broader population than was originally intended: “Curb cuts were made to assist people
in wheelchairs, but they brought immediate benefits to people riding bicycles, pushing baby car-
riages, and so forth... Accessible Web design is the equivalent of electronic curb cuts. Everybody
benefits.”[OR04]

7The cost is not zero because the disability adaption must be tested and can result in technical support costs when
users accidentally turn the feature on and do not know how to turn it off.

96 CHAPTER 2. Prior Work

Section 508 requires that technology purchased by the federal government meet 16 standards
of accessibility:

1. Usable by a person without vision

2. Usable by a person with low vision without relying on audio.

3. Usable by a person with little or no color perception.

4. Usable by a person without hearing

5. Usable by a person with limited hearing—for example, by providing audio amplification.

6. Usable by a person with limited manual dexterity, reach, and/or strength.

7. Usable without time-dependent controls or displays.

8. Usable without speech

9. Usable by a person with limited cognitive or memory ability.

10. Usable by a person with language or learning disabilities.

11. Availability of audio cutoff—Systems that deliver speech output must provide a mecha-
nism for private listening or a mechanism for interrupting the speech.

12. Prevention of visually induced seizures—systems that flash must use rates of 3Hz or
lower or 60Hz or higher to avoid inducing seizures in people with photosensitive
epilepsy.

13. Bypass of biometric identification or activation systems—because biometrics invariably
require existence or use of a piece of the body that not everybody has.

14. Usable with upper extremity prosthetics—systems that rely on capacitive sensing of the
human body should be replaced by those which rely on pressure.

15. Compatibility with hearing aids, through magnetic wireless coupling, for example.

16. Usable from a wheelchair or similar mobility device.

Figure 2-39: Specific requirements for access in Section 508.

Evaluating the impact of Section 508

Despite the incredibly wide-ranging impact that Section 508 has obviously had on the computer
and telecommunications industries in the United States, there has been some disagreement on just
how successful the measure has been.

For example, Podevin reported in December 2004 that 94% of the Fortune 100 web sites did not
have “fully accessible home pages.” Specifically, 20% were found to have one Section 508 bar-
rier, 17% were found to have 2 barriers, and a whopping 54% were found to have 3 or more
barriers.[Loi04] The 17% success rate is actually lower than the 20% success rate found by Za-
phiris and Zacharia in an analysis of 30,000 Cypriot Web sites—a set of web sites which would not
be covered by Section 508.[ZZ01] In another report of failed Section 508 compliance, Zaphiris and
Ellis report that only 30% of the top-50 US university web sites pass the usability requirements of
the popular “Bobby” automated accessibility checker.[ZE01, Wat05]

2.6. A BRIEF SURVEY OF REGULATORY AND OTHER NON-TECHNICAL APPROACHES 97

Figure 2-40: An HTML tag that is not in compliance with the Bobby automated accessibility checker.[Wat05] A screen
reader might read this HTML element as “STAR DOT GIF.”

<img src="star.gif" width=16 height=16
alt="Ornamental star image #5412; please ignore!">

Figure 2-41: An HTML tag that is in compliance with the Bobby automated accessibility checker.[Wat05] A screen
reader might read this HTML element as “ORNAMENTAL STAR IMAGE NUMBER FIVE FOUR ONE TWO; PLEASE
IGNORE!”

But there is a problem in basing an analysis of Section 508’s success solely on scores from an auto-
mated checker. While checkers like Bobby make it very easy for researchers to rapidly scan many
web sites and get an accessibility score, changes in Bobby scores over time may not accurately
capture the impact of Section 508 on its target population. This is because the Bobby score re-
ports literal conformance with specific HTML coding standards—it does not actually measure the
usability of web sites by users with disabilities.

For example, Bobby will declare a web site to be in violation of Section 508 if that web site has
a single ornamental image that lacks a textual ALT tag, as shown in Figure 2-40. But Bobby will
happily rate this the tag shown in Figure 2-41 as being in compliance with Section 508. For a blind
person using a screen reader, the first HTML form is far more usable than the second. [TR03]

Yet another problem with using the web site Bobby ratings as the sole tool for judging the effec-
tiveness of Section 508 is that the web is a moving target. Hackett et al. sampled 40 web sites
from the years 1997 through 2002 using the Internet Archive’s Wayback Machine, They discovered
that even though the absolute number of accessibly violations increased, the percentage of viola-
tions compared to the number of potential violations significant decreased—dropping from a 63%
in 2000 to 41.7% in 2002. “This either suggests that some Web designers are becoming aware of
accessibility guidelines or that general ‘good practice’ in Web design happens to include elements
that also increase accessibility,” the authors conclude.[HPZ04] A more simplistic study that focused
on Bobby ratings alone would have yielded the reverse conclusion.

Finally, focusing on web sites, while easy, ignores the significant investment made by US businesses
in making desktop applications accessible.

Laura Ruby, program manager of Microsoft’s Accessible Technology Group, writes that Section 508
was criticized early on for having vague regulations that would lead to numerous lawsuits. “To-
day, two years after Section 508 was implemented, it looks as though the critics were wrong. By
offering the technology industry a carrot instead of a stick, Section 508 set the stage for a proac-
tive public/private partnership. Technology companies rushed to collaborate with government
officials.” [Rub03]

98 CHAPTER 2. Prior Work

2.6.7 Previous work on vocabulary as a barrier to usability and understanding
It is impossible for any regulatory effort to succeed without an agreement on underlying vocabulary.
Section 8.2 of this thesis goes further, arguing that the confusion over vocabulary is an important
factor in the current conflict between security and usability.

For an illuminating example of how confusion over basic vocabulary can contribute to failure,
consider Artman’s ethnographic study of a web-based application developed for a Swedish organi-
zation by the Swedish office of a US firm. Having taken a training course on usability issues, the
procurement officer wrote language into the contract specifying that she should be able to review
the “design” of the system’s prototype. But the procurement officer and the contractor used the
word “design” to mean different things:

• The procurement officer thought that the term “design” referred to the application’s over-
all functional requirements, the flow of information inside the application, and interactive
elements on the application’s screens.

• The contractor thought that the term “design” referred solely to the application’s “aesthetic
values”—specifically the design of the application’s screens. [Art02, p.68]

This fundamental confusion over a single word, design, disrupted the entire project’s attempt at
usability engineering. When the procurement officer requested paper prototypes, the contractor
responded by having his art department create finished screen designs and then printed them
out. The contractor thought that the request was unreasonable, given the current status of the
project. The procurement officer never showed these designs to users—necessary for “user-centered
design”—because they looked like finished pieces of work. And the procurement officer never
went back and demanded documents about functional requirements and data flow, because the
contractor had already fulfilled the requirement to present a “design.”

Words are the primary tool that humans use to convey information and concepts. But words can
be ambiguous or otherwise imprecise: In some cases a pair of words have the same meaning (e.g.,
two and a couple), while in other cases a pair of words can have meanings that are similar but
subtly different (e.g., heavy and weighty). Since many words have multiple meanings (e.g. white),
multiple readers of a document may walk away with meanings that are significantly different.

Technobabble
Barry explored the question of linguistic confusion in high tech in his 1991 book Technobable [Bar91].
While humorous and somewhat dated, this volume nevertheless remains one of the best discussions
of linguistic challenges in high tech. More than other areas of human endeavor, Barry asserts that
the computing field lends itself to the rapid proliferation of new and inconsistent terminology as
nouns are turned to verbs, verbs are turned to nouns, acronyms are turned to words, and so on.
Perhaps this is just an excellent example of modularity and object re-use, but it is tremendously
confusing to people who are not intimately familiar with the technology under discussion.

Academic IT babble
Confusion over vocabulary isn’t just a problem for industry: it affects academia as well. Alter’s
89-page article “Same Words, Different Meanings: Are Basic IS/IT Concepts Our Self-Imposed
Tower of Babel” explores how different articles in academic research on Information Technology are

2.6. A BRIEF SURVEY OF REGULATORY AND OTHER NON-TECHNICAL APPROACHES 99

systematically using the same words to mean different things. The genesis of the article was a series
of letters exchanged between Jim Sutter and Lorne Olfman in Communications of the Association for
Information Systems arguing whether or not there was “too much user participation in IS projects.”
Writes Altner:

“When I first glanced at Sutter’s letter my immediate response was disbelief since ‘any-
one knows that user involvement is important and beneficial.’ Then I took another look
and realized that Sutter’s users were functional area managers and their representa-
tives, people with enough clout to become involved in discussions of technical IT strat-
egy whether or not they had much knowledge to contribute. These are people CIOs and
high level IT managers view as ‘their users’ but these aren’t the people I usually think of
as users, namely, people who use information systems directly.”[Alt00, p.4]

Alter’s article goes on to review 10 articles published in CAIS between June and December 1999 and
shows that the terms “System,” “User,” “Stakeholder,” “IS project,” “Implementation,” “Reengineer-
ing,” “Requirements,” “Solution,” and “Point of reference” have radically different meanings. He
argues that by not standardizing terminology, it is hard to be rigorous as different concepts mean
different things to different people. Imprecise terminology causes people to become confused, to
misunderstand what others are arguing, and, ultimately, hampers the course of progress.

Standards babble
Söderström comments on the same problem, arguing that the word “standard” has taken on so
many meanings that it is no longer possible to understand what people are about when they use
the word without qualification. A standard, Söderström notes, may be a specification, a recom-
mendation, a framework, a pattern, or, in fact, a standard. Sometimes “standards bodies” create
standards, but sometimes they create other things. And not all standards are created by standards
bodys! [S0̈2]

Söderström gives and then mocks the European Software Institute’s definition of the word “stan-
dard.” A standard, she writes, is “a technical specification approved by a recognized standards
body for repeated or continuous application, compliance with which is not compulsory.” That is, a
standard is something that an organization chooses to follow because it has a choice not to follow.
Thus, an organization can only standardize on Microsoft Windows if its employees might realisti-
cally have the option of running MacOS or Linux. If Windows is the only possible operating system
to use, then there is no need to standardize on it!

The problem with this definition, notes Söderström, is that it makes the standard something that
are in the eye of the beholder. One organization might standardize on Windows, but other organi-
zations might simply use windows because it does not have a choice.

Why are programmers lax with vocabulary?
Cooper hypothesizes that programmers are particularly bad at choosing appropriate vocabulary for
user-facing applications because words are inherently less precise than source code:

“When the words are fuzzy, the programmers reflexively retreat to the most precise
method of articulation available: source code. Although there is nothing more precise

100 CHAPTER 2. Prior Work

than code, there is also nothing more permanent or resistant to change. So the situation
frequently crops up where nomenclature confusion drives programmers to begin coding
prematurely, and that code becomes the de facto design, regardless of its appropriate-
ness or correctness.” [Coo99, p.186]

Another reason that programmers and mathematicians have difficulties in choosing a consistent
vocabulary may be that their profession and training teaches them to work with interchangeable
labels that stand for underlying values or concepts. Examples of such labels are variables used
within a program or a mathematical expression. In this context, it is easy to think of words as just
another set of interchangeable labels; as long as the underlying concept is the same, the actual
word that is used may be considered to be immaterial.

2.6.8 Lessons from the prior work on regulation
This review seems to imply that regulation could be a tool that could be used to promote features
that simultaneously increase security and usability in consumer software. Based on this analysis,
the kinds of regulations that are likely to be the most successful are those that:

• Mandate specific principles and implementation goals, rather than the use of specific tech-
nologies and approaches;

• Emphasize the labeling and disclosure of objectionable functionality, rather than attempting
to force its removal;

• Create typographical and linguistic standards for the presentation of security-critical informa-
tion.

We shall return to the question of using regulatory practices to align usability and security in Chap-
ter 8.

2.7 Conclusion
Like many other areas of computer science research, there is not a particularly good track record
on the transitioning of HCI-SEC research from the laboratory to practice. Likewise, even when
techniques for aligning usability and security have been developed and deployed in one application,
these techniques have generally not migrated to other products or systems in the way that other
good ideas have spread in the computer industry.

This thesis holds that one of the key factors limiting the diffusion of HCI-SEC practice is that good
HCI-SEC techniques have not been systematically identified and discussed. A second gating factor
has been the willingness to accept long-established models, mechanisms and designs for basic
functionality provided by operating systems and application programs, rather than redesigning
these systems so that they are more consistent with user expectations and can do a better job
supporting actual user needs.

CHAPTER 3

Sanitization and Visibility 1:
Operating Systems

“Dumpster diving” is a time-honored technique for stealing confidential information and breaking
into computer systems. The attacker simply waits until no one is looking then and rifles through
the target’s waste, seeking printouts, phone books, operations manuals, and any other kind of
information that might be usable to accomplish his or her nefarious aims.

Stories of dumpster diving go back decades. Hackers in the Legion of Doom literally obtained
telephone company manuals and passwords from dumpsters in the 1980s: with this information
they penetrated computer systems and telephone networks.[SQ95] Dumpster diving has also been
used by police to obtain information on suspects without the need to first obtain search warrants;
the legality of this investigative technique was upheld by the Supreme Court in 1988.[US88]

This dissertation uses the term sanitization to refer to the intentional destruction of information
on a computer system so that the information cannot be recovered by another party. The difficulty
of removing data from media before the media is discarded or repurposed is an important part
of the sanitization problem, but it is not the only part. There are many cases in which a user
wishes to remove specific data from a computer that is in use without decomissioning the entire
machine. For example, a person using a public computer at a library to access an Internet-banking
site might reasonably wish to remove the information downloaded during the course of their web
banking session. As we shall see in Chapter 4, today’s web browser developers are aware of the
need to provide tools for sanitizing information in such situations, but the tools that they provide
are inadequate.

This chapter starts with an exploration of the sanitization problem. It discusses specific cases in
which confidential information was compromised through sanitization failures, then presents the
results of the Remembrance of Data Passed study to argue that these failures are widespread but

101

102 CHAPTER 3. Sanitization and Visibility 1: Operating Systems

hidden. The Data Passed Traceback study explores how the failures came about. The remaining
two sections discuss responses by businesses and government, and finally presents solutions for
resolving the data remanence problem.

3.1 Background
Ten used computers were purchased from a small-town computer store for $20 In August 1998 for
the purpose of testing a telecommunications program under development. Most of the computers
had been sitting on a shelf for more than a year and the store’s owner didn’t know if they even
worked.

When the computers were turned on, it was discovered that the computer store had neglected to
sanitize the hard drives prior to selling the machines. An examination of the information contained
on the computers found the following:

• One of the larger machines, a 486-class system with a 40 gigabyte hard drive, had been a
Novell file server used by a law firm. The computer still had confidential client material on it,
including contracts, wills, and billing records.

• A second computer had been used by a community-based organization that delivered men-
tal health services to residents under contract with a state agency. The computer included a
FileMaker Pro database that had the names, addresses and diagnoses of several dozen indi-
viduals.

• A third machine apparently belonged to a writer who wrote for a national magazine and
was working on a novel. This machine contained unpublished works, works-in-progress, and
personal correspondence.

• A fourth machine had correspondence between a woman and her daughter in college. This
computer also had a copy of Quicken, a personal finance management system from Intuit,
which the woman apparently used to manage her finances.

All of this information was visible in plain view once the computers were turned on; no special
disk recovery software was needed. A telephone call to the store’s owner revealed that he knew
the systems had confidential information on them and that he had meant to sanitize the machines
before he sold them. The owner had simply neglected to do so.

At the request of the store’s owner, the hard drives of the computers were sanitized using FreeBSD
and the dd command.1

This experience was hardly unique. In recent years there have been repeated examples of such
cases, including:

• In April 1997, a woman in Pahrump, NV, purchased a used IBM PC and discovered records
from 2000 patients who had prescriptions filled at a Smitty’s Supermarkets pharmacy in

1To sanitize an IDE hard drive with FreeBSD, the hard drive is jumpered to be a “master” and then connected to
the computer’s secondary IDE interface. The following command is then typed as root on the computer’s console: dd
if=/dev/zero of=/dev/da3 bs=65536 . The procedure writes ASCII NUL characters over every block on the disk,
making recovery of the original data impossible using techniques available in the open literature.[GS02a]

3.1. BACKGROUND 103

Tempe, AZ. [Mar97].

• In 2000, Sir Paul McCartney’s banking details were discovered on a computer that had been
discarded by the firm Morgan Grenfell Asset Management. The PC had been sold on the
secondary market without being properly sanitized. [Ley04b]

• In August 2001, more than 100 computers from the consulting firm Viant containing con-
fidential client data were sold at auction by Dovebid following the closure of Viant’s San
Francisco office. [Lym01]

• In Spring 2002, the Pennsylvania State Department of Labor and Industry sold computers
containing “thousands of files of information about state employees.” [Vil02]

• In August 2002, a Purdue student purchased used Macintosh computer at equipment ex-
change; the computer contained FileMaker database with names and demographic informa-
tion of 100 applicants to Entomology Department. [bBL02]

• Also in August 2002,the United States Veterans Administration Medical Center in Indianapolis
retired 139 computers. Some of these systems were donated to schools, others were sold on
the open market, and at least three ended up in a thrift shop where they were purchased by a
journalist. Examination of the computer hard drives revealed sensitive medical information,
including the names of veterans with AIDS and mental health problems. Also found were 44
credit card numbers used by the Indianapolis facility. [Has02]

• In May 2003 a reporter for PC World purchased 10 used hard drives in Massachusetts and
found sensitive business and personal data including credit card and social security numbers
on all but one. A hard drive sold by a computer store had been used by an accountant and
had four years’ worth of client payroll and tax information; the accountant’s nephew had
upgraded the computer and never told his uncle what became of the disk. A second disk pur-
chased at the Salvation Army Store in Cambridge had belonged to an attorney and contained
bank account numbers, draft legal documents, and an America Online installation with a
stored password. The firm’s IT consultant had promised the attorney that the information on
the drive would be destroyed, but it wasn’t.[Spr03]

• In June 2004, the UK computer security firm Pointsec purchased 100 hard disks on eBay
as part of a project on the “lifecycle of a lost laptop.” Although all of the hard drives had
“supposedly” been “wiped-clean” or “re-formatted,” the company was able to recover data
from approximately 70 of the drives. The company also purchased laptops at auction that
had been lost at airport terminals in the Germany, Sweeden, the UK and the US; it verified
that police did not sanitize the laptops prior to selling them. Reportedly the laptop recovered
from Sweden “contained sensitive information from a large food manufacturer. The info re-
covered included four Microsoft Access databases containing company and customer-related
information and 15 Microsoft PowerPoint presentations containing highly sensitive company
information.”[Ley04b, Tec04]

In addition to these cases, we have collected anecdotal information which we believe to be accurate,
but which has not appeared in previously published accounts:

• The Federal Witness Protection Program reportedly sold at auction a computer containing
the original identities and current aliases of several hundred protected witnesses. Reportedly

104 CHAPTER 3. Sanitization and Visibility 1: Operating Systems

this snafu happened sometime during the 1980s. We learned of this incident in 1989 while
producing a video about computer security with Commonwealth Films, a training firm in
Boston.

• Sometime during the spring of 2000, employees of a Boston-based manufacturer of electronic
equipment sent a workstation RAID array back to the vendor for warranty repairs. The work-
station vendor sent the electronics firm a refurbished RAID array in return. Several months
later, the engineers at the company received a call from a system administrator at a Mas-
sachusetts university: apparently the electronic firm’s RAID array, repaired, had been sent to
the university in exchange for one of the university’s arrays (also, apparently, repaired under
warranty). The workstation vendor had not made any attempt to sanitize or otherwise re-
move the information from the array before sending it to the university. We learned of this
story from an employee at the electronics firm who received the phone call.

• After the publication of [GS02a], we received a telephone call from a woman who was pres-
ident of a company that purchased computer equipment from the federal government at
auction, refurbished the equipment, and sold it on the open market. She stated that she had
frequently purchased lots at auction that contained classified materials—an apparent viola-
tion of federal law. Many times, she said, classification stickers were still on the computer
systems that were packed into shipping containers and sold by weight to the highest bidder.

• In fall 2003, a student at the Harvard University Extension School purchased the hard disk
from a cannibalized Macintosh computer at a Goodwill store in Massachusetts for $10. Upon
copying the data off the disk the student discovered that it had been used at a small law firm
and contained hundreds of client documents.

The story of the electronics corporation is particularly troubling: because the RAID array had mal-
functioned, the company was not in a position of being able to sanitize the equipment before re-
turning it to Sun. Instead, the firm’s engineers had trusted the vendor, and this trust had apparently
been misplaced.

According to the market research firm Dataquest [Mon02], nearly 150 million disk drives were
retired in 2002—up from 130 million in 2001. Dataquest estimates that 7 disk drives will be
retired for every 10 drives that ship in the year 2002; this is up from a 3-for-10 rate of retirement
in 1997 (Figure 3-1).

Although many retired hard drives are in fact destroyed, the experience at the VA Hospital demon-
strates that many drives that are “retired” by one organization can appear elsewhere. Indeed, the
secondary market is rapidly growing as a supply source for even mainstream businesses, as evi-
denced by the cover story of the October 15th, 2002 issue of CIO Magazine, “Good Stuff Cheap:
How to Use the Secondary Market to Your Enterprise’s Advantage.” [Ber02]

The anecdotes reported here are interesting both because of their similarity and because of their
relative scarcity. Clearly, confidential information has been disclosed through computers sold on the
secondary market more than a few times. Why, then, have there been so few reports of unintended
disclosure?

[GS02a] proposes three possible answers to this question:

3.2. THE PROBLEM OF DISCARDED DATA 105

Figure 3-1: Hard drives shipped and retired between 1997 and 2002. Source: Dataquest.[Mon02].

• Disclosure of so-called “Data Passed” information, while it occurs from time-to-time, is never-
theless exceedingly rare.

• Confidential information is disclosed so often on retired systems that such events are simply
not newsworthy.

• Used equipment is awash with confidential information, but nobody is looking for it—or at
least, few people who are looking for this data are publicizing the fact.

This chapter argue that the third hypothesis is correct; this conclusion is supported with data from
the “Traceback study” presented in Section 3.4.

3.2 The Problem of Discarded Data
A fundamental goal of information security is to design systems that prevent the unauthorized
disclosure of information that has been declared confidential. Traditionally this property was im-
precisely referred to as privacy; in Section 2.3.1 we adapted the term disclosure control.

There are many ways for computer systems to provide disclosure control. One of the oldest and
most common is physical isolation or physical access control. Confidential data can be kept on
computers that are only accessible from authorized locations, and conventional security mecha-
nisms, such as doors, locks and keys, are used to secure these locations. Even today, many personal
computers use physical isolation as their primary means of disclosure control. On many small com-
puters, such as cell phones and PDAs, physical access control is the only means of disclosure control
that is employed.

Computer systems that can be used by more than one person typically rely on authentication and
access control lists to provide disclosure control. Much of information security research over the
past thirty years has centered upon improving techniques for authenticating users and then assuring
that those users do not overstep their predetermined privileges.

106 CHAPTER 3. Sanitization and Visibility 1: Operating Systems

Cryptography is another tool that can be used to provide disclosure control. Data can be encrypted
as it is sent from one system and decrypted at its destination—for example, by using the SSL
encryption protocol. Information that is stored on a computer’s disk can be encrypted so that it will
be inaccessible to processes or individuals who do not possess the appropriate key. Cryptographic
file systems [PGP98, Bla93, Mic02, Com05b, LK01] ask for a password or key on startup, after
which they automatically encrypt data as it is written to the disk and decrypt the data as it is read;
if a disk is stolen the data will be inaccessible to the thief. A surprising amount of work has been
done on both academic and commercial file systems, and such file systems are widely available
today—they are built into Windows XP and MacOS 10.3, for example. Nevertheless, it is widely
believed that these tools are rarely used by the general public.

In the absence of cryptographic protections, confidential information on a disk can be readily dis-
closed if the disk is retired in an improper manner. The National Computer Security Center notes
that this so-called data remanence problem has been recognized since the 1960s. [Gol91]

3.2.1 Historical basis for the data remanence problem
Although it is a common belief that operating system developers did not deploy a sanitizing file
deletion in the 1970s and 1980s so that accidentally deleted files could be recovered using special
tools, there are no references to support this claim. Indeed, had recoverability of accidentally
deleted data been a goal, companies like Microsoft and Apple would surely have distributed such
tools themselves—either as part of their operating system offerings or as after-market additions.
(Some versions of DOS were distributed with an “UNFORMAT” command-line utility that could, in
fact, unformat a disk, but this command appears to have been added relatively late in DOS history
to exploit the format command’s longstanding lack of sanitization; it is doubtful that the command
was made explicitly non-sanitizing so that the UNFORMAT command could be written.)

Instead, it seems that the lack of a sanitizing delete-file is an accident resulting from the way that
file systems evolved. Historically, multi-user computer systems did not need a sanitizing delete.
Although today’s computer users could benefit from the technology, this requirement was never
made part of any formal file system specification—specifications that were largely written after
hierarchical file systems were first developed, rather than before. Instead, today’s storage systems
are usually judged by other criteria, such as speed, reliability, availability, and compatibility.

The developers of the Compatible Time Sharing System (CTSS) at MIT in the 1960s did not consider
the problem of sanitizing disk blocks after deleting files because the computer system frequently
ran with disks that are were full or nearly full: blocks that were freed were quickly overwritten
with new data.[Sal04] The CTSS disk drives were rented from IBM and were never offered for
sale on the secondary market. Indeed, the real data security problem was not that data on a disk
returned for service might be accidentally sent to another IBM customer—the real problem was
trying to keep data on the disks in the first place, as the drives were having head crashes every
few days! In any event, while there was a general belief that CTSS should prevent one user from
crashing a program being run by another user, overall the system did not have strong internal
disclosure controls: the developers did not believe that CTSS was secure enough to store sensitive
information.

Internal security between users was a design goal of the Multics operating system, but once again

3.2. THE PROBLEM OF DISCARDED DATA 107

the designers never considered disk sanitization to be a priority. Multics did sanitize disk segments,
the Multics equivalent of files, but it did so when the segments were allocated to a new process, not
when they were released. Furthermore, early Multics systems were perennially short of disk space:
once a disk block was freed, it would be quickly allocated to another process and, as a result, it
would be quickly be sanitized.

It is widely acknowledged that Unix was developed in a research environment in which security
was not a priority. For example, early Unix had no protections against denial of service attacks
from authorized users. According to Ritchie, “In cases where denial of service attacks did occur, it
was either by accident or relatively easy to figure out who was responsible. The individual could
be disciplined outside the operating system by other means.”[GS91, p.329]

When Unix first transitioned into the commercial world, it existed on systems that were run by
trained system operators who would have been aware of the sanitization issue. Although Unix
provided no specific tools for sanitizing disks, the dd command could be used for this purpose.

In the world of PC operating systems, an overwriting delete would have caused significant perfor-
mance degradation on any operating system that did not have asynchronous access to the disk so
that the sanitizing writes could have been performed concurrently with other tasks. Windows did
not have such capabilities until 32-bit clean disk I/O drivers were available under Windows 95 and
NT. Apple did not have such capabilities until it migrated to MacOS X.

3.2.2 The stability of hard disk data
In comparison with other mass storage media, hard disks pose special and significant problems in
assuring long-term data confidentiality. One reason is that physical and electronic standards for
other mass storage devices have evolved rapidly and in an incompatible fashion over the years,
while the IDE/ATA and SCSI interfaces have maintained both forwards and backwards compatibil-
ity. Hard drives more than 10 years old can be easily read with modern computer hardware simply
by plugging them in because these disks are both electrically and logically compatible. This high
level of compatibility is one of the key factors sustaining both the formal and informal secondary
markets for used hard drives.

Other kinds of storage media, including magnetic tapes, optical disks, and flash memory, have
not shown such long-term stability. In these media there is considerably more diversity and more
change: older media typically cannot be used with current readers due to physical changes. For
example, a DAT IV tape drive cannot read a DAT I tape; a 3.5” disk drive cannot read an 8” floppy.

A second factor contributing to the data remanence problem in hard drives is the long-term stability
of file system structures. Today’s Windows, Macintosh and Unix Operating systems can transpar-
ently use the FAT12, FAT16 and FAT32 file systems developed by Microsoft in the 1980s and 1990s.
Thus, not only are 10-year-old hard drives mechanically and electrically compatible with today’s
computers, but the data that they contain is readily accessible without special-purpose tools. This
is not true with old tapes, which are typically written using proprietary backup software that may
further employ proprietary compression and/or encryption algorithms.

108 CHAPTER 3. Sanitization and Visibility 1: Operating Systems

Figure 3-2: A model HD-1TB disk and tape degausser manufactured by Data Security, Inc. One of the disadvantages
of using this machine is that there is no way to visually inspect a drive and determine if it has actually been sanitized or
not. Drives cannot be reused after they have been degaussed because the drive’s operating system has been wiped
and sensitive components on the drive’s circuit board have been destroyed. Photo courtesy Data Security Inc.

3.2.3 Destroying information today
US DoD standard 5220.22-M[DoD95] specifies federally approved standards for sanitizing mag-
netic media that contain information that is sensitive but not classified:

• Physically destroy the drive, rendering the drive unusable.

• Degauss the drive, so that the magnetic domains are randomized—invariably rendering the
disk drive unusable in the process (Figure 3-2).

• Overwrite the data on the drive so that the data cannot be recovered.

The National Security Agency/Central Security Service Device Declassification Manual specifies pro-
cedures for “clearing, sanitization, [and] declassification” of information stored on information
storage devices ranging from Unclassified to Top Secret Codeword, including compartmented, sen-
sitive, and limited-distribution material. According to that manual, overwriting can only be used
for clearing a device; cleared devices cannot be declassified, but can be re-used within a secure
environment. Sanitization, required for disk declassifying, can only be accomplished through the
use of degaussing or incineration.[NC05]

Techniques for information destruction in an unclassified environment are complicated by social
norms. Clearly, the most straightforward way to ensure the protection of information that a drive
contains is to physically destroy the drive: this is the only technique that can be verified with casual
inspection (see Figure 3-3 and Figure 3-4). But many people feel moral indignation when IT equip-
ment is destroyed instead of being redirected towards schools, community organizations, religious
groups, or lesser-developed nations that could benefit. As a result of such moral indignation, there

3.2. THE PROBLEM OF DISCARDED DATA 109

Figure 3-3: Drive Slagging Following the publication of [GS02a], Dave Bullock, John Norman and “CHS” performed this
demonstration of melting a hard disk with gas-fired furnace that they had built in a back yard. The authors concluded:
“Drive slagging is a fool-proof method to prevent data recovery.” Photos used with permission.

now exist a plethora of organizations that help people find new homes for old computers[FTC05]—
including some that ship these computers to rural villages in India.[Ass05]

3.2.4 The sanitization usability problem
The sanitization usability problem is one that pervades today’s computer systems: when the user
chooses a “delete” operation—for example, when deleting a file with Windows Explorer—often the
information is not actually erased from the computer’s recording media. Instead, the storage that is
associated with the information is marked “free” or “available for use” and the specified information
is rendered invisible and inaccessible from the user interface.

As a result of this efficient but non-intuitive behavior, today’s computers frequently contain sensitive
information that cannot be recovered using the tools that the computer itself provides. Frequently
this is information that the computer’s owner specified should be deleted, but which was not actu-
ally erased. This information can be recovered at a later point in time by an attacker who obtains
physical access to the disk or has the ability to run a program on the computer which can access
the raw device.

As a result of this sanitization usability problem, computer users have no readily apparent way
other than physical destruction to determine if disposing of a computer system will jeopardize the

110 CHAPTER 3. Sanitization and Visibility 1: Operating Systems

Figure 3-4: A hard drive that was punched with a new machine that is being developed by Charles Smith of Greenville
SC as a result of having read [GS02a]. Although this approach is easy to audit, it is probably not sufficient for classified
material. Photo used with permission.

security of information that was once stored on that system but was subsequently “deleted.”

Disks, hidden data, and file systems
Broadly speaking, modern disk drives have the ability to store two kinds of information. The major-
ity of information stored by the device is directly addressable user data—these are the actual blocks
that are written by the computer’s operating system onto the drive’s media in response to WRITE
commands and read back in response to READ commands. The second kind of information is hid-
den data that is used for the proper operation of the disk drive itself. This information includes the
disk’s firmware and spare blocks that the drive will use when blocks containing directly addressable
user data begin to fail.

When a drive is sold by a manufacturer all the blocks that will be used to hold directly addressable
user data are, by convention, filled with the ASCII NUL character—that is, the blocks are zeroed.
(Many of the hidden blocks are not zeroed, but they cannot be accessed by the computer’s operating
system: for most practical purposes, these blocks do not exist.) Before the disk can be used, it must
be initialized for used with a particular file system.

3.2. THE PROBLEM OF DISCARDED DATA 111

A file system is the piece of a computer’s operating system that controls the allocation of disk blocks
to individual files. Popular file systems include FAT2 (used by Windows 3.1, Windows 95, and
Windows 98), the NTFS3 (used by Windows NT, 2000 and XP), FFS4 (used by BSD Unix), and
EXT2FS (used by Linux). The following discussion is for the FAT file system, but it applies with
only minor changes to all modern file systems.

FORMAT doesn’t wipe clean
Microsoft operating systems use a command called FORMAT.EXEto establish a new file system
on recording media. When a disk is formatted with the FAT file system, the FORMAT.EXEscans
the entire disk, reading every block to make sure that the block is functioning. FORMAT.EXEnext
writes the operating system’s boot blocks, the disk’s root directory, and finally a file allocation table
that is used to distinguish blocks that are in use by the file system from those that are not. This
process typically takes between 10 and 20 minutes, owing to the time required to read every block
on the drive. Modern versions of FORMAT.EXEalso have the ability to perform a “quick format”
which omits the media scan (Figure 3-6). In this case, the entire disk can be formatted in just a few
seconds. Quick format appears to be the default when formatting removable USB drives.

And what if there was confidential information on the disk when it was formatted? Once the root
directory is written, any information that was previously on the disk is rendered inaccessible. Most
of the data is still present but it cannot be retrieved using the Windows file system because the files
and directories of the disk cannot be reached by starting at the disk’s now empty root directory.

The failure of FORMAT.EXEto zero or otherwise initialize a hard drive has an interesting history.
The first version of DOS, MSDOS 1.0, only worked with floppy disks. At the time floppies were
sold without any track or sector information on their magnetic surface and they needed to be
“formatted” before they could be used. In the process of formatting the disk any bad blocks were
detected and noted in the disk’s FAT so that they would not be used to store data. If a floppy disk
containing data was formatted, the information that it contained would necessarily be overwritten
when the new track and information was written. Thus the initial meaning of “format” to PC users
in 1981 was a process that initializes a piece of magnetic media, making it usable, and destroying
any data that the media might contain in the process.

DOS 2.0 was the first version of DOS to directly support hard disk drives. With this version of the
operating system, the behavior of FORMAT.EXEwas subtly changed when a hard disk was being
initialized. Because hard drives were sold pre-formatted, it was only necessary for the FORMAT
command to literally write a set of properly formatted data structures onto the disk’s logical blocks
so that the disk could be used with the operating system. Because the disks of the time were
not extraordinarily reliable and lacked internal bad-block management, FORMAT.EXEcontinued
to scan the entire disk for bad blocks—a process that might take between 10 and 30 minutes. Thus,
the FORMAT command gave the impression that it was overwriting the entire disk because it took a
long time and because the resulting disk appeared to contain no data. But no such overwriting took

2FAT stands for File Allocation Table, a linked list of disk clusters that the DOS operating system used to manage space
on a random access device. The number 16 or 32 refers to whether the FAT uses sector numbers that are 16 bits or 32
bits in length. See [Mic00] for more details.

3NTFS stands for New Technology File System. This is a journaling file system developed by Microsoft in the 1990s.
4FFS is the Fast File System, developed by the University of California at Berkeley in the 1980s.

112 CHAPTER 3. Sanitization and Visibility 1: Operating Systems

C:\>format d: /fs:fat32

WARNING, ALL DATA ON NON-REMOVABLE DISK
DRIVE D: WILL BE LOST!
Proceed with Format (Y/N)?y
Verifying 8056M
Initializing the File Allocation Table (FAT)...
Volume label (11 characters, ENTER for none)? test
Format complete.

8,233,244 KB total disk space.
8,233,244 KB are available.

4,096 bytes in each allocation unit.
2,058,310 allocation units available on disk.

32 bits in each FAT entry.

Volume Serial Number is 7C74-AB16

C:\>

Figure 3-5: Format of an 8 gigabyte hard drive using the Windows XP format command. After the computer prints
“Verifying 8056M” the computers spends 5 minutes reading every block of the hard drive. After the computer prints
“Initializing the File Allocation Table” the computer spends 15 seconds writing out a new FAT and performing a few
write tests throughout the disk to ensure drive integrity. Notice that the command asserts that “ALL DATA ON NON-
REMOVABLE DISK DRIVE D: WILL BE LOST.” In fact, the data is only “lost” to users who do not have copies of
“unformat” utilities.

place! Thus, not only did the modified FORMAT.EXEturn visible data into invisible data, it did so
in a manner that was misleading. Equally misleading was the warning that the command displayed
which gave the impression that all of the data was in fact being destroyed. These misleading
operations have been faithfully replicated in each version of FORMAT.EXEand are present in the
contemporary versions (Figure 3-5).

One possible explanation for the revised behavior of FORMAT.EXEin DOS 2.0’s was that the non-
overwriting format was a usability optimization: overwriting each block of the hard disk would
have made the already time-consuming FORMAT operating take twice as long, because every block
would have first had to have been written, then read. Besides, disk drives at the time came with
a separate “disk utilities” floppy which could perform an operation called a “low level format”
on the physical disk. The details of the “low level format” actually varied from manufacturer
to manufacturer and from drive to drive, which would have made it difficult for the operating
system to perform such an operation. Mueller’s 1991 book Que’s Guide to Data Recovery discusses
the difference between the low-level format performed by these utilities and FORMAT.EXE’s so-
called “high-level format.” Mueller notes: “You can recover data—unformat—from a high-level
format.”[ME91, p.99] But despite the fact that such information was available to the technical
community, it does not seem to have been readily disseminated among the general population of
computer users.

Another possible explanation for the behavior of DOS 2.0 FORMAT.EXEis that it was industry

3.2. THE PROBLEM OF DISCARDED DATA 113

practice at the time for programs that initialized file systems to not overwrite all directly address-
able user data blocks. The Unix newfs command writes an inode table, a root directory, and a
collection of “superblocks,” but it does not sanitize the disk—behavior that remains present to this
day. [RT78, MJLF84] Likewise, the Linux mkfs command which creates Linux ext2fs and ext3fs file
systems does not overwrite the entire disk. All of these commands write metadata and a clean root
directory to the disk, but they do not perform a systematic overwriting of all of the disk’s remaining
blocks.

It is incredibly misleading for an operating system to give the impression that all of the information
has been removed from a disk, when in fact the information has merely been made inaccessible
to users who have not obtained special data recovery tools. Such a situation is an invitation for
mishap: given a freshly formatted hard disk, there is no way for a user to audit the disk and
determine if it is in fact clean, or if it has a treasure-trove of hidden, confidential information. Ob-
servations of this behavior and an analysis of resulting problems that it has caused are responsible
for the USER AUDIT and COMPLETE DELETE design patterns discussed in Chapter 10.

Delete Doesn’t Erase Information
Just as today’s FORMAT command doesn’t actually format disks, the commands for deleting indi-
vidual files provided by today’s computers do not actually perform that function, either. User-level
commands such as DEL, ERASEand rm are implemented with calls to the Win32 DeleteFile()
or the POSIX unlink() system calls. But the DeleteFile() and unlink() system calls don’t
actually delete information—instead, they literally remove the link between the file’s name in the
containing directory and the disk blocks that the file occupies. Under the FAT and NTFS file sys-
tems, which support but a single link between directories and file contents, this results in the file’s
blocks being immediately returned to the free list. On Unix the unlink() system call decrements
the file’s link count; if the link count drops to 0, the blocks are returned to the free list.[RT78] But
the blocks are not actually overwritten until they are needed again. System simulations done by
Chow et al. indicate that such data may never be overwritten on a typical computer.[CPG+04]

Once again, the usability problem is that the operating system gives the user the appearance that the
data has been removed from the computer, when it fact the data has merely been made inaccessible
by ordinary means.

The usability problem for end-users is compounded by the fact that there is no mention of this
behavior in either the end-user or developer documentation that is provided by either Microsoft or
the Unix operating system. Developer documentation might be a particularly effective technique to
get this information into the community of computer users, as developers are probably more likely
to read documentation than users, and they are better poised to create work-arounds. But the
Microsoft Developer Network documentation for DeleteFile() merely states that the function
“deletes an existing file.”[Net05b] The Unix documentation for the unlink() system call notes “If
that decrement reduces the link count of the file to zero, and no process has the file open, then
all resources associated with the file are reclaimed.”[BSD93] In both cases, developers would be
well-served by even a sentence mentioning the data remanence problem.

As with FORMAT, there was no conspiracy to keep secret the fact that DELETE doesn’t actually erase
the data that the user has targeted for destruction—a 1987 advertisement for the Mace Utilities

114 CHAPTER 3. Sanitization and Visibility 1: Operating Systems

Figure 3-6: The Windows XP format panel
has a “Quick Format” option which causes the
program to just write a new file allocation table
and a root directory on the media being for-
matted. If “Quick Format” is not selected the
program takes considerably longer to format
the disk because it is reading every block on
the media to create a bad block table. It would
be a simple matter for Microsoft to modify the
format command so that every block on the
disk is zeroed if “Quick Format” is unchecked.

Figure 3-7: Microsoft Windows XP allows the user to confirm
the deletion of files in the Recycle Bin; confirming the operation
simply unlinks the files from the Recycle Bin directory; it does
not actually remove the contents of the files from the computer’s
hard disk.

appearing in The New York Times noted that the $59.95 program’s functions included the ability to
“Unformat, Undelete, Diagnose & Remedy.”[Adv87, p.57] Users reading this advertisement in 1987
could have reasonably inferred that erased files could be recovered. But mention that files could
be undeleted did not appear in a feature article in The New York Times until 1990, and then only in
Peter Lewis’ “Executive Computer” column on the 11th page of the Business section. [Lew90]

Commands that claim to overwrite don’t actually overwrite
Many modern applications support a so-called document-based framework in which opened docu-
ments can be saved under their original names (“Save...”) or different file names (“Save As...”)
When a file is saved under the name of an existing file, the end result is that the existing file is
deleted and the file being edited appears to have replaced it.

There are many ways to implement the “Save As...” command. One standard approach is to save

3.2. THE PROBLEM OF DISCARDED DATA 115

Figure 3-8: MacOS 10.3’s Save As panel promises that saving a file with a name that is currently in use will result in
the existing file being overwritten. In fact, the blocks of the second file will not be overwritten, but will be specifically
preserved using the algorithm that the operating system implements. Interestingly, attempts to save a file named
“icky data” over another file by the same name produced somewhat different responses in Apple’s Text Edit (left) and
Microsoft Word (right) applications.

Figure 3-9: The Save As... panels in Windows Wordpad (left) and Word (right) also strongly imply that the data on the
disk will be overwritten or merged into. In fact, the original documents are deleted but left on the disk, and a new file is
created for the new document.

the new file to the disk under a temporary name. The original file is then renamed to a second
temporary name. The new file is then renamed to the name of the first file, and finally the first
file is unlinked. This multi-step sequence ensure that the original file is not removed from the file
system until the new file is safely in its place with the correct name. (The procedure is slightly more
complicated when one or more backup files are kept.)

Despite the fact that most applications appear to follow the sequence outlined above, both the Mac-
intosh and Windows operating systems have user interface elements that imply otherwise. The doc-
ument framework that is part of Apple’s Cocoa environment specifically states that the “Save As...”
command will “replace” the original file with the new file, and that “Replacing it will overwrite its
current contents.” (Figure 3-8, left) Microsoft Word on the Macintosh uses different terminology
(Figure 3-8, right), but the implication is similar. The Wordpad program on Microsoft Windows
makes a similar promise (Figure 3-9, left). Microsoft Word 2003 takes a different approach: the
program offers to either replace the existing file or merge the changes from the current file into the
existing file. It appears that the command is implemented by creating a new file and then deleting
the old, so the original file’s contents nevertheless remain accessible to those who are willing to
perform a forensic analysis.

3.2.5 The overwriting question
In the previous section, the term “overwrite” was used without qualification. This section discusses
what kind of overwriting might be sufficient for proper sanitization.

116 CHAPTER 3. Sanitization and Visibility 1: Operating Systems

It has long been hypothesized that data stored on a magnetic media that is overwritten with a
single pass of new information can be recovered by a determined and well-funded individual or
organization. For example, it is commonly asserting that the National Security Agency has the
capability to recover overwritten information.

The DoD sanitization standard specifies the following procedure for overwriting:

“Overwrite all addressable locations with a character, its complement, then a random
character and verify. THIS METHOD IS NOT APPROVED FOR SANITIZING MEDIA
THAT CONTAINS TOP SECRET INFORMATION.”[DoD95, Capitalization in original]

The verification step is important to ensure that the hard drive is actually writing the random data
to the recording surface. This is to protect against hostile drives that claim to be sanitizing, but in
fact are not.

Gutmann considers the question of recovering overwriting data at length:

“In conventional terms, when a one is written to disk the media records a one, and
when a zero is written the media records a zero. However the actual effect is closer
to obtaining a 0.95 when a zero is overwritten with a one, and a 1.05 when a one is
overwritten with a one. Normal disk circuitry is set up so that both these values are
read as ones, but using specialized circuitry it is possible to work out what previous
“layers” contained. The recovery of at least one or two layers of overwritten data isn’t
too hard to perform by reading the signal from the analog head electronics with a
high-quality digital sampling oscilloscope, downloading the sampled waveform to a
PC, and analyzing it in software to recover the previously recorded signal. What the
software does is generate an “ideal” read signal and subtract it from what was actually
read, leaving as the difference the remnant of the previous signal. Since the analog
circuitry in a commercial hard drive is nowhere near the quality of the circuitry in
the oscilloscope used to sample the signal, the ability exists to recover a lot of extra
information which isn’t exploited by the hard drive electronics (although with newer
channel coding techniques such as PRML (explained further on) which require extensive
amounts of signal processing, the use of simple tools such as an oscilloscope to directly
recover the data is no longer possible).”[Gut96]

PRML stands for Partial-Response Maximum-Likelihood encoding, a technique that is similar to the
encoding done by V.32 modems. According to Gutmann, this technique allowed the hard drive in-
dustry to increase drive capacities by 30–40%. The higher density is believed to make the recovery
of overwritten data significantly harder. EPRML is Extended PRML, which included aerial density
of recorded data between 20% and 70% above existing PRML.[Koz04]

Gutmann goes on to present a series of patterns which, when written to a magnetic drive, should
dramatically decrease the chances that overwritten data could be recovered. Different patterns
are presented for different recording technologies. Gutmann notes that it is theoretically harder
to recover data as the density of magnetic media has increased and encoding has become more
complicated. An epilogue added to online version of the 1996 paper concludes:

3.3. CASE STUDY: REMEMBRANCE OF DATA PASSED 117

OVERWRITE-FILE(filename):
len = LENGTH-OF-FILE(filename)
OPEN filename FOR WRITING
SEEK TO THE BEGINNING OF filename
WRITE len RANDOM BYTES TO filename
CLOSE filename

Figure 3-10: Pseudocode for overwriting the contents of a file.

“For any modern PRML/EPRML drive, a few passes of random scrubbing is the best you
can do. As the paper says, “A good scrubbing with random data will do about as well as
can be expected.” This was true in 1996, and is still true now.”[Gut96]

Required support for overwriting individual files
Overwriting requires underlying software and hardware support to ensure that the intended data
is actually overwritten. When trying to sanitize an entire drive, for example, it is important that
the disk makes all of the directly addressable blocks available for writing. Modern ATA disk drives
have the ability to create a password-protected “host protected area.” If such an area is created,
attempts to sanitize the disk drive using overwriting may miss key areas.

Sanitizing individual files through overwriting will only be successful if the underlying operating
system is rather literal in its implementation of the seek() and write() system calls. Overwriting
an individual file is commonly implemented with an algorithm similar to that one presented in
Figure 3-10. The problem with this approach is that it implicitly assumes that when the contents
of a file are overwritten the operating system overwrites the physical blocks that hold the file’s
contents. Although this is the case with most implementations of the FAT, FFS and EXT2FS file
systems, it is not the case with other file systems. For example, file systems that provide the
appearance of read-write access to write-once media can do so by writing data to new blocks,
then rewriting metadata, and finally by rewriting a new root directory.[GL85, Gar91] Attempts to
sanitize files on these systems through overwriting will fail.

Even file systems for rewritable media may not provide the necessary guarantees to reliably pro-
vide sanitization through overwriting. A journaling file system such as Microsoft’s NTFS or Apple’s
HFS+ with journaling enabled may intentionally avoid overwriting old information with new in-
formation in order to provide reliability guarantees. A high-performance file system might further
take advantage of a data write as a chance to unfragment a fragmented file, if consecutive blank
blocks are available at the time of update. This argues that the functionality for sanitizing should
be provided directly by the file system, and not through the manipulation of other system calls with
the hope that sanitization will result as a side-effect.

3.3 Case Study: Remembrance of Data Passed
An important aspect of the sanitization problem that had not previously been subject to academic
study is the prevailance of confidential information on hard drives that are sold by consolidators,
resellers and other kinds of commercial scavengers on the secondary market.

118 CHAPTER 3. Sanitization and Visibility 1: Operating Systems

3.3.1 Acquisition of hard drives and data
A total of 217 hard drives were purchased on the secondary market between January 1999 and
April 2002. Primary sources for these drives were in-person visits to used computer stores, the MIT
“Swapfest,” and by winning bids on the eBay online auction web site. Efforts were made not to
purchase more than 10 drives from a single reseller at any time. Most lots consisted of between 2
and 5 drives.

Upon receipt, each drive was given an accession number. This number was then used as the drive’s
identifier for all further work. An additional 20 drives (#99–#110, #112-#114, #116-#118 and
#120–#121) were purchased on the secondary market by another researcher for an unrelated
project. Those drives were imaged and then returned to that researcher.

A list of the hard drives involved in this study appears in Appendix A.

3.3.2 Drive imaging
Once a drive was cataloged, the next step was to image the drive. Imaging is a process that involves
copying all of the drive’s data into a single file, not surprisingly called an image file. Once the image
file is created, all subsequent analysis can be done with the image file and the drive itself can be
put in storage.

There are many advantages to working with image files instead of the actual disk drives:

• Modern disk drives are considerably faster than older drives. Once an image is made, it is
dramatically faster to work with the image than to continually refer back to the original file.

• Modern disk drives are considerably more reliable than older drives. Many of the drives were
in fact failing as they were imaged: in several cases the disk’s internal mechanism was not
entirely operational when the imaging operation was concluded.

• It is possible to have only a few ATA drives connected to a computer at once. On the other
hand, it was possible to have all of the disk images resident on multiple computers at the
same time.

Imaging was performed on a PC workstation running the FreeBSD operating system and using the
Unix dd command to copy data from the raw ATA device (in the case of IDE/ATA disks) and from
the raw SCSI partition (in the case of SCSI disks) into a single file. The dd options “noerror” and
“sync” were specified; “noerror” tells the dd command to continue even if an error is detected.
The “sync” option tells the command to keep the output file in sync with the input file by padding
the output file with NULs when read errors are detected. The blocksize was set to 65536 bytes to
speed transfer. The image was saved in a file called driveid.img. Figure 3-11 shows a typical dd
command.

One way that the imaging process could be improved would be to modify the dd command so that
sync error blocks, instead of being filled with NULs, would be filled with some specific and unusual
pattern so that it would be possible for forensic analysis tools to tell the difference between blocks
that had been read as all NULs and blocks that could not be read.

After the image was created, the FreeBSD fdisk command was used to create a human-readable

3.3. CASE STUDY: REMEMBRANCE OF DATA PASSED 119

dd if=/dev/ad2 of=/project/images/100.img conv=noerror,sync bs=65536

Figure 3-11: The “dd” command used to image drive #100.

mdconfig -a -t vnode -f /big3/project/images/img/100.img -u 1
mount -t msdos /dev/md1s1 /mnt

Figure 3-12: The FreeBSD commands to mount disk image #100 with the MSDOS file system.

umount /mnt
mdconfig -d -u 1

Figure 3-13: The FreeBSD commands to umount disk image #100.

printout of the disk’s partition table. This image was saved in a file called driveid.fdisk. (This wasn’t
strictly necessary, as the fdisk command should have been able to use the raw disk image.)

At this point, the disk image was attached to the FreeBSD memory disk device and attempts were
made to mount the image read-only using the FreeBSD FAT, NTFS, UFS, and Novell file system
implementations (Figure 3-12). If the drive image could be successfully mounted, the files on
the image were copied off using the Unix tar command. Finally, the disk file was unmounted
(Figure 3-13).

Not surprisingly, a significant fraction of the drives were physically damaged, contained unreadable
sectors, or were completely inoperable. These drives took substantially longer to image, as the drive
electronics would repeatedly attempt to re-read the bad sectors and/or reset the drive’s internal
electronics. Where possible, partial drive images were collected.

In many cases disks were imaged but the filesystem could not be mounted. This may have been the
result of a file system that was not supported by the FreeBSD operating system, a drive that was
properly sanitized, or a drive that was physically damaged.

3.3.3 The Garfinkel/Shelat sanitization taxonomy
In order to facilitate the discussion of sanitization practices, Table 3-14 presents a sanitization tax-
onomy. This taxonomy can be used both to describe data found on recovered disk drives, and also
to describe sanitization procedures. We have found this taxonomy extremely useful in describing
matters relating to sanitization and forensic analysis.

3.3.4 Analysis of “data passed”
Analysis of the data imaged from the drives was performed using a variety of tools, including
several written specifically for this project.

120 CHAPTER 3. Sanitization and Visibility 1: Operating Systems

Level Where Found Description

Level 0 Regular Files Information contained within the file system. Includes file names, file attributes, and file con-
tents. The disk drive in the stolen laptop contains many Level 0 files.a No special tools are
required to retrieve Level 0 data.

Level 1 Temporary Files Temporary files, including print spooler files, browser cache files, files for “helper” applications,
files in “recycle bins.” Most users either expect that these will be automatically deleted in time
or they are not even aware that these files exist. In fact, sometimes these files are automatically
deleted over time. No special tools are required to retrieve Level 1 data, although special training
is required so that the operator knows where to look.

Level 1 files are a subset of Level 0 files. Experience has shown that it is useful to distin-
guish this subset, since many naive users will overlook Level 1 files when they are browsing a
computer’s hard drive to see if it contains sensitive information.

Level 2 Deleted Files When a file is deleted from a file system, most operating systems do not overwrite the blocks on
the hard disk on which the file is written. Instead, they simply remove the reference to the file
from the containing directory. The file’s blocks are then placed on the free list. These files can be
recovered using traditional “undelete” tools such as Norton Utilities.

Level 3 Retained Data Blocks Data that can be recovered from a disk but which does not obviously belong to a named file.
Level 3 data includes information in slack space, backing store for virtual memory, and Level 2
data that has been partially overwritten so that an entire file cannot be recovered.

One common source of Level 3 data is disks that have been formatted with Windows “Format”
command or the Unix “newfs” command. Even though these commands give the impression that
they overwrite the entire hard drive, in fact they do not, and the vast majority of the information
on a formatted disk can be recovered with Level 3 tools.

Level 3 data can be recovered using advanced data recovery tools that can “unformat” a disk
drive, and using special-purpose forensics tools.

Level 4 Vendor-Hidden Data This level consists of data blocks on the drive that can only be accessed using vendor-specific
commands. This level includes the ATA “Host Protected Area” as well as the drive’s controlling
program and blocks used for bad-block management.

Level 5 Overwritten Data Many individuals maintain that information can be recovered from a hard drive even after it is
overwritten. Level 5 is reserved for such information.

aBy definition, there has been no attempt to sanitize the information that is contained within Level 0 files. Level 0 also
includes information that is written to the disk as part of any sanitization attempt. For example, if a copy of Windows
95 is installed on a hard drive in an attempt to sanitize the drive, then the files contained within the C:\WINDOWS
directory would be considered Level 0 files.

Figure 3-14: A Sanitization Taxonomy, from [GS02a]

Block level analysis
For every drive image a program was run that computed the following information and stored the
results in the database:

• Number of image blocks.

• Number of image blocks that were filled with NULs.

• The MD5 hash code of the image.

The count of blocks and zeroed blocks made it easy to find the disks that had been properly sanitized
by zeroing all of the drive blocks. A list of these drives appears in Appendix A.

The MD5 hash code of the image was useful for integrity checking on the disk images from time-to-
time. (Ghemawat et al. report that the error rates of consumer disk drives become significant when
large amounts of information are copied, and recommend that applications or file systems perform

3.3. CASE STUDY: REMEMBRANCE OF DATA PASSED 121

Invalid partition table
Error loading operating system
Missing operating system
MS-DOS_6 FAT16
Non-System disk or disk error
Replace and press any key when ready

Figure 3-15: Phrases that are commonly found in the boot blocks or partition table of disks formatted with the DOS or
Windows operating systems.

their own integrity checks in these situations.[GGL03])

Disks that had been sanitized by writing random data on them from start to finish could readily
identified by the fact that these disks would contain no blocks consisting entirely of ASCII NUL
characters. No such disks were found in the collection—that is, every disk was found to contain a
significant number of completely blank blocks.

File level analysis: levels 0 and 1
Analysis of Level 0 and Level 1 files was performed exclusively using the information in the disk tar
files (see Section 3.3.2).

For each of these files, an automated process unpacked the archive in a clean directory. Each of the
files was then examined and the following information was stored in the database:

• File name and complete path name.

• File length

• File MD5 hash code

• File type (extension)

• Output of the Unix file command when run over the file.5

Information such as “file type” made it possible to rapidly find all of the Microsoft Word files in the
collection, while the MD5 codes made it possible to rapidly distinguish the Word files that were on
many disks (for example, template and tutorial files) from Word files that had been created by end
users. This proved to be important in the Traceback study, discussed in Section 3.4.

In this study, the concept of a “unique file” proved to be useful. A unique file was defined to be a file
whose MD5 was not seen in any other file or any other collection of MD5 codes that was obtained
from any source. The hypothesis is that such unique files correspond to content that was created by
the computer that used the hard drive in question, and is unlikely to have been part of a standard
distribution of files from an external source—for example, a list of tutorial files that were delivered
as part of a Microsoft Word installation.

5The Unix file command reports file type by an examination of the file’s name and file contents. For certain kinds
of files it can report additional information—for example, the width and height of various image formats.

122 CHAPTER 3. Sanitization and Visibility 1: Operating Systems

File Type # of unique files
GIF files 10,012

GIF in web browser cache 8,262
Dynamic Linked Library 7,751
Program Files (COM & EXE) 4,548
JPG files 2,958

JPG in web browser cache 2,345
Microsoft Word 783
Microsoft Excel Worksheets 184
Microsoft Outlook 69
Microsoft PowerPoint 30

Table 3.1: The number of unique Level 0 and Level 1 files found on the hard drives in the study. Although large numbers
of unique images files were found, they were mostly confined to the web browser caches. The large number of program
files found indicates that programs were generally not deleted before the drives were sold on the secondary market.
But the fact that so few numbers of Microsoft Word, Excel, and Outlook files were found indicates that these files were
intentionally deleted before the drives were sold.

Table 3.1 provides the number of unique files of various file types that were found on each drive, by
document file type. We were surprised that so few drives appeared to contain unique files. When
the study was started, it was expected that the majority of the drives obtained on the secondary
market would be completely unsanitized. But this wasn’t what we found. We found roughly 10,012
unique GIF files, but 8,262 were in web browser caches—making them actually hidden Level 1 files,
files that were not obvious to most users. We found 7,751 unique DLL files and 4,548 unique COM
and EXE files, indicating that a wide variety of programs had been installed on these systems. But
when focusing on Microsoft Word files, we found only 783 unique files on all of the drives—and
484 of those were contained on just four drives of the sample.

The only reasonable explanation fitting this data is that many of the disks were manually purged
before they were sold. That is, some person manually went in and deleted the Microsoft document
files but left behind the program files. As we shall see shortly, the deleted document files were
nevertheless recoverable, as they had been deleted with the Windows “DEL” command,

File Level Analysis: Levels 2 and 3
There are many programs on the market for doing analysis of Level 2 and 3 data. One such product
category consists of data recovery programs that are sold to consumers and businesses to recover
accidentally deleted information. A second category are the forensic analysis tools that are typically
sold to law enforcement agencies for the purpose of performing detailed analyses of seized hard
drives. Although many of these tools are beloved by their target audience, they were deemed
inappropriate for the purpose of this project: all of these tools have an interaction model that
assumes a practitioner has a lot of time to spend with a single hard drive image. What was needed
for this project was a batch tool that could rapidly analyze and assess hundreds of disk images.

The program fatdump provides this functionality in the form of a Forensic File System (FFS). A
forensic file system is a kind of semantic file system[GJSJ91] that is specially tailored to ease in the
retrieval of forensic information.

3.3. CASE STUDY: REMEMBRANCE OF DATA PASSED 123

For example, the FFS allows any block on the disk to be accessed as if it were a file by using the path
name /b:nnnn , where nnnn is the number of the block to be accessed. The notation /c:nnnn
allows the contents of cluster nnnn to be accessed in a similar manner. (Clusters are collections of
blocks referenced by the FAT file system; the mapping of cluster numbers to block numbers requires
first decoding information stored in the disk’s BIOS Parameter Block (BPB).)

The FFS also makes it possible to interpret any block as if it were a directory. In traditional file
systems it is only possible to resolve path names that start at the root directory. The forensic file
system allows the use of the /dir:nnnn notation. If cluster #50000 is believed to contain a
directory, it is possible to list the files referenced from that block by requesting a listing of the
directory /dir:50000 . Figure 3-16 illustrates this terminology. In this example, fatdump was
used to list the contents of cluster #15 of image #113; the cluster probably was a directory that
held an application. One of the directory entries, ?TEMP.000:del7111 , was deleted. Frequently
entries that have been deleted nevertheless point to valid directory contents—which themselves
have also been deleted. Figure 3-17 shows that the directory a cluster #411 of disk #113 was a
directory that contained a significant part of data files used by the Microsoft Office Shortcut Bar.

fatdump allows the forensic notation to be used as both an input to commands and in directory
lists. If a disconnected directory is listed by specifying its starting block number, for example, the
file names that are displayed will themselves be reported with the disconnected form. The notation
makes it easy to reference Level 2 or 3 data that is on the disk’s surface. fatdump uses this feature
extensively: the program has a “-lR” option which generates a recursive list of all directories on the
disk. Unlike the standard Unix ls -lR command, the fatdump version of this command results
in a scan of the entire disk image.

Finally, fatdump has the ability to tag each block of a hard drive image as “reachable” or “not
reachable” from the image’s root directory.

What the forensic analysis shows
Using fatdump , it is possible to answer both the question posed on page 104 and to relate this
entire study to the topic of security and usability.

An analysis of the hard drives contained in the sample shows that the majority of operational
drives contained data that had been deleted but that was nevertheless recoverable. The output of
fatdump shown in Figure 3-18 is typical. This information, from image #182, shows that the disk
contained resumes, letters to an admissions counselor, and other highly sensitive information.

However, when disk #182 is mounted on a Unix computer and examined using standard tools, none
of this information is visible. Instead, all that is apparent are three files: IO.SYS , MSDOS.SYSand
COMMAND.COM. This reason is that disk #182 was formatted before it was sold.

Disk #182 is a 2 gigabyte hard drive that contained approximately 1.8GB of information. None
of this information would be seen by a person who had purchased the drive unless that person
used a low-level disk editor or a forensic tool to recover “deleted” files. In this case, it appears
that the third answer the question on page 104 is the correct answer. Disk #182 was awash with
information, but the information was invisible.

124 CHAPTER 3. Sanitization and Visibility 1: Operating Systems

cluster 15 looks like a directory...
03/18/1999 00:00 /:dir15/URL.DLL
09/01/1998 11:17 /:dir15/COMPOBJ.DLL
08/24/1996 12:11 /:dir15/MSVCRT20.DLL
08/24/1996 12:11 /:dir15/WIN32S16.DLL
08/24/1996 12:11 /:dir15/TYPELIB.DLL
08/24/1996 12:11 /:dir15/STDOLE.TLB
08/24/1996 12:11 /:dir15/OLE2CONV.DLL
08/24/1996 12:11 /:dir15/OLE2NLS.DLL
08/24/1996 12:11 /:dir15/OLE2DISP.DLL
09/01/1998 11:18 /:dir15/OLE2.DLL
09/01/1998 11:17 /:dir15/STORAGE.DLL
08/24/1996 12:11 /:dir15/?EMP.000:del7111
08/24/1996 12:11 /:dir15/DDEML.DLL
08/24/1996 12:11 /:dir15/OLESVR.DLL
08/24/1996 12:11 /:dir15/OLECLI.DLL

...

Figure 3-16: The output of fatdump on #113 reveals that cluster 15 was probably a directory that was part of a Windows
installation.

04/04/2000 09:52 /:dir441/Application Data/Microsoft/Office/Shortcut Bar/Off7290s.tmp
04/04/2000 09:52 /:dir441/Application Data/Microsoft/Office/Shortcut Bar/Off7290h.tmp
04/10/2000 10:16 /:dir441/Application Data/Microsoft/Office/Shortcut Bar/OffA042s.tmp
04/10/2000 10:16 /:dir441/Application Data/Microsoft/Office/Shortcut Bar/OffA042h.tmp
05/12/2000 10:15 /:dir441/Application Data/Microsoft/Office/Shortcut Bar/OffA042.tmp
07/30/1999 15:08 /:dir441/Application Data/Microsoft/Office/Shortcut Bar/Office/Microsoft Access.lnk
04/03/2000 14:56 /:dir441/Application Data/Microsoft/Office/Shortcut Bar/Office/Microsoft Excel.lnk
07/30/1999 15:08 /:dir441/Application Data/Microsoft/Office/Shortcut Bar/Office/Microsoft FrontPage.lnk
07/30/1999 15:08 /:dir441/Application Data/Microsoft/Office/Shortcut Bar/Office/New Appointment.lnk
07/30/1999 15:08 /:dir441/Application Data/Microsoft/Office/Shortcut Bar/Office/New Contact.lnk

Figure 3-17: Cluster #441 of disk #113 appears to have been a deleted directory that contained an entry for a directory
named “Application Data.” That directory appeared to contain data from a Microsoft Office installation. This figure
shows how the forensic file system allows a Level 3 directory to be followed to a Level 2 directory hierarchy.

Using fatdump ’s ability to tag blocks, it is evident that Disk #182 is representative of many hard
drives that were acquired for this study. In figrefsanitize/all-drives, each drive that has been prop-
erly sanitized or that contains file system structures that can be interpreted by fatdump are repre-
sented by a vertical bar. The top of each bar (light green) represents blocks on the drive that were
cleared or properly sanitized. The brown section in the middle represents data, like the data on
Disk #182, that existed but could not be seen with the operating system’s tools. The bottom part
of each bar (light gray) represents the data that was accessible from the file system.

The bars that are mostly white represent disks that were removed from service and sold without
much attempt at all to delete confidential files. The bars that are entirely green are disks that were
properly sanitized. But the bars that are mostly brown are disks that someone tried to sanitize—but
the sanitization tools failed them. Enough of the pointers to the data was removed such that the
data would not be visible on casual inspection. But the data was still there—and could compromise
security or privacy if the disk were in the hands of a suitably skilled individual.

3.3. CASE STUDY: REMEMBRANCE OF DATA PASSED 125

06/19/1999 01:36 /:dir210216/Four H Resume.doc
03/31/1999 12:41 /:dir210216/U.M. Markets & Society Advisor.doc
03/29/1999 18:14 /:dir210216/UM Activities & Academic Coordinators.doc
08/27/1999 16:39 /:dir222270/Resume-Deb.doc
03/31/1999 13:11 /:dir222270/Deb-Marymount Letter.doc
03/31/1999 16:56 /:dir222270/Links App. Ltr..doc
08/27/1999 16:36 /:dir222270/Resume=Marymount U..doc
03/31/1999 13:40 /:dir222270/NCR App. Ltr..doc
03/31/1999 13:42 /:dir222270/Admissions counselor, NCR.doc
08/27/1999 16:35 /:dir222270/Resume, Deb.doc
03/31/1999 17:14 /:dir222270/UMUC App. Ltr..doc
03/31/1999 21:51 /:dir222270/Ed. Coordinator Ltr..doc
03/31/1999 23:27 /:dir222270/American College Advisory Svc. Ltr..doc
04/01/1999 12:51 /:dir222270/Am. U. Admin. Dir..doc
04/01/1999 13:06 /:dir222270/Project Assoc.,School Health Policies.doc
04/05/1999 22:38 /:dir222270/IR Unknown Lab.doc
04/06/1999 23:53 /:dir222270/Admit Slip for Modernism.doc
04/07/1999 18:43 /:dir222270/Your Honor.doc
04/08/1999 13:44 /:dir222270/Air & Space Ltr..doc
04/09/1999 15:57 /:dir222270/AIU App. Ltr..doc

Figure 3-18: Deleted documents that could be recovered from Disk Image #182

% ls -l /mnt
drwxr-xr-x 1 root wheel 0 Dec 31 1979 .
-r-xr-xr-x 0 root wheel 222390 May 11 1998 IO.SYS
-r-xr-xr-x 0 root wheel 9 May 11 1998 MSDOS.SYS
-rwxr-xr-x 0 root wheel 93880 May 11 1998 COMMAND.COM
%

Automatic identification of disk owners through statistical means
There are a variety of statistical techniques that can be applied to the data in the disk image without
regard to the structure of the disk’s metadata. Such techniques are useful in cases where large
portions of the disk are unreadable or where the disk’s file system is not supported by available
forensic tools.

Two very useful statistical techniques were created during the course of this research: a Credit Card
Number Detector and an Email Histogram Tool.

The Credit Card Number Detector, developed with Abhi Shelat, scans the disk image for strings of
ASCII digits that match the Credit Card Verification (CCV) algorithm.[Sti97] Because the CCV is a
single digit checksum designed primarily to catch digit transpositions, 10% of all randomly chosen
15-digit numbers will pass the verification. This proved to be a problem: because many TIF images
are coded as hexadecimal binary data, such blocks of data have many cases of 15-digit numeric
strings that satisfy the CCV. Shelat was able to obtain significantly higher accuracy by coding into
his detector a set of valid credit card number prefixes that he was able to find on the Web. The

126 CHAPTER 3. Sanitization and Visibility 1: Operating Systems

0

500

1, 000

1, 500

2, 000

2, 500

bage
M

sety

Data in the file system (lev el 0)

Data not in the file system (lev el 2 and 3)

No data (blo cks cleared)

Figure 3-19: This graph depicts all of the remnant data found on the 114 hard drives that contained mountable FAT32
filesystems. Each bar has three parts: the bottom (light grey) part indicates the number of megabytes on the drive that
could be reached starting at the root of the FAT32 file system—that is, the Level 0 data. The top of each bar (light green)
indicates the number of megabytes of sectors that were all NULs that were found on the drive. The middle section (dark
red) indicates the data that was on the drive but not reachable from the root directory—that is, the Level 2 and Level 3
data. As can be seen, while there are some drives that were completely erased, the majority of the drives contained
large quantities of deleted-but-recoverable data, and some drives contained significant quantity of data that had not
even been deleted!

resulting program can reliably find disk images that contain credit card numbers with only the
occasional false positive.

The list of hard drives that contained large numbers of credit card numbers proved to be incredibly
useful when conducting the Traceback study. Several organizations that probably would never
have returned telephone calls became positively receptive and eager to help in the study when they
were told that their old hard drives had been recovered and that the disks contained hundreds or
thousands of customer credit card numbers.

The Email Histogram Tool, developed with Ben Gelb, scans the disk image for strings that appear
to be email addresses. Each email address is then tabulated, and the top most common email
addresses are displayed for the operator. We hypothesized that the most common email address on
a hard drive would correspond to the individual who was the primary user of the computer from
which the hard drive was removed. This is because this individual’s email address would be present
in messages sent both to the individual and those email messages sent by the individual.

Being able to rapidly identify the hard drive’s primary user was also incredibly useful in the Trace-

3.4. THE TRACEBACK STUDY 127

back study. With this information we could quickly distinguish personal documents pertaining
directly to that individual from the multitude of other information present in the disk image.

3.4 The Traceback Study
Several possible explanations for the large number of drives found to contain passed data were
proposed in [GS02a]:

1. Lack of knowledge. The person disposing of the device simply fails to consider the problem.

2. Lack of concern. The person knows about the problem, but just doesn’t care.

3. Lack of concern for the data. The person is aware of the problem, but is not concerned by
the possibility that the data might be revealed.

4. Failure to properly estimate the risk. Although aware that data might be recovered, the
person thinks that it is very unlikely that their particular data will be recovered.

5. Despair. The person disposing of the device is aware of the problem, but thinks that it cannot
be solved.

6. Lack of tools. The person is aware of the problem, but doesn’t have tools that will properly
sanitize the device.

7. Lack of training or incompetence. The person takes measures to sanitize the device, but
those measures are ineffectual.

8. Tool error. The tool does not behave as advertised. As most sanitization tools have not been
evaluated and certified, this is actually a significant risk.

9. Hardware failure. The computer in which the hard drive resides may be broken, making it
impossible to sanitize the hard drive without removing it from the computer and installing it
in another one—a time-consuming process. (Hardware failure was apparently the case in the
case of the Massachusetts electronics corporation discussed on page 104.)

Among non-expert users—especially those using the DOS or Windows operating system—it was
hypothesized that “a lack of training” was “the primary factor responsible for poor sanitization
practices.”[GS02a]

There was, of course, only one way to actually test this belief: by contacting the individuals whose
data we had recovered and asking them to reconstruct for us what had happened. Permission
to contact these individuals was obtained in April 2003 from the MIT Committee on the Use of
Humans as Experimental Subjects; work on this project began shortly thereafter.

3.4.1 Traceback results
Between April 2003 and April 2005 a total of 15 interviews were conducted with individuals and
corporations located throughout the United States, corresponding to the data recovered on 19
drives. Substantial attempts were made to contact the owners of another 13 drives; in three of those
cases, individuals contacted at the organizations were unresponsive to phone calls and follow-up
attempts.

128 CHAPTER 3. Sanitization and Visibility 1: Operating Systems

Because the drives that were traced were chosen based on their ability to be traced, rather than
being randomly chosen, no statistical conclusions can be drawn from this sampling. Nevertheless,
the individual cases are qualitatively revealing.

The hypothesis that poor training was responsible for the recovered information was not confirmed
by the Traceback study. Although a lack of training did play some role in the poor sanitization
practices, organization failure and misplaced trust were far more common causes in the cases that
were investigated.

Trust Failures (8)
Eight drives from a total of four resellers were not sanitized because of a trust failure—the individ-
ual or organization that owned the drive had entrusted it to another party, and that second party
had sold it without first sanitizing its contents:

ID Trust Failure Notes
#54 This disk contained the List Will and Testament and detailed financial information of a

50-year old woman in Kirkland, WA. The computer had been taken to the “PC Recycle”
store in Bellevue by the woman’s son, who is employed as a researcher by one of the
nation’s national labs. The son paid PC Recycle either $5 or $10 to recycle the hard
drive. PC Recycle “recycled” the hard drive by putting it on a table and selling it to
another customer for $5.

#73 This disk belonged to a community college in Washington State. Information found in-
cludes student grades, final exams, email, and other information. The school did not
have a procedure in place for wiping information from computers before they were dis-
posed, but has one now.

#74 Another disk from the Washington State community college.
#75 Another disk from the Washington State community college.
#77 Another disk from the Washington State community college.
#128 This disk was in the computer used by the administrator of a church in South Dakota.

That administrator left and the new administrator did not know the circumstances by
which the disk was conveyed to the reseller, a firm called “PC Junkyard.” The cur-
rent administrator said that the previous administrator “was kind of crazy” and that the
previous administrator probably sold the equipment. Other drives purchased from PC
Junkyard were properly sanitized, but this one was not.

#193 This disk belonged to an automobile dealership in Maryland. The disk contained internal
dealership documents, address books, email, and other materials. The individual who
supplied computers to the dealership apparently took the dealership’s old computers as
part of a trade in; the machines were stripped and the parts sold on eBay without being
sanitized.

#205 This disk was from the home computer of a Maryland family whose father is the owner
of the automobile dealership that previously owned drive #193. This disk contained
email and a mortgage application containing detailed personal financial information.
This drive was also part of a computer that was traded-in to a trusted computer seller,
who sold the family a new computer.

3.4. THE TRACEBACK STUDY 129

The case of drives #73 through #78 are particularly interesting. These drives were purchased as a
lot of six from an individual in Washington State. While drives #73, #74, #75 and #77 contained
federally protected confidential information that had not even been deleted with the Windows DEL
command, the other two drives in the lot had little or no confidential information at all. Drive #76
had been formatted but an analysis with FATDUMP found no Microsoft Word or Excel files that
could have contained confidential information. (We did find four copies of the LOVE-LETTER-FOR-
YOU worm, however.) Drive #78 found 39 links to Word files in the /Windows/Recent directory,
but the files themselves were not on the drive—instead, they appeared to be on a file server. Thus,
it is entirely possible that the person who was disposing of the drives thought that none of them
had confidential information on them, and that drives #73, #74, #75 and #77 contained the
information because of an unanticipated violation of school policy, rather than a failure to sanitize.

In interviews with the former owner of drive #193 and #205, the individual expressed profound
frustration that his computer consultant had removed the drives from the computers and there had
been no way to audit whether or not the information had been deleted. The owner had trusted his
consultant, and that trust was betrayed.

Tool failures or lack of training (3)
In three cases the organization attempted to sanitize the disks itself but the tool that was used—the
DOS or Windows FORMAT command—did not actually overwrite the blocks of the disk in question.
This can be thought of as either a “tool failure” or a “lack of training:”

ID Tool Failure Notes
#7 This disk belonged to the California office of a major electronics manufacturer. The disk

contained internal documents and source code. The system was declared obsolete by the
manufacturer, inadequately sanitized with the FORMAT command, and sold to a surplus
vendor.

#21 From a computer that did credit-card processing for a supermarket belonging to a major
supermarket chain. The disk included 3,722 credit card numbers and supermarket bank
information. At the time the disk was retired the supermarket chain was using Norton
Disk Wipe to sanitize old hard drives, but the company believes that the tool was not
used consistently in every case. In 2000 the company formalized its disk sanitization
procedures as a result of HIPPA and VISA CISP regulations (see Section 2.6.5).

#134 This disk was the primary drive of an ATM machine that belonged to a major Chicago
area bank. The bank was aware of the sanitization problem and had hired an outside
firm to upgrade its ATM’s: the contract specified that the removed disks needed to be
sanitized, but failed to specify how. The contractor had hired a subcontractor to perform
the actual drive removal and sanitization; the subcontract had specified that the drives
should be sanitized, but failed to mention how. Although both the bank and the contrac-
tor were aware that the DOS FORMAT command did not properly sanitize hard drives,
the subcontractor was not aware of this fact. As a result of being contacted for this sur-
vey, the financial institution revised its privacy policies and contracts: all contracts now
specify not only that removed disks should be sanitized, but they also specify how the
disks should be sanitized.

130 CHAPTER 3. Sanitization and Visibility 1: Operating Systems

Lack of Concern (2)
In two cases the organizations that owned the disks simply did not care if the information on them
was sanitized or not. In each case the company was going bankrupt or having significant layoffs;
in interviews after-the-fact, the individuals responsible for disposing of the property reported that
they simply didn’t care whether or not the data the computers contained confidential data:

ID Lack of Concern Notes
#15 This disk belonged to an Internet software developer. The disk contained a database

of 1240 sales contacts and other corporate information. The company was going
bankrupt and the computers were sold to a used computer vendor that would pick up
the equipment and pay a minimal fee.

#44 This disk was in a computer used by a “publishing specialist” at a computer maga-
zine in the San Francisco Bay Area. Although the company had an informal policy
of sanitizing disk drives when employees left the company and computers were re-
purposed within the organization, in the summer of 2000 the company experienced
a two-thirds reduction in force. At that time the company decided to sell as many
of its computers as possible in order to recoup some of its investment; sanitizing the
computers was not a priority.

Unknown Reasons (7)
In seven cases the original owner was determined but the reason for the sanitization failure could
not be discovered:

ID Unknown Failure Notes
#6 This disk was used by a biotech startup in the San Francisco Bay Area. The drive con-

tained proprietary research documents for an HIV test that was under development. The
systems were sold to equipment consolidators when the company was shut down. It is
unknown if the company wished to have the contents of the disks sanitized or not.

#11 This disk belonged to the Greensboro, NC, office of a major electronics manufacturer.
It contained internal documents. The company did not respond to repeated contact
attempts.

#42 This disk was in a computer used by the assistant principal of a San Francisco Bay Area
primary school. The computer contained grades and disciplinary letters sent home to
parents by assistant principal. The school’s staff said that they did not know how the
computer had left the school.

#70 This disk had medical information which indicated that it was used by a mail order
pharmacy. No attempt was made to determine if the disk contained patient records. The
pharmacy claimed that it understood the seriousness of the situation, but subsequently
did not return phone calls.

#94 This disk was in a computer used by consultants of a regional telephone company. A
document found on the computer stated “This PC is infected with a virus. Call helpdesk
at #XXX-7838.” When contacted, the company said that too much time had elapsed to
determine why the disk was not properly sanitized prior to its being sold as surplus.

3.4. THE TRACEBACK STUDY 131

ID Unknown Failure Notes (cont.)
#96 This disk came from the computer used by the vice president of a Minnesota-based food

company. Information on the disk included corporate records and details of an em-
ployee’s “loan repayment plan” schedule. The organization did not respond to repeated
contact attempts.

#214 This disk belonged to the Corporation Commission of a US state. The disk contained
credit card numbers and other information associated with the filing of various state
forms, as well as internal correspondence belonging to the state office. The state’s IT
division requested that a copy of the disk’s image be uploaded to an FTP server. After
the upload, no further communication was received from the IT division.

3.4.2 Traceback conclusions
The picture of American businesses and non-profit organizations that emerged from the Traceback
study is a frightening picture indeed. It is a picture of organizations that are fundamentally not in
control of their information technology. It is a picture of people who can do email and run a few
applications but just didn’t think about the implications of their actions.

There may be a sampling bias in this study: the Traceback study could only trace data to organiza-
tions that, by definition, had leaked their own personal or confidential information. But this isn’t
a comforting thought, when one considers that disks were traced to a major Chicago bank, to a
major grocery store chain, to the headquarters of a public school system, and to a number of small
businesses that held confidential customer information.

If anything, the Traceback study confirms the importance of security measures that are either auto-
matic or else extraordinarily easy-to-use: the computer users encountered in this study simply can’t
handle anything else.

The Traceback study was significantly harder to perform than anticipated. The reason was not the
difficulty of identifying the data subjects—the reason was the difficulty of identifying the person
within the target organization who either had both knowledge of what had happened and was
interested in participating in the study.

Finding a responsible individual for what can only be described as a significant security or privacy
violation shouldn’t have been a problem, but it was. Under Canadian and European data privacy
laws, organizations must identify a specific individual who is responsible for communicating with
the public on issues of data privacy. But US law has no such requirement. Once the organization
name was determined, it should have been possible to go to that organization’s web site, click on a
“privacy” link, and immediately have contact information for the responsible individual. But many
of the organizations that were contacted for the Traceback study didn’t have privacy policy on their
web sites. Instead, they had generic “contact” links on their web sites that invited visitors to send
email to their web master or their press offices—mail that generally did not engender a response.
Instead, contacts were made with responsible parties by repeated calling the organization’s switch-
board and asking to speak with the organization’s network security group. This is not a strategy
that should be recommended to the general public.

132 CHAPTER 3. Sanitization and Visibility 1: Operating Systems

Figure 3-20: A map of the United States showing the locations of the organizations that were responsible for the data
on the drives that were successfully traced.

3.5 Future Work: Cross-Drive Forensics
This section has only scratched the surface of a new branch of forensic analysis that we have chosen
to call cross-drive forensics.

Computer forensics is a fast-emerging field that consists of many sub-specialties. Major areas of
research and practice include disk forensics, discussed here; network forensics, which involves the
collection and analysis of information traveling over a network; and document forensics, which
involves the analysis of printed and digital documents to learn hidden details of their authorship,
creation, or modification.

A growing number of tools have been created to aid the forensic examiner. But today’s tools
tend to assist in the clerical tasks and visualization associated with forensic analysis: they do not
automate the forensic process. Today’s interactive forensic tools were created in an era when
forensics investigations were relatively rare and disk drives were generally small: a practitioner
might have had 20 hours to spend analyzing a 10 gigabyte disk drive. The tools serve this purpose
well and have provided a treasure-trove of information.

Given the success of these early investigations, many more disk drives are now routinely captured
as part of police work or intelligence operations. As a result, there is a growing backlog of hard
disks awaiting forensic analysis. There are stories of “rooms full of hard drives” that have been

3.6. PROPOSALS FOR ADDRESSING THE SANITIZATION PROBLEM 133

captured in the course of drug and organized crime investigations and during the course of US
military operations in Iraq and Afghanistan. We simply do not have enough analysts to analyze
these drives.

Complicating matters is the fact that drive capacities are growing geometrically. Whereas programs
like Encase[Kei03] and FTK[Acc05] were developed in an era of 2 and 4 gigabyte hard drives,
today’s drives range in size from 20 GB to 200 GB or more. Even a simple “string search” can take
nearly an hour.

The current generation of forensic tools is simply not up to the task of analyzing massive quantities
of information. What’s more, their creators will find it difficult to modify them for today’s foren-
sic problems because the underlying approach that these tools take is incompatible with today’s
forensic problems. These tools use visualization to augment the intellect of the analyst.

The forensic techniques presented in this section do not follow the pattern of existing tools. Instead
of allowing the detailed assessment of a single drive, they are designed for the rapid assessment
of several hundred. This approach is likely to find increasing favor in the coming years, as both
law enforcement investigations and US intelligence activities overseas have resulted in backlogs of
drives that far exceed the capabilities of trained forensic investigators to analyze. At very least,
some cross-drive approach must be used to determine which drives should be targeted for human
analysis. At best, these new techniques can find patterns in the forest of drive data that are simply
not visible when drives are examined one-at-a-time.

There are many ways that the techniques presented in this section could be readily expanded:

• The Unix dd command should be modified, as discussed above, so that read errors are copied
over as specially tagged blocks, and not blocks of NULs. Further, when a 64k block cannot be
read, an attempt should be made to read blocks of a smaller size.

• The Forensic File System should be finished and implemented as a user-level NFS or SMB
redirector so that the full array of Unix tools can be used for forensic analysis.

• In addition to using hash codes to find identical files, we should explore using hash codes to
find identical blocks. The theory here would be to effectively characterize Level 3 data. This
approach could determine, for example, that a stretch of 50 blocks on the disk are actually
two-thirds of a DLL that shipped with a copy of WordPerfect 4.2. Such information might be
useful in its own right, or else might be used to eliminate these blocks from further analysis.
Erik Nordlander at MIT is working on this technique as part of his masters’ thesis.

3.6 Proposals for Addressing the Sanitization Problem
Although the need for proper sanitization of magnetic recording media has been long recognized
as a serious issue for computer security practitioners, the problem has traditionally been addressed
through the use of add-on software or physical destruction of the media itself. Only recently has
the question of sanitization been addressed by computer operating system vendors themselves, and
in the cases that we have considered, both Microsoft and Apple and have addressed it poorly.

What’s needed, then, is some straightforward way to add a usable sanitizing delete-file function to

134 CHAPTER 3. Sanitization and Visibility 1: Operating Systems

existing system.

Although a simple approach would be to resurrect Bauer and Priyantha’s Linux implementation,
such an approach would be incomplete. Bringing truth to the phrase “rm is forever” is not a
particularly user friendly approach for moving forwards. Many usability experts have noted that
humans make frequent mistakes; simply adding a warning box saying something to the effect that
“rm deletes all of your files” is not a particularly strong barrier to improper use.

The remainder of this section considers two proposals for better addressing the problem of creating
a safe sanitizing delete on modern desktop operating systems, and one proposal for solving the
data remanence problem through a regulation on computer resellers.

3.6.1 Shredder and delayed irreversible actions
Norman suggested in 1983 that simple confirmation is an inappropriate response for actions that
cannot be reversed: a more appropriate approach, he argued, is to accept the command but defer
execution for a short period of time:

“It is not sufficient to ask the user to confirm that a particular action sequence is wanted,
because if confirmation is routinely asked for (and if the usual response is “yes”), the
confirmation itself becomes an automatically invoked component of the command se-
quence. Thus, if the command is given in error, it is likely to have the confirmation
invoked as part of the same error; in our experience, the confirmation is as apt to be in
error as much as the original command. As Newman points out in his discussion of the
paper by Schneider et al. , the normal response to requests for confirmation is some-
thing like this: “Yes, yes, yes, yes. Oh dear!” The point is that disastrous commands
should be difficult to carry out; confirmations of the validity of the command may not
offer sufficient difficulty to be a satisfactory safeguard.

“Sometimes the command can act as if it were actually executed, when in fact, it has
only been deferred. Consider the command to delete files from the system; the system
could claim that it has removed the file, but has actually put it away on some temporary
location so that it can be recovered later if its “deletion” was discovered to have been
an error. (Real deletion can be done on an infrequent basis, say after a lapse of several
hours or days.) In Interlisp6 operations may be “undone,” even operations such as
writing on or destroying files.”[Nor83]

Cooper makes a similar observation:

“If I tell the computer to discard a file, I don’t want it to come back to me and ask, ‘Are
you Sure?’ Of course I’m sure, otherwise I wouldn’t have asked. I want it to have the
course of its convictions and go ahead and delete the file. ”

“On the other hand, if the computer has any suspicion that I might be wrong (which,
of course, is always), it should anticipate my changing my mind and be fully prepare to

6Teitelman, W. and Masinter, L. “The Interlisp programming environment.” Computer 14, 4 (April 1981), 25–33.

3.6. PROPOSALS FOR ADDRESSING THE SANITIZATION PROBLEM 135

undelete the file. In either case, the product should have confidence in its own actions,
and not weasel and whine passing the responsibility onto me.”[Coo99, p.167]

...

“A confirmation dialog box is a convenient solution for the programmer because it ab-
solves him from the responsibility of being the agent of an inadvertent erasure. But that
is a misunderstanding of the real issues. The erasure is the user’s responsibility, and
she has already given the command. Now is not the time for the program to waiver.
It should go ahead and perform the requested task. The responsibility that is actually
being dodged is the program’s responsibility to be prepared to undo its actions, even
though the user requested them.

“Humans generally don’t make decisions in the same way that computers do, and it is
quote normal and typical for a person to change his mind or what to undo a decision
made earlier. In the real world outside of computers, most actions can be deferred,
changed, or reversed. There is no reason that this can’t also be true for software-based
products, except that the programmers who create them don’t think that way. ”[Coo99,
p.68]

The insight of these suggestions is matched only by the shortsightedness of the industry in its failure
to adopt them.

The Shredder
One design for such an implementation would be to build upon the Recycler metaphor. Instead of
having a set of “Empty Trash” and “Secure Empty Trash” commands, the revised implementation
would have a single command: “Shred Trash.” Choosing this command would move the contents
of the Trash to the Shredder, where the blocks corresponding to the documents would be automat-
ically sanitized and the files unlinked according to a policy: either at a particular time of day, or
after the documents had been in the Shredder after a specified period of time. A typical set of rules
might be:

• Shred any file that has been in the Trash more than 30 days.

• Shred all files in the Trash when the user clicks the “Shred all files now” button.

• Shred all files in the trash at 7am every day.

• If a file is selected and the user chooses the “Shred” command from the File menu, move the
file to the Shredder and schedule it for shredding in 5 minutes.

• If a file that is in the Shredder is selected and the user chooses the “Shred Now” command
from the File menu, shred the file immediately.

These rules give users a chance to change their minds, but nevertheless provide for the possibility
of immediate shredding, should such actions be necessary. Figure 2-28 shows a hypothetical user
interface to implement this rule set. A suggested implementation is diagramed in Figure 3-21.

The name “Shredder” is superior to “Secure Empty Trash” because most people know what a paper
shredder does; most people do not know what it means to securely empty trash. Thus, less initial

136 CHAPTER 3. Sanitization and Visibility 1: Operating Systems

a 3 3 f h

q a g d 6

u o v h 9

l c f x z

Blocks of data used
to hold file content

and metadata
Disk blocks

containing no data.

"Trash" (user visible)

"Shredder" (user visible)

Drag to trash

d y n w g

Drag out of trash

Empty Trash

a h o p t

Dirty blocks
scheduled for

overwriting
(not visible)

5 u x u 8

unlink()file system
new block
allocator

"Shred Now"

new files

Disk full

Scheduled shred

Blocks overwritten
with NULs and
returned to free
pool when hard
drive is idle or
when "Shred now"
is selected.

d

a*

^

Drag out of shredder➄

➅
➆

➇
unlink()

❶

❷

❸

❹

❺

❻

➁

➂

➃

Figure 3-21: The proposed design for a unified trash and shredder system which incorporates the design patterns
put forth in this section. ➊Blocks of data used to hold file content are visible and in the file system. ➋Files deleted
with the unlink() system call are moved to ➌the list of dirty blocks that are scheduled for overwriting. ➍When
the hard drive is otherwise idle, the system overwrites these blocks with NULs and returns them to ➎the pool of
disk blocks containing no data. ➏When the file system block allocator needs a new block, it can draw first from the
dirty blocks, automatically sanitizing them when they are used, and second from the reserve of sanitized blocks.
Files can also be deleted if the user ➁drags a file to the ➂“Trash.” To undelete a file that is accidentally dragged to
the Trash, ➃the user drags the file out. ➄Select “Empty Trash” to move the files to the ➅“Shredder.” ➆As with the
Trash, files can be dragged out of the Shredder. ➇Alternatively, the files will be unlinked and their blocks scheduled for
overwriting if the user presses the “Shred Now” button, if there is a scheduled shred, or if the disk is full. In the case of
“Shred Now,” the overwriting operation takes place immediately, even if the disk is otherwise occupied.

3.6. PROPOSALS FOR ADDRESSING THE SANITIZATION PROBLEM 137

user education would be required. And because shredding would be performed asynchronously,
there would be no perceived penalty for using the feature. This is an application of the Whit-
ten’s metaphor tailoring approach, showing that the approach can be used for verbal metaphors in
addition to visual ones.

If Shredder is implemented inside the file system, rather than within an application such as the
MacOS Finder and the Windows Explorer, then it would be possible to tightly couple the deletion
and sanitization. The unlink() system call could then be modified to put files into the Shredder
and schedule them for sanitization; the file system’s block allocator would be modified to obtain
blocks from the Shredder that are scheduled for sanitization, since overwriting such blocks with
new data would accomplish the same goal. Such modifications would have minimal impact on
desktop operating systems, which spend a great deal of their time idle. Such policy could be
disabled on operating systems on servers, if proper sanitization could be administratively ensure
prior to disposal; alternatively, the policy could be selectively implemented on some directories
but not others, as did Bauer and Priyantha. But it might not be necessary to do either, if the
shredder only runs when the disk is not otherwise serving requests from the operating system. A
schematic for such an integration between the file system, the Trash and the Shredder is presented
in Figure 3-21

3.6.2 Data Hauler: a regulatory proposal for addressing the data passed problem
The last proposal in this chapter is for federal and state governments to pass legislation that would
require hard drives to be properly sanitized before being resold on the secondary market. Saniti-
zation can easily be accomplished as part of the testing procedure, as was the case for roughly a
dozen of the 236 drives that were purchased for this study. Although it seems that a substantial
number of drives are sold without testing—perhaps they shouldn’t be. It’s not obvious that the
sale of untested used hard drives represents a substantial contribution to the nation’s economy:
although it would be silly to outlaw the sale of a few used hard drives, it is completely feasible to
regulate organizations that sell more than a hundred per month.

Unfortunately, the FTC Rule implementing the Fair and Accurate Credit Transactions Act of 2003
(see Section 2.6.5 on page 92) completely exempts so-called “service providers” from compliance
with the Rule if the service providers are not specifically told that computers being disposed of
contain consumer reports. The Commission specifically deleted an example of a “garbage collector”
from its Proposed Rule when it published its Final Rule. It appears that ignorance is indeed bliss:
any scavenger or dealer in used computer systems that does not look for consumer reports on its
systems and is not notified the reports exist is not be responsible for destroying those reports before
selling the systems. This is a significant loophole that could easily be addressed.

Microsoft has an incentive to create a sanitization process that removes all user data and applica-
tions but leaves the operating system intact. Such a process would help users to manage licenses
for software applications and help end the illegal practice of selling used computers with all of
their applications. Although some computers have in the past been sold with “system restore disks”
that return the computer to the configuration that it was in on the day that it was sold, these disks
present a significant security problem themselves: they return the computer to its unpatched con-
figuration. Experience has shown that such a system will be compromised within a few minutes of

138 CHAPTER 3. Sanitization and Visibility 1: Operating Systems

being placed on the Internet.[Pro04]

Federal regulations cover the management of hazardous waste in the United States. Organizations
that generate as little as 100 kilograms of hazardous waste per month are covered by the EPA
regulations and must employ a federally licensed Hazardous Waste Hauler.[Age05] In California,
haulers must also be registered with the State of California and have a a Certificate of Compli-
ance by the California Highway Patrol. The California regulations are quite stringent, requiring
that any organization generating more than 100 kilograms of hazardous waste in any calendar
month “must ship the waste off-site within 90 days after the first drop of waste enters the storage
container.”[Bus05] Such regulations help protect communities and workers by preventing the ac-
cumulation of hazardous waste in facilities that are not suitable for long-term storage. Shipments
must be tracked using the EPA’s Hazardous Waste Manifest System, which can help inform first
responders as to the nature of a hazardous waste shipment in the event of an accident.[Age05]

In many ways remnant data is the hazardous waste of the information age and needs to be treated
as such. The fact that some of the hard drives containing personal information belonged to com-
panies that had gone bankrupt is a very close analog to the so-called Superfund and “brown field”
sites of the 1980s, where companies had failed, leaving contaminated land and ground water. Reg-
ulatory responses are appropriate. Currently there is no one who is responsible for sanitizing the
collected personal information on the hard drives of a corporation when that corporation fails. It
makes sense to place this burden on those who benefit from trafficking in the corporation’s elec-
tronic equipment.

3.7 Patterns for User Visibility and Sanitization
Based on the careful consideration of the information presented in this chapter, this thesis presents
five patterns for aligning usability and security in the realm of data sanitization are proposed herein.
The patterns are introduced here and presented in detail in Chapter 10.

These patterns were chosen based on Alexander’s pattern selection criteria. That criteria holds that
patterns should be chosen based on their moral value.[Ale96] Speaking before the 1996 OOPSLA
conference in San Jose, Alexander stated that patterns should be chosen which “actually make
human life better as a result of their injection into the system.”

Although at first glance this may appear to be a subjective criteria that is not easily measured or
repeated, Alexander insisted that “there is striking agreement” between professionals when asked
whether or not a specific pattern makes human life better.

Addressing the computer scientists at OOPSLA, Alexander said that in his field of architecture, the
idea of making human life better actually means something. He wasn’t sure if there was an analog
in computer science—he said he didn’t know if the scientists at OOPSLA were merely looking for
technical performance that is good, or something that was profoundly good from a moral point of
view.

In the case of giving people tools to sanitize their computers, there is a clear moral good that can
be achieved. Each of these patterns are designed to make computers safer, more enjoyable, better,

3.7. PATTERNS FOR USER VISIBILITY AND SANITIZATION 139

and promote more secure operation. The question is simple: would you rather have a computer
that incorporated these patterns, or one which did not?

Given that goal, the technical question is whether this is a minimal set of patterns, of if there is
additional functionality that can only be captured through the introduction of additional patterns.
It does not appear that this set of patterns can be reduced any further. On the other hand, additional
requirements could certainly create the need for additional patterns.

• EXPLICIT USER AUDIT (page 324)
This pattern holds simply that users should be able to see all of the information that they
are responsible for in the system that they are using. The pattern refers to such information
as “user-generated information.” This is a broad term which includes information directly
generated by the user, documents they type, and information that is collected about the user
during the operation of the machine—for example, the information contained in logfiles and
web browser caches.

The EXPLICIT USER AUDIT pattern is a direct application for Fair Information Practice (see
Section 2.6.1) to computer systems. It views the software that is running on the computer
not only as a tool of the user, but also as an agent of the software’s creator. That creator has a
moral obligation to make sure that there are no secret databases—no information that could
harm the user, but of which the user is unaware.

In other words, computer systems should not lie to users. They should not give the user the
impression that information is not present in the system, when it fact it is.

There are two simple ways to implement this pattern: either the computer can never allow
the user to delete any information at all, or else the computer must ensure that the specific
memory used to store that information is sanitized when the user asks that the information
be deleted.

• EXPLICIT ITEM DELETE (page 326)
There are two paradigms for deleting information in a computer system: the information can
be deleted item-by-item, or else a region of the computer (or the entire computer) can be
wiped clean. EXPLICIT ITEM DELETE is the first data deleting pattern.

This is the pattern implemented by the DOS DEL and ERASEcommands, by the Unix rm
command, and by the graphical interaction metaphor of dragging an item to the trash. This
pattern holds that the tools for deleting information should be made available to the user
where the information is displayed in the user interface.

This pattern relies upon the COMPLETE DELETE pattern to actually remove the information.

• RESET TO INSTALLATION (page 326)
The second way to delete information on a computer system is to reset the system to an
installation state. This is analogous to the action of running the Windows FORMATcommand
or performing a “hard” reset on a PalmOS a computer.[pal05] It’s a useful function that should
be exposed to users whenever possible. (Norman writes how the navigation system in a
rented car was not equipped with any simple way to erase all of previous destinations.[Nor97]
As a result, each renter tended to leave their destinations in the computer, where they could
be easily reviewed by future renters.)

140 CHAPTER 3. Sanitization and Visibility 1: Operating Systems

As we have learned in this chapter, many computer systems that do provide a RESET TO

INSTALLATION feature do not implement that feature properly. In Section 3.3, we saw that the
data on many disks that had been formatted could be trivially recovered. That is because the
Windows FORMATcommand does not implement the COMPLETE DELETE pattern, described
next.

• COMPLETE DELETE (page 327)
Providing deletion functionality is not enough. The system must also ensure that information
is completely deleted so that it cannot be recovered. This is the idea behind the COMPLETE

DELETE pattern.

The standard way to implement COMPLETE DELETE on a computer system is to overwrite the
data that is being deleted. Most computer systems, as we have discussed, do not do this.
Instead they merely remove the link between the data and the memory containing the data,
then mark the memory as “free” and available for re-use.

• DELAYED UNRECOVERABLE ACTION (page 328)
As discussed in Section 3.6, if computer systems are going to have the ability to perform
unrecoverable actions, one way to prevent these actions from being performed in error is to
institute a delay between the time that the action is invoked and the time that the action is
performed. This specific interaction pattern is referred to as the DELAYED UNRECOVERABLE

ACTION. It can be implemented with a timer and a mechanism for aborting the requested
action.

3.8 The Policy Implications of “Clean Delete”
The information presented in this chapter establishes the fact that there is a widespread problem of
confidential information being left behind on discarded systems. Although some of this information
is obsolete, much of it is not. During the time that this work has been performed, the problem of
data remanence has become the subject of considerable debate. This chapter establishes that the
data remanence problem on consumer computer systems it the result of historical accident, rather
than the result of intentional design. Finally, the chapter proposes solutions to the problem.

In an eloquent article, The Honorable James M. Rosenbaum, chief district judge of the federal
district of Minnesota, argues that the legal profession’s current obsession with the ability to recover
deleted information from computer systems is unhealthy to our system of law and, ultimately, our
humanity. But he ultimately doesn’t blame the lawyers—he blames computer systems: “The real
flaw is that the computer lies when it says DELETE. This mechanical lie ought not to debase and
degrade the humans who are, and ought to be, its master.”[Ros00]

Rosenbaum argues that there should be some kind of “cyber statute of limitations” which would
hold deleted information off limits in many cases:

“I suggest that, barring a pattern of egregious behavior, or an objective record of system-
atic conduct—absent, if you will, a real ‘second set of books’—that the courts recognize
the existence of cyber trash. This is the stuff, which, in less electronic times, would have
been wadded up and thrown into the wastebasket. This is what the DELETE button was
meant for, and why pencils still have erasers.”[Ros00]

3.8. THE POLICY IMPLICATIONS OF “CLEAN DELETE” 141

The ability exists to correct this great technological lie. We don’t need to create a new statute of
limitations—all we need to do is to fix the unlink() and DeleteFile() system calls. But such a
change would not merely protect businesses and individuals: it would also dramatically complicate
the work of investigators trying to uncover wrongdoing. Oliver North’s violations of federal law
came to light because investigators were able to recover North’s deleted PROFS messages. Like-
wise, much of the Enron bankruptcy case was unraveled through the use of deleted Lotus Notes
messages.[DiS02] If complete delete is built into operating systems, similar evidence of wrongdoing
in the future might be unavailable to investigators.

It is possible that more harm is being done by the failure of our operating systems to sanitize deleted
files than good is resulting from the ability of forensic investigators to recover deleted information.
It is also possible that criminals will increasingly use readily available programs to remove infor-
mation of wrongdoing from their computer systems as knowledge of forensic capabilities spreads
through the criminal world.

But even if criminals make more use of sanitization technology than upstanding citizens, this should
not the ruler by which the desirability of the feature is measured. Ultimately, whether or not
computers should create covert records of their users’ activities is a question that should be the
subject of public discussion. Judge Rosenbaum’s article is a beginning of that discussion. More
voices need to take part.

142 CHAPTER 3. Sanitization and Visibility 1: Operating Systems

User
Audit

Visibility

Users

Sanitization

Document Files, Applications, and Media

Users

Complete
Delete

Delayed
Unrecoverable

Action

Reset to
Installation

Explicit Item
Delete

Figure 3-22: A graphical representation of the five patterns involved in visibility and sanitization, showing how they
relate to each other and to the user

CHAPTER 4

Sanitization and Visibility 2: Applications

This chapter considers sanitization of information collected while browsing the web and in complex
document files. As we saw in Chapter 3, hidden information has resulted in the compromise of
security and privacy. We shall also see that the patterns developed at the end of Chapter 3 can be
applied to web browsers and document files with similar results.

4.1 Case Study: Sanitizing Web Browser History
It is widely recognized that information retained in web browsers can compromise security and
privacy. In part, this is because web browsers record significant information about web pages that
have been visited:

• A notation of the page’s URL and the time it was visited is kept in the browser’s history.

• A copy of the page that was downloaded is frequently kept in the browser’s cache.

• Many web pages download cookies which are stored in the browser’s cookie jar.

The fact that browsing history is kept in multiple locations is an accident of web browser devel-
opment. The NCSA Mosaic web browser released in 1994 did not include a persistent history or
cache. The Netscape browser introduced the cache to improve browsing performance. However,
since the HTTP 0.9 protocol did not have a way to probe the modification time of web objects,
the browser’s cache could easily become inconsistent. Netscape 1.1 therefore gave the user explicit
control over the cache: a preference panel allowed documents to be “verified” once per session,
every time the document was downloaded, or “never”—that is, once a document was downloaded,
it would not be downloaded again (Figure 4-2). Netscape 1.1 furthermore exposed two caches to
the user: a memory cache, with a default of 600 kilobytes in size, and a disk cache, with a default
of 5 megabytes. Both could be manually cleared with a button on the Preferences panel.

143

144 CHAPTER 4. Sanitization and Visibility 2: Applications

Browser
History Cookies Browser

Cache

➀

➁ ➂ ➃

Figure 4-1: The fact that information has been downloaded from a specific web page can be recorded in three places
on a modern web browser: in the browser’s history, in its cache, and in its cookie files. Even if the files are deleted later,
the information may still reside on the computer in recoverable files, illustrated above as shaded boxes.

Netscape 1.1 also came equipped with a rudimentary browser history, as shown in Figure 4-3.
But this history was kept in memory and lost whenever the browser was closed. The only way to
preserve a history entry was by manually clicking the “Create Bookmark” button.

Modern web browsers employ caches that are considerably larger than the 5 megabytes and keep
a persistent history that can go back weeks or longer. There are many reports that this history
information has been used to compromise individual’s privacy.

Web browsers retain a substantial amount of personal information during the course of normal
operation. Information left behind in browsers has also proven to be useful in law enforcement.
For example, at the November 2004 murder trial of Michelle Theer, prosecutors introduced forensic
evidence including web pages with personal ads that Theer had written in 1999 and web-mail writ-
ten in responses to those ads, all recovered from web browser files on Theer’s computer.[Woo04]
Many of the files had been deleted but not yet overwritten. Theer was found guilty on December
3, 2004, of murder and conspiracy and sentenced to life in prison.[WRA04]

Web browsers are in effect data custodians for a significant amount of personal information. Some-
times users are made aware that this personal information is being collected, either through edu-
cation or through the browser’s interface, but it is suspected that many users are not aware of the
complete extent of the data collection.

4.1. CASE STUDY: SANITIZING WEB BROWSER HISTORY 145

Figure 4-2: Netscape 1.1 “Cache and Network” pref-
erence panel gave the user rudimentary control over
the browser’s cache.

Figure 4-3: Netscape 1.1’s history was automatically
purged after each browsing session. The only way to
make a history element persistent was by clicking the
“Create Bookmark” button.

Because web browsers are frequently used on computers shared by more than one person, it is
important for browsers to provide users with the ability to remove this personal information when
they wish. The American Library Association has adopted a policy that calls for browser history,
caches, and cookies to be removed from public access computers in libraries at the end of each
day.[Ame05] Even in the case of computers that are not shared, users may still wish to “erase their
tracks” under certain circumstances to guard against the possibility that their computer may be
analyzed at a later time by another party.

This section considers the alignment of usability and security in three web browsers: Internet
Explorer 6.0 (PC), Apple Safari 1.0 (Mac), and Mozilla Firefox 1.0. All of these browsers provide
users with various tools for removing information collected during the course of a web browsing
session. But these three web browsers take very different approaches. Explorer makes it difficult to
remove this information; Safari makes it easy; and Firefox is somewhere in the middle.

What’s more, all of these browsers have a common failure: even when they give the user the
ability to delete data, they do not actually remove the data from the computer, because they do not
implement CLEAN DELETE. As the Theer case demonstrates, information can be recovered even if
it is not visible from the browser interface.

4.1.1 Web site history
In order for the user to know that information needs to be sanitized, it is first necessary that the user
know that the information has been captured. As shown in Figure 4-4, web history information can

146 CHAPTER 4. Sanitization and Visibility 2: Applications

Firefox history menu IE history pane Safari bookmarks panel

Figure 4-4: History information—the list of web sites that the browser has visited—can appear in two locations of the
typical browser interface. The list of web sites can appear directly in the browser’s menu, as it does in the Firefox
browser (left), or in the IE panel (center). In Safari, the history panel appears as a collection inside the bookmarks
panel (right). Display of history is potentially a privacy issue because it can reveal private information about the browser
user to other people who have access to the user’s computer. In this case, for example, the Safari browser history
reveals that the user visited the HookUp.com matchmaking web site.

appear in two different locations in today’s browser. All browsers have the ability to show history in
a panel. The Safari and Firefox browsers also have the ability to display history information directly
from a menu: in Safari this menu is named “History” while in Firefox the menu is confusingly
named “Go.”

Browser designers have adopted two strategies for allowing the user to clear the browser’s his-
tory. All of the browsers maintain a list of web pages recently visited that is used to implement
the browser “History” feature. Each of the browsers further has a button that can erase this list
(Figure 4-6). The browsers also allow individual history items to be eliminated by control-clicking
or right-clicking on the specific history item and selecting the “delete” context-menu (Figure 4-5).

Safari’s control for clearing the browser history is very easy to find: a menu item clearly labeled
“Clear History” is located at the bottom of the “History” menu, as shown on the left in Figure 4-5.
Safari presents a control for removing this information where that the information is displayed, an
application of the EXPLICIT ITEM DELETE design pattern.

Clearing Explorer’s browser history is a multi-step process. First the user must click on the browser’s
“Tools” menu and select the “Internet Options” menu item. If the Internet Options have been
previously displayed and the “General” tab is not selected, it must be selected. Next, the user must
click on the “Clear History” button. Finally, the user must confirm the question, “Are you sure
you want Windows to delete your history of visited Web sites?” This process is shown visually in
Figure 4-6.

Explorer’s interface has some significant usability hurdles for an untrained user: the user must
know in advance that the “Clear History” button is located on the “Internet Options” panel. The
user must realize that having “Windows ... delete your history of visited Web sites?” is the same as

4.1. CASE STUDY: SANITIZING WEB BROWSER HISTORY 147

Safari Internet Explorer Firefox

Figure 4-5: Different strategies for clearing history information. Safari (left) features a “Clear History” command directly
where the history information is displayed. Both Internet Explorer and Firefox allow individual entries in the history panel
to be deleted by control-clicking on the history entry (a feature that may not be obvious to many users) Firefox (right)
and Internet Explorer also feature a button on the program’s preference panel to clear the browser’s history—an odd
place to put the control, considering that clearing history is not a “preference” that is set.

IE’s Internet Options menu IE’s Internet Options panel Clearing IE’s History

Figure 4-6: Internet Explorer’s “Clear History’ button is confusingly accessed from the browser’s “Internet Options”
menu. Selecting the menu option (left) causes the modal “Internet Options” panel (center) to be displayed. Selecting
the “Clear History” button causes a modal “Internet Options” alert panel to appear. Clicking “Yes” (right) causes the
history files to be unlinked from the Windows file system. The files are not overwritten. Neither the cache files nor the
cookies associated with the history pages are altered in any way.

clearing Explorer’s history menu. Probably the most significant usability problem is that there is no
indication on Explorer’s History Panel that there is any way to remove this personal information at
all! Explorer does not follow the EXPLICIT ITEM DELETE pattern. Adding a “Clear History” button
to this panel would make the functionality clear.

4.1.2 Search history
All three browsers reviewed in this section have the ability to execute a search on the popular
Google search engine when the user types a search term into a specially designated field and

148 CHAPTER 4. Sanitization and Visibility 2: Applications

Safari Google Toolbar Google Toolbar
Figure 4-7: The list of previously searched terms is another way that history information can be revealed. As with
browser history, Safari (left) provides the ability to clear this historical record where the information is displayed. In order
to clear the search history of the Google Toolbar (center), the user must select the “Clear Search History” command
from the Toolbar’s somewhat hidden menu.

hits “Enter” or “Return.”1 The Google toolbars remember previous searches so that they can be
executed again. These remembered searches are another area where personal information can be
compromised.

As with the remembered web history, Safari gives the user a straightforward way to clear the search
history: at the bottom of the list of remembered searches is a menu option that reads “Clear Entries”
(Figure 4-7, left).

The Google Toolbar also allows the user to clear the search history, but the approach is more
roundabout. Although there is a “Clear Search History” menu command, that command is located
under the “Google” menu, rather than at the bottom of the search history (Figure 4-7). Thus, the
Google Toolbar does not implement the complete EXPLICIT ITEM DELETE pattern: the ability to
delete information is provided, but not where the information is displayed. Once again, adding the
ability to delete the information where it is displayed would improve usability by both informing
the user that such deletion is possible and giving the user the ability to perform it.

4.1.3 The browser cache: a hidden history
In addition to web and search history, modern web browsers contain a substantial amount of infor-
mation that is not directly visible to the user.

The browser cache is a set of files that have been previously downloaded over the Internet. Browsers
keep these duplicate copies of downloaded files in order to speed the web browsing experience:
the cache eliminates the need to repeatedly download web objects such as decorative images or
JavaScript functions that do not frequently change. The cache also provides a second history of

1Both Safari and Firefox provide this functionality natively, while Internet Explorer requires that the Google Toolbar
be separately installed.

4.1. CASE STUDY: SANITIZING WEB BROWSER HISTORY 149

the web user’s actions. But there is no straightforward way in any of the browsers discussed in
this chapter to visually inspect the cache and its contents, a violation of the EXPLICIT USER AUDIT

design pattern. (The Netscape and Mozilla browsers implement a URL called about:cache that
displays information about the files currently in the cache, but this URL appears to be relatively
unknown; Internet Explorer similarly has a provision for viewing the folders that contain the cache
files, but it is not obvious.)

Pages in the user’s cache are deleted when they are not referenced for a period of time and new
space is needed for new pages. But all three browsers have procedures for manually deleting the
cached pages as well. One reason to delete these pages is when cached information is no longer
valid, as can happen when a web site is under development. Users can also delete the pages in
their browser cache when they are attempting to remove evidence from their computer that they
have visited a particular web page.

Safari gives the user a straightforward control for clearing the contents of the cache: underneath
the “Safari” application menu, there is a menu option labeled “Empty Cache...” Choosing this
option displays a confirmatory alert panel which, if approved, causes the files in the cache to be
unlinked.

Internet Explorer’s control for clearing the cache is on the “General” tab of the “Internet Options”
control panel. Microsoft uses different language from the other browsers—language that actually
makes more sense but is nevertheless out-of-step with the other browsers. Instead of using the ter-
minology “clear the cache” or something similar, the Internet Explorer command is labeled “Delete
Files” and included in a box labeled “Temporary Internet Files” (Figure 4-6).

There are a variety of HCI-SEC problems that arise with this approach:

• Because the “History” view is disassociated from the pages in the cache, it is possible to clear
the browser’s history but still leave ample evidence that various web pages had been visited.

• Because the controls for deleting the cache are coarse-grained, a user’s only realistic option
for removing evidence that a web site was visited is to erase the entire browser cache. There
are many circumstances in which such an action might generate suspicion.

• Because the browsers use different terminology and user interface elements, users must be
specially trained to manage the cache for every web browser they use.

.

4.1.4 Implementing the RESET TO INSTALLATION pattern
In addition to the personal information discussed in previous sections of this chapter, today’s web
browsers can store user-generated information in three other locations as well:

• Personal information that is used to automatically fill in forms on a web page.

• A database of usernames and passwords that have been memorized for web sites that
require authentication.

• A list of files that have been downloaded, and the locations where they have been saved
on the computer.

150 CHAPTER 4. Sanitization and Visibility 2: Applications

Safari Safari “Empty Cache...” Safari “Reset Safari...”
Figure 4-8: Safari’s “File” menu has commands to “Empty Cache. . . ” and “Reset Safari. . . ” (left), which result in
the warning panels (center and right, respectively) being displayed. Although emptying the cache is largely a non-
destructive action, resetting the browser eliminates bookmarks and cookies, which can make it much harder (or even
impossible) to access information on the web. The Safari browser doesn’t distinguish the severity of these two actions.
Firefox has a similar buttons to individually clear history, saved password, the cache, or “all information stored while
browsing,” as shown in Figure 4-5

Apple Safari provides a simple way to remove all six types of personal information that can be
captured in the browser: the “Reset Safari. . . ” command, located on the program’s main menu.
Choosing this option causes Safari to delete the cache and all other personal information that Safari
has accumulated—history, search history, cookies, bookmarks and so on—in one simple operation
(Figure 4-8). (Unfortunately, the operation is confirmed with a pop-up menu, which provides
protection against the command being accidentally chosen, but it does not implement the DELAYED

UNRECOVERABLE ACTION pattern to cover mental slips.) This is an exact implementation of the
RESET TO INSTALLATION pattern.

Firefox also implements the RESET TO INSTALLATION pattern, although it uses different terminology
to implement the functionality, and the control is located in a different place. In Firefox the controls
are located on the Privacy tab of the browser’s Preference Panel, (Figure 4-5), and the command is
labeled “Clear all information stored while browsing.”

Once again, this confusion in both terminology and control placement detracts from usability, be-
cause it means that users who learn how to purge information in one browser cannot readily trans-
fer that knowledge to an other. Security and usability could be aligned through the use of consistent
terminology, as specified by the CONSISTENT MEANINGFUL VOCABULARY principle, and through the
placement of the controls in consistent positions between the two browsers, as specified by the
CONSISTENT CONTROLS AND PLACEMENT principle.

4.1.5 Solving the browser history usability problem with patterns
As developed in this chapter, the browser history problem arises because today’s web browsers do
not implement the EXPLICIT USER AUDIT pattern. The fundamental problem is that web browsers
retain information on the computer, but do not make this information visible to the computer user.

4.1. CASE STUDY: SANITIZING WEB BROWSER HISTORY 151

Browser
History Cookies Browser

Cache

➀

➁

Figure 4-9: An illustration of the unified history and cache proposal. ➀Deleting an element in the user-visible history
should cause information to be deleted simultaneously in ➁the browser history; ➂the cookie jar; and ➃the browser
cache. If this deletion is accomplished with an overwriting delete, then the user can be assured that there will be no
hidden history stored in the browser.

Going deeper, we have shown browsers have failed to implement the EXPLICIT ITEM DELETE pat-
tern: they frequently show information but do not give the user the ability to delete the information
where that information is shown. And when browsers do give the user the ability to delete informa-
tion, they do not delete it with COMPLETE DELETE. As a result, the information can be recovered
using forensic means.

An alternative approach would be for browsers to implement the EXPLICIT ITEM DELETE pattern by
giving the user the ability to delete the information where it is displayed, and implement the RESET

TO INSTALLATION pattern, giving the user a simple way to eliminate all of the information that had
been collected during the course of web browsing. In either case, deleting information from the
browser’s history should delete the matching information from the browser’s cache and any cookies
that pertain to the web site, as shown schematically in Figure 4-9.

It makes sense to delete the cookies if the user is explicitly trying to delete evidence that a web
site was visited. If the cookies are not deleted, the cookies constitute hidden evidence that a web

152 CHAPTER 4. Sanitization and Visibility 2: Applications

Figure 4-10: The Opera web browser has a command called “Delete Private Data,” which displays a panel that gives
the user a great deal of control over what kind of private data is actually deleted.

site was visited. Likewise, the patterns suggest that references in the browser’s history should not
be deleted if the computer contains a persistent cookie: otherwise the computer will be violating
the EXPLICIT USER AUDIT pattern. Indeed, much of the early outrage over cookies in 1996 and
1997 was due to the fact that tracking cookies had been placed on user computers without the
permission.[Gar96a]

Why is there no CLEAN DELETE?
As part of the work performed in this chapter, attempts were made to determine why major web
browsers do not implement the CLEAN DELETE design pattern. While none of the major browser
vendors provided an explanation for the lack of functionality, Opera Software’s Chief Technology
Officer, Håkon Wium Lie, was willing to explain why CLEAN DELETE is not implemented in the
Opera web browser.

User privacy has always been a developer concern at Opera Software. Indeed, the Opera browser
was the first browser to implement the RESET TO INSTALLATION pattern with a “Delete Private Data”
command (Figure 4-10). But while this command gives the user a great deal of control over the
types of private data deleted—including cookies, passwords, the cache, and other information—the
browser does not use CLEAN DELETE to actually perform the deletion. Instead, the information is
left behind on the disk!

Opera could reduce the risk that this data would be recovered at a later point in time by explicitly
overwriting the files before they were deleted. But according to Lie, there was a formal decision

4.1. CASE STUDY: SANITIZING WEB BROWSER HISTORY 153

made not to implement such functionality:

“The problem is that it’s hard—if not impossible—to guarantee that bits will disappear
from the disk. In normal operation, files grow and shrink and bits will be left here
and there. When Opera is told to ‘Delete Private Data’ (which I think is a unique and
valuable tool), we could overwrite the current file, but there may still be bits lying
around from recent shrinks.

“Also, with the advent of journaling file systems, the OS will retain information even
after the application ’overwrite’ the bits.

“So, to conclude, we have no way of guaranteeing that the bits disappear. If you need
security at that level, it’s probably best to use a specialized file system tool in combina-
tion with Opera.”[Lie04]

This is a common sentiment among security practitioners. They fear that some users may be misled
and come to rely on that incomplete solution. It is better, these practitioners argue, to provide
no solution at all, than to provide a solution that offers incomplete security. But this argument is
flawed especially here: the browser is already misleading users by making it appear that data has
been deleted, when in fact that data has merely been made invisible. Even a partial implementation
of CLEAN DELETE—for example, by explicitly overwriting the files before unlinking them—would
be better than no solution, since the partial solution would leave sensitive information on the
computer’s hard drive. The partial solution might still mislead some people some of the time, but
it would almost certainly mislead most people less frequently.

Lie’s viewpoint, in fact is the reason that this thesis proposes the principle DEPLOY GOOD SECURITY

(DON’T WAIT FOR PERFECT).

As an aside, the large number of sanitization options provided by Opera’s “Delete Private Data”
panel is a violation of the PROVIDE STANDARDIZED SECURITY POLICIES principle. It is unlikely that
most of Opera’s users understand the security implications of deleting vs. not deleting a specific
class of information. An alternative approach would be to provide a default deletion policy—delete
all of the data—and then allow this to be customized through the use of an “advanced” button
if necessary. It would also be useful if this functionality were implemented with the DELAYED

UNRECOVERABLE ACTION pattern, so that the user could experience web browsing without the
private data, prior to having the private data being irrevocably erased.

4.1.6 Consumer education: the anti-pattern
Instead of fixing these fundamental problems in web browsers, both Microsoft and Internet service
providers have spent considerable effort on educating users about the importance of deleting con-
fidential information from the browser’s cache and history.[Mic03a, Com03] Yet the instructions
that these organizations give are frequently incomplete. For example, [Mic03a] explains how to
clear Internet Explorer’s history and cached addresses in the Address box. But [Mic03a] does not
explain how to clear the browser cache—that is explained on another Microsoft web page [Mic04],
and this second web page does not mention how to clear the browser’s history or the Address box.
Worse, there is no linkage between these two pages. Furthermore, the instructions in [Mic03a]
require manually deleting a Registry key—a procedure that [Mic03a] does not explain.

154 CHAPTER 4. Sanitization and Visibility 2: Applications

Some organizations—even very small ones—have taken matters into their own hands. For example,
HopeForHealing.org, a small web site devoted to helping the survivors of sexual and domestic
abuse, devotes considerable information on the home page of its web site to instructions on how
to clear the browser’s history and cache.[Hop04] “Click here to learn how to clear your browser’s
history if visiting this page puts you at risk,” reads a banner link across the site’s home page, with
a link to detailed instructions on how to erase the cache and history of both Internet Explorer and
Netscape Navigator. The web page further suggests that it is good practice for women who are in
danger to clear the “redial” button on touch-tone telephones after calling a shelter!

In November 2004, a Google search for web pages that contained the phrase “Internet options” and
“Clear history” returned 17,400 sites; by March 2005 the number of web sites had risen to 20,400,
indicating that a growing number of organizations believe they must educate users regarding this
browser arcana. But a better approach would be to fix the underlying paradigm that causes the
browser’s stored data to be inconsistent with the view that is provided to the user.

4.1.7 Future work
The information presented in this section is based on 12 years’ of personal experience with web
browsers and an evaluation of web browser sanitization practices that has lasted for at least two
years. The logical extension of this work would be to conduct further user studies and surveys to
determine whether or not the conclusions reached in this section apply to more mainstream users.

Specifically, user studies could be carried out to determine if typical computer users are aware of the
facilities included in web browsers for removing traces of web activity. Apple’s technique of putting
the “Clear History” command at the bottom of the History menu should be formally evaluated to
see if this really is an approach that could be broadly applied, or if it unacceptably increases the
chances of accidently clearing a user’s history.

It should be possible to modify the open-source Firefox web browser to see if the link between
browser history and cache is feasible. Likewise, it would be interesting to modify Firefox to eval-
uate the performance impact of a sanitizing delete and to evaluate techniques for removing the
performance penalty.

Finally, it may be useful to evaluate add-on software that is currently providing sanitization ser-
vices to see if these programs actually do what they say. Geiger’s initial investigation finds them
lacking.[Gei04]

4.2. CASE STUDY: FAILED DOCUMENT SANITIZATION IN WORD AND ACROBAT 155

4.2 Case Study: Failed Document Sanitization in Word and Acrobat
With the growth of the Web as a means for publishing documents in the 1990s, there have been
a significant number of incidents in which confidential information—and occasionally US Gov-
ernment classified information—was inadvertently released in Adobe Acrobat and Microsoft Word
documents. Once again, the problem is that hidden information that could not be audited or
deleted—this time in the Acrobat and Word file format. That is, Adobe Acrobat and Microsoft Word
do not follow the EXPLICIT USER AUDIT and COMPLETE DELETE design patterns.

4.2.1 Media reports
In recent years there have been several cases in which confidential information was revealed as
a result of organizations posting documents on the Internet containing hidden information, after
which the documents were downloaded and the information revealed by others. There has also at
least one high-profile case in which an organization resorted to scanning a redacted document and
placing the scan on the Internet. By scanning the document, the organization created a kind of
“optical firewall” that prevented hidden information in the electronic document from leaking into
the Acrobat scan.

• New York Times, June 2000: After obtaining a classified CIA file documenting how Ameri-
can and British officials engineered the 1953 coup that overthrew Iran’s elected government,
editors at The New York Times decided to put the file on the newspaper’s web site. In order
to protect the identities of the two dozen Iranians whose name appeared in the document,
the Times placed black boxes over the names, for fear that publishing the names might place
the individuals or their families at risk. After the file was posted, John Young, editor of CRYP-
TOME, downloaded the file and viewed it on a very old computer. Young noticed that the
Adobe Acrobat software was actually displaying the names and then covering them over with
a black boxes! Young contacted the newspaper and was asked to keep the names confidential,
but Young decided to publish them on his web site.[Won00]

• US Department of Justice, October 2003: When the US Justice Department released its
June 2002 Workplace Diversity report in October 2003, the version of the report that was
placed on the Department’s web site had been heavily edited to delete criticisms of the De-
partment’s policies. The “editing” was in the form of black boxes that had been placed over
the embarrassing text. Journalists were able to remove the black boxes and disclose the
embarrassing information.[Edm03, Joh04] Later the MemoryHole.Org web site placed an
unredacted version of the report on its web site.[Pou03, Kic03]

• SCO Group, March 2004: When the SCO Group filed lawsuits against DaimlerChrysler and
AutoZone for using Linux, an analysis of the Microsoft Word files conducted by journalists
revealed that SCO had previously planned to target Bank of America.2[SA04]

• Multinational Forces-Iraq (MNF-I) report on the death of Nicola Calipari, April 2005:
After the mistaken killing of an Italian intelligence agent on March 4th, 2005 in Iraq, the

2According to the Shankland and Ard, “on Feb. 18 at 11:10 a.m. ‘Bank of America, a National Banking Association’
was removed as a defendant and ‘DaimlerChrysler Corp.’ was inserted. Three minutes later, this comment was removed:
‘Are there any special jurisdiction or venue requirements for a NA bank?’ ” Delete comments were also found in the
document, such as “Did BA receive one of the SCO letters sent to Fortune 1500?”[SA04]

156 CHAPTER 4. Sanitization and Visibility 2: Applications

Multinational Forces-Iraq (MNF-I) overseen by the United States military performed an inter-
nal investigation regarding the circumstances of the killing. A redacted report was uploaded
to a US Department of Defense web site on April 30th, 2005.[CNN05]

The report had been redacted by drawing black boxes over the pages of the Adobe Acrobat
file, leaving the original text underneath the boxes. Two days later, a German systems ar-
chitect named Volker Weber was able to recover the entire text of the document with two
keystrokes: by selecting all of the by typing control-A, and then copying all of the text with
control-C.[Ber05a]

The redaction can be shown visually through the use of Adobe Illustrator CS, which has the
ability to directly edit PDF files and remove the redacting boxes, as shown in Figure 4-11.

• Byers: 10% of Microsoft Word files on the Internet have substantial hidden content. In
2003 Simon Byers, an AT&T researcher, downloaded 100,000 Word documents over a cable
modem from web sites located all over the Internet. He then examined the files using an au-
tomated technique and determined that approximately half of the documents he downloaded
contained between 10 and 50 hidden words, a third had between 50 and 500 words, and
10% had more than 500 words. [Bye03]

At least some organizations appear to be aware of the risk of hidden information in documents. Af-
ter concluding a classified investigation into the intelligence failures leading up to the US war with
Iraq in 2003, the US Senate Intelligence Committee issued a “Report on the US Intelligence Com-
munity’s Prewar Intelligence Assessments on Iraq.” The report was published on July 10th, 2004,
as an Adobe Acrobat file on the Committee’s web site. But instead of publishing an Acrobat file
that contained text, the Committee’s published Acrobat file contained page after page of scanned
images that clearly had been eradicated after printing and before they were scanned. Whereas an
Acrobat file of just the text would have been only a few megabytes, the Acrobat image file was over
13 megabytes.

By producing an Acrobat file from a scan of a printout of the sanitized document, the Committee
ensure that no hidden information in the original document would leak from the original document
into the final Acrobat file that was placed on the Internet. The original document contained many
instances of security classification labels at the beginning of paragraphs—an “(S)” symbol indicating
that a paragraph contained secret information, and a “(TS)” symbol indicating that the paragraph
contained top secret information. Given the value of the sanitized information, this trip from
the electronic realm into the optical realm—a kind of “optical firewall”—might well have been
appropriate. Unfortunately, the publication of images instead of text was a clear violation of spirit
of Section 508 of the Rehabilitation Act, since the scanned images could not be processed by a
screen reader. (Of course, as Section 508 is a procurement regulation, it does not apply to the US
Senate Intelligence Committee. For more information on Section 508, see Section 2.6.6.)

Despite repeated repeated requests, the Committee refused to comment as to why the report was
prepared in this manner.

4.2.2 Analysis of Microsoft Word
While hidden content has been found in both documents created with Microsoft Word and Adobe
Acrobat, the causes of problems on those two platforms in quite different. With Microsoft Word, the

4.2. CASE STUDY: FAILED DOCUMENT SANITIZATION IN WORD AND ACROBAT 157

(A) A section of the “redacted” table of contents, viewed in Adobe Illustrator.

(B) The same section, with the Illustrator selection tool hovering over the path to show the text beneath the boxes.

(C) The same section, with the black boxes moved aside, revealing the classified headings.

Figure 4-11: Using Adobe Illustrator to un-redact a section of the Multinational Forces-Iraq (MNF-I) report on the death
of Italian intelligence agent Nicola Calipari.

problem is caused by a combination of the Word file format and the program’s “fast saves” feature;
problems are also caused by Word’s facilities for revision and change tracking.

Designed when computers were much slower and had less memory than today, the Word file format
is largely a dump of the application’s memory followed by a series of changes that are to be applied
to the memory image after the document is loaded. This format allowed Microsoft to implement a
“fast save” feature, in which a few minor changes to a document could simply be appended to the
end of the document file. This made it possible to open a 100-page document, make a few changes,
and save it out again within a matter of seconds—even if the document was many times larger than
the computer’s available memory.

A result of this “fast save” feature is that the Word document file might contain information that was

158 CHAPTER 4. Sanitization and Visibility 2: Applications

intentionally removed by the operator. For this reason modern versions of Word require that the
“fast save” feature be explicitly enabled, as shown in Figure 4-12. Other Microsoft Office programs,
including PowerPoint and Excel, have similar “fast save” features.

Microsoft Word also has extensive provisions for tracking revisions, author information, comments,
and even for checkpointing complete documents. All of these features store metadata in the Word
file format. Experience has shown that many Word users are not aware of the extent of information
that is captured.

As discussed in Section 2.5.6, Microsoft has created a “Remove Hidden Data” tool that will remove
the hidden information from Word files. But it is unlikely that organizations even know that the
tool exists, let alone have trained their employees in its use. Finally, as Byers notes, there is no easy
way to look at a Microsoft Word file and determine if the hidden data has been deleted or not.

Byers recommended that organizations not use Microsoft Word files as a publication format for
external web sites.[Bye03] Unfortunately, this recommendation isn’t a workable: many employees
simply do not have the training to convert documents into other file formats, and often there is a
desire to make documents available in editable form.

4.2.3 Analysis of Adobe Acrobat
The disclosure of the data resulting from the improper use of the Acrobat draw-box feature de-
serves special mention. Placing black boxes over confidential or classified information and then
photocopying the documents has been a standard way to eradicate such information from docu-
ments for decades. It is not surprising, then, that drawn black boxes might be used by untrained
individuals for the purpose of eradication.

Ironically, there is a plug-in for Adobe Acrobat called Redax that allows users to still use this in-
tuitive metaphor, but Redax which actually erases the information that is covered-up.[App03] The
tool, when loaded into Adobe Acrobat, causes the combined system to implement the EXPLICIT

ITEM DELETE pattern.

Redax is designed for use by federal agencies that need to comply with Freedom of Information
Act (FOIA) requests without forcing them to print, redact, and then re-scan documents that they
wish to distribute in electronic form. Redax also supports the insertion of FOIA “Exemption codes”
which are used to indicate in a systematic matter the FOIA exemption that was used to justify the
redaction. The plug-in features an interface that lets a government information officer mark with
a black box the areas of the document that are to be redacted—a metaphor that is similar to the
black magic markers employed by most censors. But rather than covering the information with a
black square, Redax actually removes the information from the underlying document. The program
also replaces the “text” with hyphens, so that exported text will clearly indicate that a redaction
has taken place.

4.3 Conclusion
This chapter has shown that there are many cases in which potentially confidential information is
present but not visible in the databases maintained by web browsers and in the document files pro-

4.3. CONCLUSION 159

Figure 4-12: The Preferences panel of Microsoft Word has an option labeled “Allow fast saves.” The in-program
documentation explains that allowing fast saves will shorten the time required to save large documents. Fast saves
work by appending user changes to the document as a series of transactions to the end of the document file. Fast
saves can also silently compromise privacy or security by leaving confidential information in the document file after the
user has intentionally tried to eliminate that information. Unfortunately, this aspect of fast saves is not addressed by the
in-program documentation.

duced by Microsoft Word and Adobe Acrobat. We have also seen that the same patterns introduced
in Chapter 3 to cover disk and file system sanitization issues can be used here to cover sanitization
issues in a different domain. These patterns will be fully described in Chapter 10.

160 CHAPTER 4. Sanitization and Visibility 2: Applications

CHAPTER 5

Solving Secure Email’s “Grand Challenge”
with Signature-Only Email

In 1999 Carnegie Mellon University graduate student Alma Whitten and her advisor J. D. Tygar
published “Why Johnny Can’t Encrypt: A Usability Evaluation of PGP 5.0.”[WT99] The paper re-
ports on a user study in which Whitten asked 12 subjects to create keys and send messages that
were digitally signed and sealed using the PGP 5.0 and Eudora.

What made the Johnny paper popular—it remains one of the most heavily cited on the topic of
usability and security—was not the fact that it presented research findings that were novel or
surprising, but that it provided scientific justification for a common observation: Email encryption
programs are hard to use. This was true in 1999 when the paper was published, and it is still true,
more or less, today.

Secure email has effectively become a “grand challenge” of current research into the interaction of
security and usability. This is because any system that enables its users to reliably send and receive
mail that is both digitally signed and sealed with encryption requires that many other problems be
solved first. For example, today’s secure email systems use symmetric and asymmetric encryption,
hash functions, and third-party certificates. They require key distribution and revocation systems,
because the users may be communicating asynchronously without ever both being online at the
same time. They must also have message formats that must pass through multiple untrusted system
and be able to handle multiple character sets and attached content. Unlocking the user’s private key
requires solving the authentication problem and probably the trusted path problem. Protecting that
key requires host security and sanitization. Finally, allowing users to make sense of the identities
behind the digital signature requires sensible solutions to the phishing problem.

This chapter takes an alternative approach and argues that sensible progress can be made on the
email encryption problem through the incremental adoption of a half-way solution—email that is

161

162 CHAPTER 5. Solving Secure Email’s “Grand Challenge” with Signature-Only Email

signed but not sealed. Through an analysis of history, standards, and currently deployed software,
it argues that there are few if any usability barriers to the receipt of email that is signed with an
S/MIME signature. Presenting data based on a survey of Amazon.com merchants, it argues that
today’s e-commerce participants believe that email should be digitally signed. It then presents
specific recommendations for improving the usability and security of mail clients and webmail
systems.

5.1 Background: Three Decades in Pursuit of Secure Messaging
In their seminal 1976 paper disclosing the invention of public key cryptography, Diffie and Hellman
wrote somewhat optimistically that their invention “enables any user of the system to send a mes-
sage to any other user enciphered in such a way that only the intended receiver is able to decipher
it.” [DH76]

(In fact, the invention allowed a message to be enciphered so that anyone possessing a specific
private key could decipher it. The potential disconnect between an intended human recipient and
the holder of a private key has haunted public key cryptography ever since.)

Diffie and Hellman proposed that public keys would be placed in “a public directory.” The following
year (1977), Rivest, Shamir and Adelman introduced what has come to be known as the RSA
Cryptosystem, an algorithm that provided a practical realization of the kind of public key system
that Diffie and Hellman foresaw. In 1978 Loren Kohnfelder proposed in his MIT undergraduate
thesis [Koh78] that certificates could be used as an efficient and scalable system for distributing
public keys.

With these three inventions—public key cryptography, the RSA algorithm, and certificates—the
basic building blocks for a global secure messaging system were in place. Yet nearly 30 years later,
after the deployment of a global Internet and the creation of low-cost computers that can perform
hundreds of RSA operations in the blink of an eye, the vast majority of the legitimate mail sent over
the Internet lacks any form of cryptographic protection.

Although this is a problem that lends itself to incremental solutions, many of the solutions that
have been proposed have attempted to simultaneously solve all of the requirements outlined in
the previous paragraph. It is quite possible that the heavy emphasis on technical correctness and
complete functionality has prevented the deployment of incremental solutions that would have
given us an email infrastructure significantly more secure than the one we have today.

5.1.1 Early work on secure messaging
Speaking at the 1984 ACM Annual Conference, Charles Wood from Bank of America presented a
visionary paper describing the so-called “fifth generation computers” of the 1990s and the computa-
tional infrastructure that they would enable. In his talk, Wood described how public key encryption
technology would be applied to solve security issues in computer networks. Such systems, Wood
predicted, would use message authentication codes and digital signatures to protect the contents of
messages from modification, and would have sophisticated key management systems for “changing
keys, procedures for backing-up and archiving encrypted keys, recovery procedures, and the like”
which would be chosen by the user.

5.1. BACKGROUND: THREE DECADES IN PURSUIT OF SECURE MESSAGING 163

“Ideally, all this will be entirely transparent to the end user. He will of course, through
application system or local operating system facilities, have the ability to specify what
part(s) of his data he wishes to encrypt/decrypt, apply a MAC to, or sign with a dig-
ital signature. And he will additionally have some responsibility for maintaining the
secrecy of his personal keys, perhaps via his own memory or that in a small plastic
card.”[Woo84]

Despite Wood’s apparent equal emphasis on privacy, integrity and authentication, there was in fact
little perceived need for signature-only systems during the first decade following the discovery of
public key cryptography. Spam and email sent with forged From: addresses were not signifi-
cant problems in the 1980s. On the other hand, there was considerable interest in techniques for
adding “privacy”1 to email moving over the network—probably a result of the military’s priorities
influencing academic computer science research.[CW87]

Cryptographic systems that provide signatures alone have the advantage that signatures can be
placed on documents and ignored by the recipients without a decrease in message fidelity. As
a result, such systems can be incrementally deployed. Deploying a system that mandates both
signatures and message privacy is much harder because it is not possible to “ignore” the encryption
and still understand the contents of the message that is sealed. As a result, many different tasks
must be accomplished before the first message can be enciphered, sent, deciphered, and sensibly
understood by the intended recipient:

1. Formats for representing cryptographic keys and email messages need to be created. In the
case of messages, these formats need to be carefully designed so that the messages will survive
transit over the existing email infrastructure.

2. Software that implements these formats needs to be deployed.

3. Keys need to be created for email correspondents—either individuals need to create their
own, or else the software needs to create keys automatically.

4. Keys need to be distributed.

5. Individuals who would use the security systems need to be given sufficient incentive to use
the new email systems, or existing systems need to be shut down so that only secure systems
can be used. (As was the case in the migration from unencrypted HTTP to encrypted SSL
communications for sending credit card numbers over the Internet.)

Further complicating matters, it is necessary for all participants to use mutually compatible security
systems.

5.1.2 Standards and support for secure mail
On the Internet in the 1980s, the traditional procedure by which compatibility was achieved was
for the protocol and a working implementation—“running code”[Cla92, p.543]—to be iteratively
designed, with the protocol eventually being standardized through the Internet Engineering Task

1Lampson explains that computer security professionals really should use the word secrecy to describe technologies
that assist in disclosure control, but that “the NSA hijacked the word secrecy in the 1960s to mean something else, so
computer scientists have had to use other words ever since.”[Lam05]

164 CHAPTER 5. Solving Secure Email’s “Grand Challenge” with Signature-Only Email

Force’s Request For Comments process. Concurrent with this standardization process other imple-
mentations would be created.

The standardization process for developing a secure email standard was one of the most compli-
cated tasks that the IETF had ever embarked upon:

• By the 1980s there were many pre-existing email systems, all with their own notions of email
addresses, message envelopes, allowable character sets, and so on. All of these systems
worked well enough when sending raw ASCII over SMTP, where messages could receive mi-
nor modifications en route but nevertheless be intelligible by the recipient. On the other hand,
when a message that was enciphered or contained a digital signature was modified, the re-
sulting message would be unreadable. Thus, some system for reliably enveloping messages
that were being sent through the existing mail infrastructure needed to be developed.

• Because of the confusion surrounding export controls, it was not entirely clear whether or not
the work could proceed in an international forum. At the time it was believed that reference
implementations of cryptographic software could not be exported from the US in source code
form over the Internet. This significantly complicated the development process.

• At the time, it was widely believe that public key cryptography required the use of a certifica-
tion hierarchy to protect against man-in-the-middle attacks. Thus, any workable protocol to
provide for either privacy or authentication needed to solve the global authentication problem
as well.

The following sections discuss the three techniques for secure message authentication which suc-
cessfully made their way through the IETF standardization process: Privacy Enhanced Mail, S/MIME,
and OpenPGP.

Privacy Enhanced Mail (PEM)
The Internet Activities Board’s Privacy Task Force started working on email encryption standards
in the mid 1980s. These standards became known as Privacy Enhanced Mail (PEM), embodied in
RFC 989 [Lin87] issued in 1987. The PEM standards were revised twice, with the final set of RFCs
[Lin93, Ken93, Bal93] published in 1993. These documents defined a signature and encryption
standard for ASCII email messages based on public key cryptography using the RSA algorithm.

PEM defined two main protection features: (1) Signed Messages and (2) Signed and Encrypted
Messages. It is interesting to note that PEM made no provision for messages that were encrypted but
not signed. Although this option was discussed, those directing the PEM project thought that such
messages could be used to spoof end-users: it was conjectured that a user receiving an encrypted-
only message might become confused and assume that the purported sender really did send the
message. That is, the recipient might assume that error free processing by the PEM software meant
that the message had been signed, when in fact it was not.[Sch04a]

But the PEM standards were complicated by the magnitude of their task. Not only did they have
to describe how messages could be signed and sealed—they also had to describe how keys were
created, signed and distributed. Furthermore, the standards had to invent the base64 encoding
for sending binary objects through existing mail systems—techniques later adopted by the MIME
standards.

5.1. BACKGROUND: THREE DECADES IN PURSUIT OF SECURE MESSAGING 165

Rather than inventing a new certificate format, PEM’s creators adopted the digital signature stan-
dard defined by the CCITT X.509 Standard. These certificates were signed using the private RSA
key of a Certifying Authority (CA). The public key of the Certifying Authority was placed in another
certificate, which itself could be signed by another CA, and so on, composing a Certificate chain
that led back to a single trusted root. Although not necessary, the root of the chain was also stored
in a certificate—a so-called “self-signed” certificate that was signed with the root’s own private key.

Because there was no centralized online public key directory in 1989, PEM was designed to operate
without one. This was accomplished by including all of the certificates in the chain needed to verify
the signature of a signed message. Once received, PEM implementations were supposed to store the
accompanying certificates on the recipient’s computer. The recipient could then reply to messages
with a response that was both signed with the sender’s own key and encrypted with the public key
of the intended recipient.[Sch04a]

With the exception of the US Securities and Exchange Commission, which continues to use PEM
signatures for its EDGAR electronic records filing system (Figure 5-1), the PEM standard has been
largely abandoned. Schiller attributes three factors to the demise of PEM:

1. The lack of available software to implement PEM.

2. The requirement that end-users obtain certificates, a process that was never well documented
and cumbersome at best.

3. Public apathy, there wasn’t much market demand.

Secure Multipurpose Internet Mail Extensions (S/MIME)
When work on PEM stalled shortly after the publication of the PEM standards, RSA Data Security
began a new project to re-implement the PEM concept on top of the new MIME mail standards.
Called S/MIME, this work was eventually migrated to the Internet Engineering Task Force (IETF)
and standardized through RFC2311 and follow-ons. [DHR+98, Ram04b] Figures 5-2 and 5-3 show
the MIME parts of a signed and sealed S/MIME message, respectively. A message that is to be both
signed and sealed is simply signed first, then the entire message body is sealed.

Because management of a single root with a single certification policy proved to be problematical,
S/MIME implementations do not implement a strict hierarchy of certificates, but instead accommo-
dates any number of trusted Certificate Authorities. In practice, they ship with a relatively large
number of CA keys that are pre-trusted by the authors of the software. Although some organizations
audit the certificate list and remove the CA keys, most do not.

Microsoft became an early adopter of S/MIME in 1996, when the company announced support for
the standard, claiming that support would be present “in a 1997 release of Microsoft Exchange
client, Microsoft Outlook, and Microsoft Internet Mail.”[Cor96] Netscape responded by adding
support for S/MIME into its Communicator email client.[Net97]

Today support for S/MIME is integrated into many email clients, including Microsoft Outlook and
Outlook Express, Netscape Communicator, Lotus Notes, and others. Support for S/MIME is sched-
uled to be added to Eudora sometime in 2005.[Don05] But support for S/MIME is notably missing
from AOL’s client software as well as from many web-based mail systems (e.g., Yahoo, Google’s

166 CHAPTER 5. Solving Secure Email’s “Grand Challenge” with Signature-Only Email

-----BEGIN PRIVACY-ENHANCED MESSAGE-----
Proc-Type: 2001,MIC-CLEAR
Originator-Name: webmaster@www.sec.gov
Originator-Key-Asymmetric:

MFgwCgYEVQgBAQICAf8DSgAwRwJAW2sNKK9AVtBzYZmr6aGjlWyK3XmZv3dTINen
TWSM7vrzLADbmYQaionwg5sDW3P6oaM5D3tdezXMm7z1T+B+twIDAQAB

MIC-Info: RSA-MD5,RSA,
N/b/YvtZdAE9Ma0DU/mXMwY6k3JQN758Jjw/8SMxE2aaNlK162fpRCXb87vh2iyc
pIubpr9XbWLgNCspiCPkCA==

<SEC-DOCUMENT>0001104659-04-035210.txt : 20041112
<SEC-HEADER>0001104659-04-035210.hdr.sgml : 20041111
<ACCEPTANCE-DATETIME>20041112073405
ACCESSION NUMBER: 0001104659-04-035210
CONFORMED SUBMISSION TYPE: 4
PUBLIC DOCUMENT COUNT: 1
CONFORMED PERIOD OF REPORT: 20041110
FILED AS OF DATE: 20041112
DATE AS OF CHANGE: 20041112

...

<postTransactionAmounts>
<sharesOwnedFollowingTransaction>

<value>930000</value>
</sharesOwnedFollowingTransaction>

</postTransactionAmounts>
...

<ownerSignature>
<signatureName>James L. Barksdale</signatureName>
<signatureDate>2004-11-10</signatureDate>

</ownerSignature>
</ownershipDocument>

</XML>
</TEXT>
</DOCUMENT>
</SEC-DOCUMENT>
-----END PRIVACY-ENHANCED MESSAGE-----

Figure 5-1: An excerpt of SEC form 4, filed electronically with the United States Securities and Exchange Commission,
shows that the PEM format is still used today to sign XML-encoded filings. Complete form available online at http:
//www.sec.gov/Archives/edgar/data/1008699/000110465904035210/0001104659-04-035210.txt

http://www.sec.gov/Archives/edgar/data/1008699/000110465904035210/0001104659-04-035210.txt
http://www.sec.gov/Archives/edgar/data/1008699/000110465904035210/0001104659-04-035210.txt

5.1. BACKGROUND: THREE DECADES IN PURSUIT OF SECURE MESSAGING 167

GMail, Hotmail). On these systems, digitally signed S/MIME messages appear as ordinary mes-
sages with an additional attachment typically named smime.p7s . (S/MIME messages that are
sealed with encryption are naturally indecipherable on systems that do not support S/MIME.)

---xxx---
Content-Type: text/plain

This is a signed message.

To: simsong@acm.org
From: simsong@mit.edu
Subject: Message subjects are not signed, either
Content-Type: multipart/signed;
 boundary="---xxx---"

Message Header
(RFC 822)

Message Body

---xxx---
Content-Type: application/pkcs7-signature;
 name=smime.p7s
Content-Transfer-Encoding: base64

MIAGCSqGSIb3DQEHAqCAMIACAQExCzAJBgUrDgMCGgUAMI
AGCSqGSIb3DQEHAQAAoIIGQTCCAvowggJjoAMCAQICAw0E
2zANBgkqhkiG9w0BAQQFADBiMQswCQYDVQQGEwJaQTElMC
...
LjEsMCoGA1UEAxMjVGhhd3RlIFBlcnNvbmFsIEZyZWVt

---xxx---

S/MIME Signature
and Digital ID

(43 lines; not to scale)

Figure 5-2: A sample S/MIME-signed message

To: simsong@acm.org
From: simsong@mit.edu
Subject: Message subjects are not encrypted
Content-Type: application/pkcs7-mime;
 name=smime.p7m
Content-Disposition: attachment;
 filename=smime.p7m

Message Header
(RFC 822)

MIAGCSqGSIb3DQEHA6CAMIACAQAxggGFMIIBgQIBADBpMG
IxCzAJBgNVBAYTAlpBMSUwIwYDVQQKExxUaGF3dGUgQ29u
c3VsdGluZyAoUHR5KSBMdGQuMSwwKgYDVQQDEyNUaGF3dG
UgUGVyc29uYWwgRnJlZW1haWwgSXNzdWluZyBDQQIDDQTb
MA0GCSqGSIb3DQEBAQUABIIBALdHEexS9RbvmCo5G0nWZ4
HaQSCzgDDljjgvW7+4M0iPkuec+XE1nn4p5x+++2C0gReY
XvGC3ZEKgPsgFoQPGr0YXKHh3AHc1FN5DABcyVFwtc9xlq
VwZHNXJd24ltAq0V0oiX8rmJK1t3sn1haWwgSXNzdWluZy
BDQQIDDQTbMA0GCSqGSIb3DQEBAQUABIIBALdHEexS9Rbv
mCo5G0nWZ4HaQSCzgDDljjgvW7+4M0iPkuec+XE1nn4p5x
+++2C0gReYXvGC3ZEKgPsgFoQPGr0YXKHh3AHc1FN5DABc
yVFwtc9xlqVwZHNXJd24ltAq0V0oiX8rmJK1t3sns8UjjX
1dt2g+JZx9wMCZkKsu3b+6OOup4WGHYE6NxLLGzJWc6yTh
graizs4KUS8ujBm9rTIqc4VZ1+kJeKWbCC0UEuMZdcOgCU
vpCZkPr5C1XYuIDy6JWYjF2HaEUj7ecu12DB4u1oYljtVF
...
fLQRouON1ia2p5fTP6FqFNnjnTOIJNzPqwMmaV7jT2T98D
2mBAhklyg9h/6e4gAAAAAAAAAAAAAAAAAAAAAAAAAAAAA=

S/MIME Message
Encrypted MIME

(75 lines; not to scale)

Figure 5-3: A sample S/MIME-sealed message

Pretty Good Privacy (PGP)
In 1991 a programmer in Colorado named Phil Zimmermann released PGP, a program that imple-
mented the basics of public key cryptography and key management.[Zim91b, Zim91c]

Although PGP was technically a proprietary encryption system, the fact that it was distributed in
source-code form made it possible for others to experiment with the system’s algorithms, formats,
and underlying design as they would with a traditional reference implementation for a proposed
standard. The result of this experimentation was PGP 2, a workable encryption system that became
quite popular in some technical and academic communities.

Compared with S/MIME, PGP had the advantage that people could use it immediately: the freely
downloadable software contained a complete key management system that could be used to create
encryption keys, have keys verified by third-parties, and both sign and seal messages. What’s more,
PGP worked equally well with keys that weren’t certified: the program simply printed a warning
message. (In principle S/MIME can also be used with keys that are not certified, but this mode of
operation was never encouraged by the makers of S/MIME software. We shall return to this issue
in Chapter 6.)

Despite its initial appeal, PGP 2 did not gain widespread acceptance. Commonly cited reasons
at the time were that PGP was difficult to centrally manage, PGP did not come with licenses for
the patented public key technology that it employed, and PGP was a separate program that did
not transparently interoperate with existing email systems. Some of these objections were over-
come with the introduction of commercial PGP version in 1997 that included all necessary patent
licenses and plug-ins that let PGP interoperate with popular email systems such as Microsoft Out-
look and Eudora. PGP message formats were eventually standardized by RFCs 1991, 2015 and

168 CHAPTER 5. Solving Secure Email’s “Grand Challenge” with Signature-Only Email

2440. [ASZ96, Elk96, CDFT98] Nevertheless, by all accounts PGP has failed to gain widespread
penetration.

5.1.3 S/MIME usability today
Modern S/MIME clients address many of the usability errors that Whitten and Tygar identified in
PGP 5.0:

• Whereas PGP 5.0 supported two incompatible key types, forcing users to manually determine
which kind of key to use for which kind of recipient, S/MIME supports but one key type and
has a mandatory set of required encryption algorithms.

• Whereas message unsealing with PGP 5.0 was manual, unsealing with Outlook Express and
similar programs is automatic: if the mail client receives a sealed message and the client
possesses the matching private key, the message is unsealed.

• Many modern programs have buttons labeled “Encrypt” and “Sign” clearly indicated in the
window that is used to compose and send new messages. (Figure 5-4). To digitally sign a
message, the user only needs to click the button labeled “sign.” Likewise, to seal a message
for a recipient, only the “encrypt” button need be clicked.

• The S/MIME standard even automates a rudimentary form of key distribution: when a digi-
tally signed message is sent, that message comes with a copy of public key certificate that can
be used to verify the message. This certificate is automatically copied from the message into
the user’s address book, allowing the recipient of a signed message to respond with a sealed
one simply by hitting the “reply” button, should the recipient wish to do so.

To make use of these features, it is necessary for either the S/MIME sender, the recipient, or both
to create a public/private key pair and then to obtain an X.509v3 certificate for the public key that
has the appropriate S/MIME extensions. Such a certificate is commonly called a Digital ID.2

For example, if an Outlook Express user wishes to send a piece of digitally signed mail and simply
clicks the “Sign” button, then tries to send the message, a pop-up window appears informing the
user that she must first obtain a Digital ID before a signed message can be sent (Figure 5-5). Trying
to send a message that is sealed with encryption to a recipient for whom there is no Digital ID on
file in the sender’s OE6 Address Book generates a similar warning, this time giving the user a choice
between aborting the send or sending the message without encryption (Figure 5-6).

Thus, it seems that modern S/MIME systems have simply replaced the difficulty in using the soft-
ware (identified by Whitten and Tygar [WT99]) with the difficult of obtaining a Digital ID. Issues
surrounding the difficulty of obtaining S/MIME certificates, and possible solutions, are discussed in
Chapter 6.

2John C. Brezina applied for the service mark Digital ID on September 30, 1991 and abandoned on July 15,
1992. [Joh91]; VeriSign applied for Digital ID as a service mark on September 3, 1996 but abandoned the applica-
tion on September 23, 1997. [Ver96] It thus appears that the term Digital ID can be used without risk of trademark
infringement, at least in the United States.

5.1. BACKGROUND: THREE DECADES IN PURSUIT OF SECURE MESSAGING 169

Figure 5-4: The toolbar of Outlook Express 6 allows messages to be signed or sealed (“Encrypted”) simply by clicking
a button. The little certificate icon to the right of the “From:” field indicates that the message will be signed, while the
little padlock icon next to the “To:” field indicates that the message will be sealed for the recipient. Lotus Notes, Mozilla
Thunderbird, and Apple Mail have similar provisions for sending mail that is signed and/or sealed

5.1.4 Closed systems: high usability in small communities
It is important to note that a variety of systems have been created and deployed that allow even rel-
atively unsophisticated users to send and receive email with many cryptographic protections. These
systems are typically integrated solutions in which keys are automatically created and distributed
whenever new accounts are added by the system’s manager.

Examples of the such systems include Notes [Zur05b], Groove,[MBA05] and HushMail[Hus05].
Zurko states that there are more than 100 million Lotus Notes users, indicating that such systems
can be used by very large user populations—although these users exist in separate certification hi-
erarchies. Another factor simplifying Notes deployment is that the users of Notes systems generally
have pre-existing relationships with the organizations using Notes—most often they are employees
and have already had their identities certified. This is a prime example of the LEVERAGE EXISTING

IDENTIFICATION pattern.

HushMail uses the OpenPGP standard RFC 2240, demonstrating that the IETF standards can be
used in a manner that is both secure and usable in webmail systems. Alternatively, existing stan-
dards can be implemented with a proxy between the user’s mail client and the mail server that
automatically and transparently encrypts mail as it is sent and decrypts mail as it is received.
[BS99, Gar03b, Per03, Rot05] Appendix D on page 413 describes one such proxy, Stream. Some
of these systems use existing keys and certificates, while others generate and distribute keys and
certificates as needed. But despite the technical appeal of such solutions, their existence has not
made secure email commonplace.

170 CHAPTER 5. Solving Secure Email’s “Grand Challenge” with Signature-Only Email

Figure 5-5: This warning appears if an OE6
user attempts to send a signed message and
there is no Digital ID on file for the sender.

Figure 5-6: This warning appears if an OE6 user attempts to send
a sealed message and there is no Digital ID for the recipient in the
sender’s Address Book

5.2 A Survey of Secure Email Capabilities and Attitudes
Section 5.1 argued that two decades of effort has resulted in the widespread deployment of email
encryption software and the use of that software in closed communities. It also showed that digi-
tally signed but unsealed messages have a lower hurdle to adoption than mail that is both signed
and sealed. But is the software really on people’s desktops? And is signing enough?

This section discusses some results of a survey conducted in August 2004 of merchants in the US
and Europe who were selling items on the Amazon.com web site. The survey appears to be the
first reported in the open literature to examine the impact of receiving digitally signed messages on
knowledge of and attitudes towards secure email. Results of the survey have been previously re-
ported in [GSN+05] and [GNM+05]; only the results of the survey that are critical to the justifying
this dissertation’s arguments are presented here. Additional survey results appear in Appendix B.

5.2.1 Prior Work on Security Attitudes and Email Usage
There are few published studies that directly discuss popular attitudes towards encryption or
other security technologies for achieving security or privacy. One is the 10th GVU WWW User
Survey[GVU99], which found that a majority of respondents described themselves very (52.8%) or
somewhat (26.7%) concerned about security. When asked what is “the most important issue facing
the Internet,” the answer most frequently selected by GVU’s respondents was “privacy” (19.1%);
“security of e-commerce” ranked 8th, garnering just 5% of the votes. That study was conducted six
years ago and attitudes have probably changed in the intervening time.

There are also remarkably few publicly available studies that track the adoption rates and relative
market share of email clients. One source cited by Garrett is Jupitermedia’s Clickz Stats. [Gar04c]
The percentages from Clickz Stats reported in Garrett’s article are reprinted in Figure 5-7; neither
Clickz Stats nor Jupitermedia responded to repeated requests for additional information.

5.2. A SURVEY OF SECURE EMAIL CAPABILITIES AND ATTITUDES 171

S/MIME
Email Client Percentage Enabled?

Microsoft Outlook 39.14 % ✔

Hotmail 25.82 %
Microsoft Outlook Express 25.20 % ✔

Yahoo! Mail 19.67 %
Other 19.06 % ?
Lotus Notes 6.35 % ✔

Netscape 5.33 % ✔∗

AOL 7.0 4.92 %
Eudora 4.30 %
Unix Command-Line Based 1.43 %
AOL 6.0 0.61 %
AOL 5.0 0.61 %
Juno 0.61 %
AOL 4.0 or lower 0 %

Figure 5-7: According to the market research firm Clickz Stats, part of Jupitermedia, more than half of the users that
they queried have the ability to receive S/MIME-signed mail. (Users were asked “Which of these email clients do you
use at work?” and were allowed to select more than one client from the list.) Because multiple selection was permitted
and Clickz Stats has not provided access to the raw data, the overall percentage of users who had S/MIME-enabled
clients cannot be determined. ∗Note that the answer “Netscape” is ambiguous, since Netscape Communicator supports
S/MIME, but Netscape’s webmail service does not. In all probability, the respondents were indicating that they were
using Netscape Communicator on their desktop.[Gar04c]

5.2.2 Genesis of the survey
EU Directive 99/93/EU calls for the use of advanced electronic signatures for certain kinds of elec-
tronic messages. “Advanced electronic signatures” are generally taken to mean digital signatures,
signed with a private key, that permits the recipient to determine whether or not the contents of
the document were modified after the document was sent.3

Amazon Services Europe S.à r.l. started sending signed electronic Value Added Tax (VAT) invoices
to each of its Amazon Marketplace, Auctions, and zShops sellers in June 2003. Amazon’s signatures
were S/MIME digital signatures certified by a VeriSign Class 1 Digital ID. At the time, Amazon did
not send digitally signed messages to its sellers operating in America, Asia, and other geographic
regions.

Because a substantial number of Amazon’s sellers had been receiving digitally signed messages, the
decision was made to survey them to determine if the sellers had been able to verify the signatures.
By comparing the merchants who had received the digitally signed messages with those who had
not, we also hoped to see if the act of receiving the messages had any discernible on the sellers’
attitudes, or knowledge of cryptographic.

3Bohm et al. argue that Directive 1999/93/EC’s requirements on “advanced electronic signatures” cannot be fulfilled
because requirement 2(c) is for a signature that “is created using means that the signatory can maintain under his sole
control.” “We have concluded that neither PCs nor smartcards nor biometrics nor any methods currently available or
likely to be available in the near future can enable a user to keep a signature key secure; and it follows in our view that
condition 2(c) cannot be fulfilled, and that no advanced electronic signatures can be made.”[BBG00]

172 CHAPTER 5. Solving Secure Email’s “Grand Challenge” with Signature-Only Email

“What’s your highest level of education?” ALL Europe US Savvy Green
Some high school 2% 4% 1% 4% ∗ 1% ∗

Completed high school 7% 16% ∗∗ 5% ∗∗ 8% 7%
Some college 30% 27% 31% 31% 29%
College degree 35% 30% 36% 27% ∗ 39% ∗

Advanced degree 26% 23% 27% 29% 25%
Total Respondents 410 74 336 137 273
No Response (7) (1) (6) (1) (6)

∗p < .05; ∗∗p < .01;
Table 5.1: Respondents were asked “What’s your highest level of education:”

Digital signatures ensure the integrity of email, but did the recipients of the signed email think
that such messages were more trustworthy or more likely to be truthful than messages that were
not digitally signed? Did the sellers even know what a digital-signature was? How did receiving
these signatures change the seller’s opinion of Amazon? And to what other purposes did the sellers
think digital certification should be applied? These were the questions that the mail security survey
sought to answer.

5.2.3 Survey methodology
The survey consisted of 40 questions on 5 web pages. Respondents were recruited through a set
of notices placed by Amazon employees in a variety of Amazon Seller’s Forums. Participation was
voluntary and all respondents were anonymous. Respondents from Europe and The United States
were distinguished through the use of different URLs.4 A cookie deposited on the respondent’s web
browser prevented the same respondent from easily filling out the survey multiple times.

A total of 1083 respondents clicked on the link that was posted in the Amazon forums in August
2004. Of these, 469 submitted the first web page, and 417 completed all five pages.

Respondent demographics
The average age of respondents was 41.5. Of the 411 who answered the question, 53.5% identified
themselves as female, 42.6% as male, and 3.9% chose “Declined to answer.” The sample was highly
educated, with more than half claiming to have an advanced degree (26.1%) or a college degree
(34.9%), and another 30.0% claiming some college education. More than three quarters described
themselves as “very sophisticated” (18.0%) or “comfortable” (63.7%) at using computers and the
Internet. Roughly half of the respondents had obtained their first email account in the 1990s, with
one quarter getting their accounts before 1990 and one quarter getting their accounts after 1999.

When asked to rate their “understanding of encryption and digital signatures” on a 5 point scale,
where 1 was “very good” and 5 was “none,” the average response was 3.6, but the spread was
large, indicating that respondents had a wide range of familiarity with the topic. (Table 5.2)

4This recruitment strategy may represent a methodological flaw in the survey: we should have explicitly asked
respondents which country they were in. From reading the comments, however, it appears that the select based on
source URL was accurate in distinguishing those from Europe and Great Britain from those in the US.

5.2. A SURVEY OF SECURE EMAIL CAPABILITIES AND ATTITUDES 173

Very
Good None
“1” “2” “3” “4” “5”

5.1% 11.6% 24.6% 31.4% 27.3%
(23) (53) (112) (143) (124)

N = 455

Table 5.2: When asked “On a scale of 1 to 5, where 1 is ”very good” and 5 is ”none,” please rate your understanding of
encryption and digital signatures,” respondents indicated that they had a broad range of familiarity with the topic.

5.2.4 Awareness of cryptographic capabilities
It is important to know both how many of email recipients can verify digitally signed mail and also
how many recipients are aware that they posses this capability. Our theory was that most had this
capability but were not aware of it—thus, any survey of mail respondents asking them if they could
receive signed mail would likely yield incorrect results. The survey confirmed this hypothesis.

Overall, the majority of survey respondents were either not aware of the cryptographic capabilities
of their email programs (59%) or unaware what was meant by the phrase “encryption” (9%).
(Table 5.3) By asking the respondents “Which computer programs do you use to read your email?
Check all that apply,” we were able to determine that approximately 81% of the respondents were
reading their email with programs that supported the S/MIME encryption standard. (Table 5.4)

Performing a cross-tabulation analysis between these two questions, we found that users of S/MIME-
enabled programs were generally more aware of the cryptographic capabilities of their software
that users who were not (p < .001). Those results are also presented in Table 5.3.

Awareness of digitally signed mail
Not surprisingly, the respondent’s lack of familiarity with the cryptographic capabilities of their
software was matched by their unawareness as to whether the capabilities had been used or not.

To perform this analysis, we divided our sample according to whether they accessed the survey from
the URL that was posted to the Amazon forums frequented by European sellers or those accessed by
American sellers. We call these groups Europe, with 93 respondents, and US, with 376 respondents.

Recall that Amazon had been sending sellers in the Europe group digitally signed email since June
2003, while those in the US group have never been sent digitally signed email from Amazon.
Reportedly a few recipients of digitally signed messages had sent messages back to Amazon ex-
claiming “what is this smime.p7s attachment? I can’t read it!” But the vast majority of them did
not comment at all with regards to the digitally signed messages.

As shown in Table 5.5, only a third of the Europe merchants who had received a digitally signed
message from Amazon were aware of the fact. As expected, the number is higher than the 20%
of those in the US group who said that they had received mail that was signed—what’s surprising
here is that the US number is so high. An interesting follow-up that we neglected to ask would
have been a free-response question asking the respondents to describe the digitally signed message
that they had received. This is an opportunity for further research.

174 CHAPTER 5. Solving Secure Email’s “Grand Challenge” with Signature-Only Email

S/MIME-enabled
ALL yes no

Yes 27% 34%∗∗∗ 14%∗∗∗

No 5% 5% 5%
I don’t know 59% 54%∗ 66%∗

What’s encryption? 9% 7%∗∗ 14%∗∗

Total Respondents 446 291 155
No Response (8) (1) (7)

∗p < .05; ∗∗p < .01; ∗∗∗p < .001;

Table 5.3: Despite the fact that merchants had the ability
to handle S/MIME-signed or sealed mail, most were not
aware of this fact. (Answers to the question “Does your
email client handle encryption?”[GNM+05])

S/MIME
Mail Client Enabled ?

Outlook Express 41.8 % ✔
Outlook 30.6 % ✔
AOL 17.9 %
Netscape 10.1 % ✔
Eudora 6.9 %
Mozilla Mail 3.2 % ✔
Apple Mail 2.5 % ✔
Lotus Notes 2.1 % ✔
Evolution 0.9 % ✔

Any S/MIME capable program 81.1% ✔

Total Respondents 435
No Response (19)

Table 5.4: According to the Amazon.com mail security
survey, more than three-quarters of respondents have
the ability to verify S/MIME-signed mail. (Amazon.com
merchant responses to the question “Which computer
programs do you use to read your email? Check all that
apply.”[GNM+05])

More curious is that 16% of those in Europe said that they had received mail that had been “sealed
with encryption.” What encryption system were these merchants using to receive the encrypted
mail? Was it webmail over an SSL-enabled web site, or had they received password-protected
Adobe Acrobat files, or did these merchants think that the signed mail from Amazon was in fact
sealed? We neglected to ask. This is also an opportunity for further research.

Clues for answering these questions can be found in the free-format comments that our respondents
were invited to write at the bottom of every page. Respondent 30130 appeared to believe that by
“encrypted” we were in fact asking if they had used email or messaging at a secure site: “I believe
encrypted means a secure site?” (30130, Europe)5

But some respondents clearly had some kind of experience or knowledge of cryptography:

Your survey did not address the fact that any email containing credit card information
should be encrypted. We get emails from customers almost every day with card numbers
with orders, rather than using our secure systems on our sales sites. It is more common
than I would ever have believed. (30142, US)

I use TurnPike, which is supplied with PGP preconfigured for signing and encryption.... But
in the several years since I have installed it, I have never used it for encrypting email, or

5When specific comments from respondents are quoted, the values in the parenthesis indicates the subject’s unique
identifier—a five-digit number beginning with a “3”—and the word “Europe” or “US” to indicate if the respnodent
entered the survey through the URL posted to the European Seller’s forum or the US Seller’s forum.

5.2. A SURVEY OF SECURE EMAIL CAPABILITIES AND ATTITUDES 175

“What kinds of email have you received? Please check all that apply:” ALL Europe US
Email that was digitally signed 22% 33%∗∗ 20%∗∗

Email that was sealed with encryption so that only I could read it. 9% 16%∗ 7%∗

Email that was both signed and sealed. 7% 10% 6%
I do not think that I have received messages that were signed or sealed. 37% 30% 39%
I have not received messages that were signed or sealed. 21% 23% 20%
I’m sorry, I don’t understand what you mean by “signed,” “sealed” and “en-
crypted”.

26% 17%∗ 28%∗

Total Respondents 455 88 367
No Response (15) (5) (9)

∗p < .05; ∗∗p < .01;
Table 5.5: Asked what kinds of email they had received, many respondents in the survey thought that they had received
mail that was signed, sealed, or both.[GSN+05]

sending signed email. I have received and verified signed email from my ISP. I have never
received signed email from any other source. (30468, Europe)

use dig. signature + encryption at work only (30498, Europe)

I liked PGP a lot, but hardly anybody seems to be using it... (30504, Europe)

I would use encryption more if more of my friends did. Normally I think it’s secure etc but
I bet the government somehow has a back door (30649, US)

Encryption is only as useful as the ability of the sender and receiver being able to access,
use, and decipher it. PGP is great unless you have users that are unable to use it without
more hassles or inconvience. Secruity is an issue best left to the receiver’s needs in my
opinion, not the sender in 99% of internet situations.(30899, US)

I played around w/Pretty Good Privacy program a long time ago, but no one I knew used
it. I would love to be able to keep snoops out. I am also concerned with privacy issues due
to “Homeland Security”, and feel that the government has misused it’s power in the past,
and is likely to do so in the future. (30909, US)

Would love to, but had trouble quickly understanding PGP - too busy to learn at length.
(30938, US)

5.2.5 Segmenting the respondents
In the previous section we examined the impact that having previously received digitally signed
mail might have had on our respondents. In the process, we saw that respondents have considerable
breadth of background when it came to self-reported experience with cryptography.

To see if background might impact views, we decided to examine a second partitioning of re-
spondents into two new groups: Savvy, those who indicated that they had some familiarity with
cryptography, and Green, those who did not.

176 CHAPTER 5. Solving Secure Email’s “Grand Challenge” with Signature-Only Email

A respondent was put into the Savvy group if any of the following conditions were true:

• The respondent answered 1 (“very good”) or 2 when asked to rate their “understanding of
encryption and digital signatures” on a 5-point scale (with 5 listed as “none”)—23 and 53
respondents, respectively;6

• The respondent indicated that he or she had received a digitally signed message (104 respon-
dents);

• The respondent indicated that he or she had received a message that was sealed with encryp-
tion (39 respondents);

• The respondent said they “always,” or “sometimes,” send digitally signed messages (29 re-
spondents);

We did not include the 4 respondents who said that they “always” send email that is sealed for the
recipient in the Savvy group, assuming that these individuals had misunderstood the question.

A total of 148 respondents met one or more of the Savvy criteria. Those 321 respondents not in the
Savvy group were put in a second group called Green.

Thus, the Europe/US division measures the impact on attitudes given the actual experience in
receiving digitally signed mail from Amazon, while the Savvy/Green division measures the impact
of people’s stated knowledge of or experience with both digital signatures and message sealing.

As before, the results of partitioning the respondents into two groups was deemed to be statistically
significant if a logistic regression based on a Chi-Square test yielded a confidence level of p = 0.05
for the particular response in question.

We performed analysis in terms of education for both partitionings. Overall, both the Europe and
Savvy groups were younger (age = 36.2 vs. 42.7 years) and less educated (see Table 5.1) than their
US and Green counterparts—differences that were statistically significant, although perhaps not
very relevant.

5.2.6 Appropriate uses of signing and sealing
Some cryptography enthusiasts have argued that encryption should be easy-to-use and ubiquitous—
and that virtually all digital messages should be sealed, at least, and probably signed with anony-
mous or self-signed keys.[Hug93]

Our respondents felt otherwise. In a series of questions aimed at determining what kinds of email
messages they thought should receive protection, respondents indicated that matters involving
money or government were worthy of protection, while personal email messages generally were
not.7

6We asked our segmenting questions before defining terms such as encryption and digital signature. Although this
decision resulted in some criticism from respondents, we wanted to select those in the Savvy based on their familiarity
with the terminology of public key cryptography (e.g. “digitally sign,” “encrypt”), rather than the underlying concepts,
since user interfaces generally present the terminology without explanation.

7Specifically, 35% of all respondents thought that personal email sent or received at work did not require any protec-
tion, although 10% agreed with the statement that personal email “should never be sent or received at work.” At home,
51% thought that personal email did not need any cryptographic protection.

5.2. A SURVEY OF SECURE EMAIL CAPABILITIES AND ATTITUDES 177

E-commerce related email:
Bank or credit-card statements 65%
Receipts from online merchants 59%
Questions to online merchants 33%

Savvy* 26%
Green* 36%

Advertisements 17%

General Email:
Tax returns or complaints to regulators 74%
Personal mail sent or received at work 40%
Personal mail sent or received at home 40%
Mail to political leaders voicing opinion 38%
Newsletters from politicians 22%

∗p < .05
Figure 5-8: Percentage of respondents in the August 2004 Mail Security Survey who thought a particular kind of email
required the use of digital signatures, by mail type. Most respondents thought that digital signatures should be used for
financial statements, receipts from online merchants, and official correspondence to government agencies sent through
email. No statistically significant differences were seen between the Europe and US groups, or between the Savvy and
Green groups, except where noted.

Surprisingly, when summary statistics alone were considered, no statistically significant difference
was seen in the answers of those in the Europe and US groups with respect to the appropriateness
of digitally signing email. Only statistically significant difference was seen between the Savvy and
the Green groups: roughly 40% more Green people thought that questions to online merchants
should be digitally signed than Savvy people. Apparently, familiarity with the technology made
these respondents think that the technology was less important to use in this application.

Summary results of all email appropriateness questions are shown in Figure 5-8.

5.2.7 Why don’t people use email security?
Despite the fact that the majority of respondents thought that security should be used, it appears
that very few of them actually use the technology. The evidence for this claim is drawn from the
first page of the survey, in which we asked our users whether or not they send email that is digitally
signed or sealed with encryption. These results are presented in Tables 5.6 and 5.7, respectively. It
turns out that very few (33 out of 470) of our respondents indicated that they digitally signed or
sealed their mail “sometimes” or “always.”

Although roughly half of our respondents indicated that they didn’t use cryptography because they
didn’t know how, the free-response answers from the more knowledgeable respondents indicated
that they either didn’t think that encryption was necessary or else that the effort, if made, would
be wasted.

I don’t because I don’t care. (30154, US)

178 CHAPTER 5. Solving Secure Email’s “Grand Challenge” with Signature-Only Email

Survey Response (multiple selections allowed)
I always send email that is sealed for the recipient. 0.9%
I sometimes send email that is sealed. 3.5%
I rarely send email that is sealed because it is not necessary for the kind of mail that I
send.

16.7%

I rarely send email that is sealed because I just don’t care. 7.9%
I don’t send email that is sealed because it is too hard to do. 5.7%
I don’t send email that is sealed because I don’t know how. 41.0%
I don’t send email that is sealed because I am worried that the recipient won’t be able to
read it.

14.3%

I’m sorry, but I don’t understand what you mean by “sealed” or “encrypted”. 22.0%
Other 3.3%

Total Respondents 454
No Response (16)

Table 5.6: “Do you send email that is sealed with encryption so that it can only be read by the recipient? Please check
all that apply.”

Survey Response (choose one)
I always send my email digitally signed. 2.2%
I sometimes send email that is digitally signed. 4.2%
I rarely send email that is signed because it is not necessary for the kind of mail that I
send.

19.2%

I usually don’t because I don’t care enough to sign my email. 9.9%
I don’t ever send email that is digitally signed because I don’t know how. 44.8%
I’m sorry, but I don’t understand what you mean by “digitally signed.” 24.1%
Other 3.8%

Total Respondents 453
No Response (17)

Table 5.7: “Do you send digitally signed mail? Please check all that apply.”

I doubt any of my usual recipients would understand the significance of the signature.
(30468, Europe)

Never had the need to send these kinds of emails. (30391, US)

I don’t think it’s necessary to encrypt my email & frankly it’s just another step & something
else I don’t have time for! (30220, US)

These statistics and free-form comments are particularly significant in light of the fact that 25.2%
of our respondents thought that receipts sent by online merchants should be digitally signed, while
33.6% thought that they should both be signed and sealed![GSN+05] Remember, all respondents
are themselves Amazon.com online merchants!

5.2. A SURVEY OF SECURE EMAIL CAPABILITIES AND ATTITUDES 179

5.2.8 Signature interfaces and metaphors
As the S/MIME RFCs are silent as to how the presence of a valid digital signature should be dis-
played, different programs employ visible indications, as shown in Figures 5-10 and 5-13.

We asked our respondents how they would like their email programs to indicate that a message
has a valid digital signature. Roughly equal numbers (44% vs. 41%) said that they would like the
one-line of text added to the header interface (as shown in Figure 5-13) as a ribbon or certificate
that is shown when the message is displayed in a list (as shown in Figure 5-10). Roughly a quarter
(24%) agreed with the statement that they “would like to see a signature at the bottom of the
message, as if it was signed in ink.” Users of encryption favored the ink metaphor to non-users,
31% to 22%, a statistically significant difference (p < .05).

We also asked what respondents thought a “good description” of a digitally signed message would
be. Respondents could chose one of five choices or provide their own answer; a plurality of re-
spondents (37.3%) agreed that a digital signature is “like signing your name at the bottom of a
message.” Next were the 30.7% who believed that a signature is “like putting your fingerprint at
the bottom of a message,” followed by the 27.5% who agreed that a signature was “like having the
message notarized,” No statistically significant differences were seen between users and non-users,
although we did see statistically significant differences the Europe and US samples, with more Eu-
ropeans (43% vs. 28%) preferring the fingerprint metaphor, and more Americans (30% vs. 15%)
prefering the notarized metaphor.

Our analysis of the metaphor question indicates that users don’t have strong metaphors or analogies
for what it means to digitally sign mail. This may be a reflection of the fact that the technology
itself is somewhat ambiguous, providing both integrity protection and sender identification. What is
frequently left unresolved, in both user interfaces and documentation, is whether or not sending
digitally signed mail is meant to convey some form of intentionality as well. This confusion is
mirrored in the offline world. For example, to have a document notarized in the United States
merely means that the signature on the document was witnessed by a commissioned officer of
the state; it is no guarantee of the veracity of the document’s contents. Nevertheless, the idea
that notarized documents are somehow more trustworthy is a misconception that is commonly
presented in American media. In fact, notarized documents are not more likely to be truthful—and
neither are messages that are digitally signed.

5.2.9 Free-format responses
Our survey contained many places where respondents could give free-format responses. Many
wrote that they wished they knew more about email security. For example:

I wish I knew more about digitally signed and sealed encrypted e-mail, and I wish informa-
tion were more generally available and presented in a manner that is clear to those who
aren’t computer scientists or engineers. (30346, US)

This is an interesting topic... I had not thought about the need to send/receive signed or
sealed e-mail for other than tax info. (30391, US)

Others do not understand cryptography and do not want to learn:

180 CHAPTER 5. Solving Secure Email’s “Grand Challenge” with Signature-Only Email

Most sellers do not care about digital signatures when selling on on-line marketplaces unless
they are dealing in big sums of money in the transaction, even then I still do not care.
(30014, US)

I think it’s a good idea, but I’m lazy and it’s too much trouble to bother with. (30154, US)

It still seems too complicated for ordinary home-based computer users. More and more
encryption and other safeguards seem increasingly necessary. However, the technology still
has some wrinkles to iron out in making it more user-friendly. (30076, US)

I would be somewhat scared to use encryption as I often forget passcodes now and would
most likely lose the “key” (30222, US)

These comments, and many others, reinforce our belief that the usability standards for a success-
fully deployed email security system must be extraordinarily high. It is not enough for systems to
be easily learned or used, as Whitten argues. [Whi04a] Security information should be conveyed
passively, providing more detailed information on demand, but should not otherwise impact on
standard operations.

Spam, viruses and phishing
Many respondents used the free-format response sections to complain about spam, viruses, and
phishing—sometimes to the point of chastising us for not working on these problems:

I hope this [survey] will help to stop the viruses, spam, spyware and hijackers all too
prevalent on the web. (30029, US)

[I] feel the topic is somehow “phony” because of the way viruses are transmitted by email.
I’m more concerned with attacks by future NIMDAs8 than I am with sending or receiving
signed email. (30281, US)

Digital signatures would cut down on SPAM and the Nigerian scams. Moreover, encryption
would protect receipts, credit card card and billing statements, as well as those from banks.
(30082, US)

I have received many “phishing” e-mails through the years. Although I always forward
them to the appropriate authorities, I worry about others who may fall prey to them. I
think digital signing would be a way to help the problem, but I don’t think it would end
the problem. There are still far too many people who will willingly give their banking
information to “Nigerian Officials” or other scammers. (30265, US)

Several respondents noted that there is little need to send sealed email, since such messages can
be sent securely using feedback forms on SSL-encrypted web sites.

8W32/Nimda was an email worm that was released in September 2001 and affected large parts of the
Internet.[CER01]

5.2. A SURVEY OF SECURE EMAIL CAPABILITIES AND ATTITUDES 181

5.2.10 Survey conclusions
We surveyed hundreds of people actively involved in the business of e-commerce as to their views
on and experience with digitally signed email. Although they had not received prior notification of
the fact, some of these individuals had been receiving digitally signed email for more than a year.
To the best of our knowledge this is the first survey of its kind.

It is widely believed that people will not use cryptographic techniques to protect email unless it is
extraordinarily easy to use. We showed that even relatively unsophisticated computer users who
do not send digitally signed mail nevertheless believe that it should be used to protect the email
that they themselves are sending (and to a lesser extent, receiving as well).

We found that the majority (58.5%) of respondents did not know whether or not the program
that they used to read their mail handled encryption, even though the vast majority (81.1%) use
such mail clients. Given this case, companies that survey their customers as to whether or not the
customers have encryption-capable mail readers are likely to yield erroneous results.

We learned that digitally signed mail tends to increase the recipient’s trust in the email infras-
tructure. We learned that despite more than a decade of confusion over multiple standards for
secure email, there are now few if any usability barriers to receiving mail that’s digitally signed
with S/MIME signatures using established CAs.

Finally, we found that people with no obvious interest in selling or otherwise promoting cryp-
tographic technology believe that many email messages sent today without protection should be
either digitally signed, sealed with encryption, or both.

5.2.11 Future work
Comments from merchants make it clear that there are many opportunities for future survey work
to document needs and current business practices:

The concepts of digital signing & encryption for email new to me. Glad your working to
give the bad guys a harder time. Shame we need it. Would it stop spam? Need simple info
& guidelines for learners like me. I get confused by computer jargon, glad this survey did
not use it. (31085, Europe)

I receive digitally signed email only from a couple people, and it’s mostly annoying and
time-wasting, and I’m not sure those aren’t using it because they don’t know how to turn it
off. I’m sure these applications are useful to particular businesses, but I’m not aware that
they affect most computer users at all. (30642, US)

Although the Pew Internet Life Project[PEW05] has done numerous surveys on Internet use and
opinions, the project has not addressed specifics of security technology to the extent that we have.
A follow-up survey that looks specifically at the need, use and acceptance of security technology
would be helpful. Such work could be done with Pew, as the organization has significant research
and methodological tools that are unavailable to individual researchers.

182 CHAPTER 5. Solving Secure Email’s “Grand Challenge” with Signature-Only Email

5.3 Signatures Without Sealing
Given the acknowledged difficulties that have been encountered in trying to deploy secure mail that
provides both signing and sealing for every message, it seems reasonable to instead shoot for an
attainable intermediate goal. Once such goal would be for organizations sending large quantities of
automated or do-not-reply email to simply commit that this mail be sent with S/MIME signatures.

“Automated email” is a large category of electronic messages that are automatically generated, usu-
ally in the course of an e-commerce transaction, but which are intended to be read by an individual.
Do-not-reply mail is mail that is sent out by a sender with an explicit note telling recipients some-
thing to the effect of “do not reply do this message.” Examples of such messages includes auction
bid confirmations, messages from payment providers, routine messages from credit-card companies
and advertisements.

Although digital signatures do not protect the contents of an email message from being intercepted
while that message is enroute, there are nevertheless many benefits that can be had from signing
alone:

• A digital signature on an advertisement allows the recipient to verify the sender of the mes-
sage and to know that the advertisement’s prices in the advertisement have not been inadver-
tently altered.

• A digital signature would allow the recipient to readily distinguish between a message that
was actually sent from the machine of the sender and one in which the sender’s From:
address was forged by a third-party. Many worms in the Klez family use this technique to
make it difficult to locate machines that they have infected. Although digital signatures do
not prevent an infected machine from sending out messages that are signed with a private
key that resides on the machine itself, such messages will point directly back to the infected
machine and make it easier to eradicate the infections.[Sym04]

• Digital signatures would complicate phishing attacks. Currently those engaged in phishing
can send out official-looking messages that claim to have a return address of something like
support@paypal.com . Although attackers could send out messages that are signed from
such a domain, they could not send out messages signed with the same key as official mes-
sages. Client-side software could distinguish messages signed with one key from messages
signed with another.

• By sending a message that is digitally signed, the sender would be giving the recipient the
option of responding to the message with a message that is digitally sealed by distributing
the sender’s Digital ID.

• A majority of the merchants who responded in our survey believe that it is appropriate for
invoices, bills, statements, and other kinds of financial e-mail to be signed.

• Sending out signed messages may convey the impression that the sending organization is
concerned about security issues and is employing technologically advanced measures to help
combat spam and phishing attacks.

If there are so many advantages to sending out email that is digitally signed, why aren’t organiza-
tions doing so? Three factors may be at work:

5.3. SIGNATURES WITHOUT SEALING 183

1. Institutional inertia.

2. A fear that the S/MIME signature may cause usability problems for some of the recipients.

3. A fear that the organization may be held to a higher legal standard for the content of signed
email than the content of email that is not signed. Such a belief may be bolstered by the
digital signature laws that were passed in the late 1990s.

The remainder of this section will examine the second and third points. The hope is that by re-
sponding to these criticisms, organizational inertia may be overcome in light of the advantages
offered by signed email.

5.3.1 Choosing a signature standard
Signed mail is something that cannot be sent in the abstract: email messages must be signed
using a specific signature standard with a specific private key. The corresponding public key can
be not certified at all, it can be self-certified, or it can be certified by a third-party. Any concrete
proposal for sending signed mail needs to clearly specify these parameters before it can be seriously
considered.

Complicating the decision of which signature standard to use is the fact that there are three differ-
ent signing standards currently in use:

1. PGP clear-signed signatures, in which the signature is placed in a text block at the bottom
of an ASCII text message (Figure 5-9).[Zim95] PGP’s clear signed signatures were adopted
early on by CERT for signing the organization’s bulletins. Although CERT has now largely
stopped the practice of sending out signed ASCII text messages, other organizations such as
the FreeBSD foundation continue to do so.

2. OpenPGP MIME, in which the message and the signature are sent as two separate MIME
parts in a single message.[ASZ96, Elk96] This message format is supported natively by the
Evolution mailers and by the PGP plug-ins.

3. S/MIME signed messages, in which the message and the signature are sent as two separate
MIME parts in a single message. This format is supported natively by all S/MIME-enabled
mailers.

In addition to these standard, PGP supports two other signature types: the PGP signed message
format, in which the signature and the signed message are bundled together in a single binary
archive; and the PGP detached signatures, in which the file being signed is left unmodified and the
signature is placed in a separate file. Although these PGP formats are widely used on the Internet
today for signing software distributions, they are not generally used for signing email messages.
Other message formats for signing messages includes PEM’s provisions for signed messages and
the failed S-HTTP standard[Sho95] for signing web pages. Lotus Notes has its own standard for
digitally signed messages, but these messages are converted to S/MIME when they are sent over
SMTP.

Unfortunately, the design of the OpenPGP and S/MIME formats appears to preclude signing a single
message with both signatures. This didn’t have to be the case—the designers of the OpenPGP
format could have made their implementation orthogonal to the message protection features in

184 CHAPTER 5. Solving Secure Email’s “Grand Challenge” with Signature-Only Email

-----BEGIN PGP SIGNED MESSAGE-----
Hash: SHA1

This is a message that will be signed
with PGP. It is a very simple message.

-----BEGIN PGP SIGNATURE-----
Version: PGP 6.5.8

iQA/AwUBQjOIL/KaG0LR8e7UEQIosACgus8rixeaxmaF/4dRSeiRlwBCc1YAoMbB
Ot+iT3LqmdZjLz2lVnNdKnLN
=27D3
-----END PGP SIGNATURE-----

Figure 5-9: A PGP clear-signed signature

S/MIME, as will be discussed below—but it is a decision that was made. As a result, an organization
sending signed messages must choose whether to send each message signed with S/MIME or signed
with OpenPGP. (It is possible to use S/MIME to sign a PGP clear-signed message, but this mode of
operation has not been widely observed.)

Deciding which signature standard to choose is simplified somewhat by the fact that support for
S/MIME is widespread while support for OpenPGP is not. Many programs, including Microsoft
Outlook, Outlook Express, Communicator, Thunderbird, and Apple Mail, have both support for
S/MIME and are furthermore distributed with CA keys for major CAs such as Thawte and VeriSign
that make available Digital IDs to interested parties. Thus, it would seem that messages signed
with S/MIME signatures have the highest possibility of being successfully decoded by the recipient.

On the other hand, there is no support for S/MIME in any readily available webmail system with
the exception of Microsoft’s Outlook Web Access. Likewise, AOL does not support signed messages.
In choosing which digital signature standard to use, one must consider the impact of signed mail
on these webmail systems as well as on mail clients that do not support the standard in question.

As we shall see in the following sections, it turns out that S/MIME is in fact an excellent choice
for a signature standard—not because of any inherent brilliance in the format, but because support
for S/MIME is widespread and because S/MIME signatures seem to have minimal usability impact
when they are viewed in mail systems that do not have S/MIME support.

5.3.2 Evaluating the usability impact of S/MIME-signed messages
Once a decision is made to send messages with the S/MIME signature standard, a number of
questions need to be answered:

1. How do properly signed S/MIME messages appear in S/MIME-enabled readers?

2. How do properly signed S/MIME messages appear in e-mail systems that have no support for

5.3. SIGNATURES WITHOUT SEALING 185

S/MIME?

3. How do S/MIME enabled readers handle messages that are signed with the S/MIME standard,
but which cannot be verified for some reason or other?

4. What are the opportunities for an S/MIME-signed message to be damaged while it is en route,
and how would damage affect signatures?

To answer these questions, Thawte FreeMail certificate 0x0d04d8 (#853208) was obtained Septem-
ber 10, 2004, and used it to send 6,226 signed S/MIME messages to hundreds of distinct email
addresses during the following nine months. Messages were sent using Microsoft Outlook Express,
Microsoft Outlook, and Apple Mail to both individuals and mailing lists. Complaints by correspon-
dents were noted. Many test messages were further sent between the mail clients—sometimes with
messages passing through mailing lists. Finally, a series of informal interviews were conducted with
other users who had similarly tried sending mail that was digitally signed. The results are presented
in the remainder of this section.

S/MIME reader, S/MIME-signed message
Today’s S/MIME-enabled mail readers differ in the way that they display signed S/MIME messages.
The first time that Outlook or Outlook Express receive a signed message, these programs display an
informative message to the user that gives a brief explanation about digital signatures, as shown in
Figure 5-10 (left). This screen can be thought of as a primitive example of Whitten’s “Safe Staging”
technique. Outlook Express also annotates a signed message with a small red icon that resembles
a second-place ribbon awarded in a dog show. This icon is displayed in the message summary area
and in the message preview area.

Clicking on the dog ribbon displays a panel titled “View Certificates” that allows the user to view
the Sender’s certificate, as shown in Figure 5-11. Confusingly, this panel includes two buttons
that perform the same function of viewing the sender’s certificate. Pressing either of these buttons
causes the Microsoft standard dialogue for viewing certificates to be displayed (Figure 5-12). The
panel also includes a button for adding the sender’s certificate to the user’s address book, which is
odd considered that S/MIME certificates are automatically added to the address book when they
are received.

At first blush, the “General” certificate properties tab looks more or less reasonable but the “Details,”
“Certification Path,” and “Trust” tabs seem to offer information in a manner that is too detailed for
most users to understand. The use of X.509 abbreviations “CN,” “O” and “C” (which stand for
Common Name, Organization and Country) in “Issuer” line of the “Details” tag are particularly
troubling; how is a user supposed to know what this means and what they should do with the
information? Indeed, one of the secondary findings of the Johnny 2 user test described in Chapter 7
is that näıve users who clicked on this dialogue had no idea what to make of any of the information
that it presented. Simply seeing lots of numbers, letters and words convinced many of the users
that the certificates must be legitimate.

Apple’s Mail application displays signed messages with a subtle line saying “Signed:” that is added
to the mail header when the message is displayed (Figure 5-13). It is not possible using Mail
10.3 to display the certificate that was used to sign the message. However, receiving a signed
message causes the certificate to be added to the user’s keychain, where it can be viewed with the

186 CHAPTER 5. Solving Secure Email’s “Grand Challenge” with Signature-Only Email

Figure 5-10: The first time the an Outlook Express user receives a digitally signed message, Outlook Express displays
this informational message. To prevent the screen from displaying again, the user must click the check-box labeled
“Don’t show me this Help screen again.”

MacOS Keychain application (Figure 5-14). This user interface has many of the same problems as
Microsoft’s interface: information is not presented in a manner that makes sense to a person who
is not a security professional.

The Mozilla tool for viewing certificates is shown in Figure 5-15. An advantage over the Microsoft
panel is that the X.509 abbreviations are spelled out in the General tab (although they are still not
spelled out in the Details panel). Disadvantages are the fact that the panel displays black text on a
dark gray background, that the information presented in the “Details” tab is shown in a tree control
which uses a lot of space but doesn’t present much information, and once again the fact that the
information is not presented in any understandable context.

It is likely that considerable progress could be made in developing a user interface for display-
ing certificates. For example, the hash visualization techniques discussed Section 2.4.6 on page 62
could be used to augment the display of the certificate fingerprints. (Visualization algorithms would
need to be standardized so that a fingerprint displayed in different browsers displayed with the
same visualization.) Instead of displaying information like certificate serial numbers in hexadeci-
mal, they could be displayed in decimal notation. Instead of displaying dates using a form that can
be misinterpreted (is 9/10/2004 September 10th or October 9th?), the could be displayed in an
unambiguous notation (e.g. 2004-SEP-10). The Safari and Mozilla certificate displays could clearly
indicate if the date is valid or not, the way the Windows display does. The interfaces could display
more information about certificates directly in the interface, rather than hiding it underneath a
“help” button.

5.3. SIGNATURES WITHOUT SEALING 187

Figure 5-11: Pressing the certificate icon causes Outlook Express to display this dialogue for viewing certificates.
Pressing the “Signing Certificate...” button or the “Sender’s Certificate...” button causes the certificate to be viewed
using the dialogue panel shown in Figure 5-12.

Thus, while S/MIME-enabled mail readers such as Microsoft Outlook, Apple Mail, and Mozilla
Thunderbird pose minimal burden on users upon receiving digitally signed mail, the programs do
not do a good job showing people the contents of the digital certificates used to sign those messages.

188 CHAPTER 5. Solving Secure Email’s “Grand Challenge” with Signature-Only Email

Figure 5-12: The Microsoft Windows standard dialogue for viewing certificates has four tabbed sub-panels. Certificates
can be used even if they are not signed by a valid CA, but each certificate needs to be “explicitly trusted” using the
dialogue on the Trust tab (lower right).

5.3. SIGNATURES WITHOUT SEALING 189

Figure 5-13: Apple’s OS X Mail application displays a
special “Security:” header to indicate if messages are
digitally signed. Unfortunately, there is no way to view
the certificate that was used to sign the message.

Figure 5-14: Apple’s Certificate Viewer is bundled into
the MacOS 10.3 “Keychain” application. The program
is surprisingly difficult to use—for example, view con-
taining the certificate list and the Attributes/Access
control are not embedded into an NSSplitView, which
would allow the relative space devoted to each sec-
tion to be adjusted. (The message list and the mes-
sage preview area in the OS X 10.3 Mail application
are embedded in an NSSplitView, as evidenced by
the dimple in Figure 5-13.)

Figure 5-15: The Mozilla certificate display dialogue, used in Mozilla Firefox and Thunderbird, makes it very difficult for
the user to both see and understand the relevant information on a certificate. These problems are similar to the usability
problems found on the Apple and Microsoft certificate viewers.

190 CHAPTER 5. Solving Secure Email’s “Grand Challenge” with Signature-Only Email

Figure 5-16: Eudora version 6 for Windows treats S/MIME signatures as attachments. Clicking on the attachment
displays the Windows certificate viewer, but does not actually verify the certificate!

Non-S/MIME reader, S/MIME-signed message
Most mail systems that do not directly support S/MIME display signatures as an attachment. In
theory this allows an S/MIME signature to be saved into a file and verified independently of the
mail reader. In practice nobody does this, and the S/MIME attachments frequently appear to be
a source of confusion. An unfortunate aspect of this confusion is that many of the popular email
systems that cater to the very individuals who are not sophisticated computer users—systems such
as AOL and HotMail—are the same systems that do not have S/MIME support.

For example, when Eudora Version 6 for Windows receives an S/MIME signed message, the Eudora
strips the signature attachment and places the file in its “Attachments” directory. Clicking on the
icon causes the Windows certificate viewer to open, as shown in Figure 5-16. This may give the
impression that the signature is valid, even though the signature is never actually checked!

Similar behavior is seen in both AOL version 9 (Figure 5-17), which the company heavily promotes
as its “Security Edition,” and in Microsoft’s Hotmail (Figure 5-18). Microsoft’s lack of support for
S/MIME signatures is particularly disappointing, given that Microsoft does support the display of
signed messages in the company’s Outlook Web Access module.

S/MIME readers, non-verifying S/MIME message
One of the questions that the PEM committee couldn’t answer back in the 1980s was what to do
when a signed message didn’t verify. Today’s developers have solved this problem: messages are
passed to the user with a warning. A related but different question is what to do when the message
verifies but the key that was used to sign the message is not trustworthy, either because the key’s
certificate was signed by an untrusted CA, or because the certificate has expired or been revoked.

5.3. SIGNATURES WITHOUT SEALING 191

Figure 5-17: AOL Version 9, the company’s “Security Edition,” displays S/MIME signatures as attachments. Although
the AOL software will scan the S/MIME signature for viruses and spyware, it will unfortunately not verify the message
to which it is attached.

Figure 5-18: In March 2005, Microsoft’s Hotmail also displayed signed messages as simply having an attachment. In
contrast, S/MIME signatures are properly decoded and displayed by Microsoft’s Outlook Web Access, the company’s
webmail server for Microsoft Exchange.

192 CHAPTER 5. Solving Secure Email’s “Grand Challenge” with Signature-Only Email

Figure 5-19: When Outlook Express 6 receives a message that is signed with the OpenPGP format, the program
displays the message as two attachments.

Assuming that the S/MIME message was properly signed, the only reason that a message would not
verify would be if the message was somehow modified in transit. Although signatures were created
to protect against malicious modification, we have has never experienced such a modification. On
the other hand, we have had many messages modified by mailing list systems. Such modifications
have been very difficult to characterize and appear dependent on the message contents and the
mailing list service. For example, some kinds of S/MIME-signed messages that were sent through
some versions of the Mailman mailing list management system were modified, but other messages
sent through the same Mailman system were not. Signed mail text messages sent through Yahoo
Groups in March 2005 were passed without modification, but signed HTML messages sent through
on the same day were modified by the inclusion of a small advertisement. (Yahoo could make such
modifications without damaging signatures by adding the advertisement as an unsigned MIME
attachment, but that might break other mail systems.)

One should also note that modifications that are not intended as malicious can still have significant
results, and an advantage of using signed mail is that such modifications are easier to detect. For
example, in 2002 it was observed that Yahoo’s email service was silently changing the word “eval” to
“review” in HTML messages. Other substitutions discovered were the words “mocha” being turned
into “espresso” and “expression” being changed to “statement.” These changes were apparently to
defeat JavaScript attacks; one of the results of this typographical slight of hand was the coining
of a new word, “medireview,” as a synonym for medieval studies. [NTK02a] In some cases these
automatic changes appeared in magazine articles, as the text of those articles had been sent from
writers to editors through Yahoo and then not adequately checked. A complete list of the words
can be found at [NTK02b].

Another reason that a message might not verify is that the certificate has expired. There are in fact
two different permutations of an expired certificate:

• The certificate could have expired before the message was signed.

• The certificate could have been valid when the message was signed, but has since expired.

5.3. SIGNATURES WITHOUT SEALING 193

Figure 5-20: Outlook Express 6 checks whether or not a Digital ID has expired based on when the message is displayed,
rather than when it was signed (left). When the dog-ribbon with the exclamation mark is pressed, the certificate dialogue
(right) displays the confusing message that the certificate “has expired or is not yet valid.”—Doesn’t the program know?

In tests, it was determined that neither Outlook Express nor Apple Mail handled certificate expira-
tion in a sensible manner.

Microsoft Outlook Express declared that mail with a valid signature was no longer validly signed
after the signing certificate expired, even if the signing certificate was valid when the signature
itself was written. This happened even if OE had previously processed the mail and found it to be
valid! Thus, a person who has valid S/MIME signed messages in an Outlook Express mailbox will
find that these messages will become invalid over the course of time (Figure 5-20).

Apple’s Mail takes a different approach and doesn’t appear to check certificate validity at all on
received messages. When sending messages, it was found that Apple Mail simply does not allow
the sender to sign with a certificate that has expired.

Messages that do not verify because the Digital ID was signed by an untrusted CA are discussed in
Chapter 6.

5.3.3 Problems from the field
In the course of researching S/MIME for three years and using S/MIME signatures on a daily
basis for nearly nine months, many bugs were discovered in commercial S/MIME implementations.
Some of the more interesting bugs are presented below:

194 CHAPTER 5. Solving Secure Email’s “Grand Challenge” with Signature-Only Email

Figure 5-21: A proposed interface for Outlook Express that would display security information using the same sort of
informational bar that has been adopted for Internet Explorer and Mozilla Firefox. Simulated screen shot.

• S/MIME users in the US military have been frustrated by the fact that message decrypting
keys are only present on their multifunction cards, that the cards are replaced every time
they receive a new assignment, and the fact that S/MIME clients leave encrypted messages in
the mail store. As a result of these decisions, access to old messages is lost unless the private
keys are exported from the multifunction cards and transferred to new cards. As a result,
technology to export unexportable keys had to be developed.[Hal03]

• A bug was discovered in the Microsoft S/MIME decoder (used in both Outlook and Outlook
Express) used by the current and all previous versions of the two programs. When a signed
multipart message is received that has only a single part (as is the case when a signed at-
tachment is sent without a message body), a bug causes the Microsoft programs to refuse
to display the message, even though the message is not encrypted.[Tre04] Microsoft never
discovered this bug in its testing because Outlook and Outlook Express never send this kind
of message, but Apple’s Mail client does.

• Several users who had email systems that did not implement S/MIME were confused by the
S/MIME signature attachment. Typical response was:

“There is a strange attached file to your mail: smime.p7s... What’s that?”
“I couldn’t open the attachment that you sent me.”

5.4. HIDDEN SIGNATURES 195

• A Canadian government agency configured its firewall to pass attachments named “smime.p7m”
of mime type Application/X-PKCS7-MIME but to strip attachments named “smime.p7s” of
mime type Application/X-PKCS7-SIGNATURE. It appears that the firewall had been config-
ured to strip all attachments of types that had not been specifically registered; the firewall’s
administrators knew of one S/MIME type but not the other.

• When the mutt mail reader on Linux received a message with a corrupted signature, it dis-
played the following information:

[-- OpenSSL output follows (current time: Wed Mar 2 09:38:33 2005) --]
Verification failure
8135:error:21071065:PKCS7 routines:PKCS7_signatureVerify:digest
+failure:pk7_doit.c:808:
8135:error:21075069:PKCS7 routines:PKCS7_verify:signature
+failure:pk7_smime.c:265:
[-- End of OpenSSL output --]

Following this display of OpenSSL output, mutt displayed the message “The following data
is signed” and proceeded to display the message with the corrupted signature. Technically
the message was correct, because the message was signed, although the signature did not
verify.[Sam05]

• Some virus-scanning mail gateways append a tag line in mail messages to indicate that the
message has been scanned for viruses. These tag lines break S/MIME signatures.[Mar05b]

• When users of some versions of Outlook attempt to reply to a message that is digitally signed,
Outlook defaults to signing the outgoing message even if the user does not have a Digital ID!
When the user hits the “Send” button, they then receive a message warning that they do not
have a Digital ID and they are invited to press a button that says “Get a Digital ID” which,
in turn, takes them to a web page that lists commercial Digital ID vendors.[Mar05b] (This
is why we only recommend sending signed S/MIME messages for do-not-reply email at this
time.)

• Many users were confused that today’s S/MIME implementations do not certify the Subject:,
Date:, To: or From: lines of email messages. (Likewise, they do not encrypt the Subject:
line of sealed S/MIME messages.) Although the S/MIME RFCs do provide for encapsulating
these lines within a MIME object, none of the S/MIME clients tested for this dissertation
implemented that functionality.

These errors all seem to indicate that the S/MIME standard has received relatively little use in the
nine years that the software has been made widely available to businesses and consumers. After
all, if the technology was being widely used, these bugs would have been found and eradicated.

5.4 Hidden Signatures
One of the fundamental problems with both S/MIME and the OpenPGP standards when used to
sign messages is that these standards use MIME multipart attachments to convey metainformation
about the messages themselves.

196 CHAPTER 5. Solving Secure Email’s “Grand Challenge” with Signature-Only Email

Although using the MIME standard was technically elegant and allowed the MIME standards and
implementations to be re-used for security purposes, doing so created significant usability hurdles
for individuals who had mail systems that understood MIME attachments but did not implement
S/MIME. These users do not download the S/MIME attachments and independently verify them
with helper applications: they are merely confused by the S/MIME attachments.

Another approach would have been to use specially crafted hidden signatures that are visible to
the proper software but otherwise invisible. One technique for doing this is to hide the signature
inside specially crafted header lines, as shown in Figure 5-9. This approach can also be used for
distributing keys. This technique was developed for the Stream encryption proxy discussed in
Appendix D on page 413. Two places where the headers can be placed are in the message header
and in the headers of MIME body parts. Of these two approaches, hiding information in the MIME
body part header was found to work better. This is because some programs (such as Eudora and
RMAIL) display mail headers that they do not recognize. On the other hand, no program that was
tested displays unrecognized MIME body part headers.

While the hidden signature approach has the advantage that it poses no usability burden on users
who do not have the necessary decoding software, it has the disadvantage that nobody on the
planet is currently running the necessary decoding software. Hidden signatures may be useful in
putting forth new signature schemes, such as the separable identity-based ring signature system
proposed by Adida, Hohenberger and Rivest. [AHR05a, AHR05b]

Given that S/MIME is widely deployed, it is almost certainly an easier task to get the few remaining
hold-outs to adopt the S/MIME standard, rather than to try to put forth yet another secure email
standard.

5.5 Conclusions and Recommendations
After nearly three decades of work on the secure messaging problem, the vast majority of email sent
over today’s electronic networks is without cryptographic protection. Nevertheless, great progress
has been made. As the research presented in this chapter demonstrates, a significant fraction of
the Internet’s users have the ability to receive and transparently decode mail that is digitally signed
with the S/MIME standard. It is within the capability of businesses to start sending S/MIME-signed
messages today. Such practices are almost certain to do more good than harm.

What’s more, the survey data presented in this chapter shows that a significant fraction of Ama-
zon.com’s merchants believe that financially related email should be signed (and sealed) as a mat-
ter of good business practices. Mail encryption is not possible using S/MIME technology unless
the recipient obtains a Digital ID and somehow gets that ID to the sender. On the other hand, if
organizations like eBay and Amazon started sending out signed mail today, their recipients could
respond with email that was encrypted (but not signed) for the sending organizations.

5.5.1 Promote incremental deployment
Deploying email encryption systems is frequently seen as a chicken-and-egg problem. Senders
can’t encrypt messages for a recipient unless the recipient first creates a public/private keypair and

5.5. CONCLUSIONS AND RECOMMENDATIONS 197

Mime-Version: 1.0 (Stream Encoded)
To: simsong@acm.org
Message-Id: <732b4c35ffa86d4f76b7e4967d599dd2@csail.mit.edu>
Content-Type: multipart/alternative; boundary=Apple-Mail-2--871523547
From: "Simson L. Garfinkel" <simsong@csail.mit.edu>
Subject: test message
Date: Mon, 14 Feb 2005 20:49:38 -0500

--Apple-Mail-2--871523547
PGP-sig01: Version: PGP 6.5.8
PGP-sig02:
PGP-sig03: iQA/AwUBQldqhBkGokKY4xwsEQKXRwCg5KCLs58HPFgPTWn6MC2F0udCMT8An3Pb
PGP-sig04: qSFf6Jy1wNyxTlNc9boojKhT
PGP-sig05: =hHEw
Content-Transfer-Encoding: 7bit
Content-Type: text/plain;
charset=US-ASCII;
format=flowed

This is a message that is signed
with PGP. It is a very simple message.

--Apple-Mail-2--871523547--

Figure 5-22: A digital signature hidden inside an S/MIME header. The signature, which covers the To:, From:, Subject:
and Date: headers as well as the message content, is hidden from any MIME-enabled mail reader that does not know
how to process the PGP-sig headers.

obtains the necessary certificate. But there is no incentive for a recipient to make this effort unless
there is first a sender who wants to send encrypted mail.

No such chicken-and-egg problem exists for senders who wish to sign outgoing mail. Our survey
shows that most Internet users have software that will automatically verify S/MIME signatures in
a manner that is exactly analogous to accepting a CA-issued certificate during the SSL handshake.
Companies sending email can begin adopting S/MIME now and incrementally deploy it.

Although in the 1990’s digitally signatures might have been seen as extravagant or expensive tech-
nology that required special-purpose cryptographic accelerators to implement on a large scale,
those days have long passed. A 2GHz Pentium-based desktop computer can create an more than
700 S/MIME signatures every minute using the freely available OpenSSL package. S/MIME certifi-
cates are also cheap: a single VeriSign Digital ID purchased for $19.95 per year can be used to sign
literally billions of outgoing messages, since VeriSign and other CAs charge for certificates by the
year, not by the message.

5.5.2 Extending security from the walled garden
End-to-end encryption on the Internet was developed because the Internet computers and their
links were not a secure infrastructure operated by a single management team. But many of encryp-
tion’s benefits—identification of sender, integrity of messages, and privacy of message contents—
can be accomplished for email sent within closed systems such as AOL and Hotmail. These so-called

198 CHAPTER 5. Solving Secure Email’s “Grand Challenge” with Signature-Only Email

Figure 5-23: Addresses on messages that originate
from within the AOL network, when viewed using
AOL’s webmail interface.

Figure 5-24: Addresses on messages received from
outside the AOL network appear differently than mes-
sages originating from inside.

walled gardens can provide security assurances for their content because they use passwords to au-
thenticate message senders and provide reasonable security for message contents.

Several online services are now providing some form of sender authentication, in that they are
showing the recipients of some messages that the messages originating from within their services
(their “walled gardens”) were sent with properly authenticated senders. The services do this by
distinguishing between email sent from within the service and email sent from outside—even when
the mail sent from outside the service is sent with a From: address of an inside sider.

For example, both AOL’s webmail and client interfaces identify email that originated within AOL
with a little icon of a human being in the From: field, as shown in Figure 5-23. Mail that comes
from the Internet is displayed with a complete Internet email address, as shown in Figure 5-24,
and with the notation “Sent from the Internet” (not shown). This is true even when the email that
arrives from the Internet has an @aol.com in From: field. The AOL network also has the ability
to carry “Official AOL Mail,” indicated by a blue envelope icon in the user’s mailbox, an “Official
AOL Mail” seal on the email message, and a dark blue frame around the message, as shown in
Figure 5-27. All of these visual indications provide the user with cues that mail sent from within
AOL is somehow different—and presumably more trustworthy—than mail from outside of AOL.

Other webmail providers do not follow AOL’s practice. For example, Google’s “GMail” service dis-
plays messages with @gmail.com addresses that originated outside GMail in exactly the same
manner as messages that originated from within GMail, as shown in Figures 5-25 and 5-26. These
two cases should be distinguished: mail originating within GMail was sent by a sender who pro-
vided a valid username and password, while no such verification was performed for the sender of
mail sent from outside GMail. Inside mail is more trustworthy and should be distinguished from
outside mail.

Users would benefit from having those systems make explicit guarantees about message integrity,
authorship and privacy. An easy way to start is for walled gardens to distinguish between email
originating within their walls and email originating from the outside, as AOL does. This recom-
mendaiton is presented in Chapter 10.

5.5. CONCLUSIONS AND RECOMMENDATIONS 199

Figure 5-25: Addresses on messages that originate
from within the GMail network, when viewed using
GMail’s webmail interface.

Figure 5-26: Addresses on messages received from
outside the GMAIL network appear the same as mes-
sages that originate inside.

Figure 5-27: The AOL network has the ability to transport “Official AOL Mail.” Such messages cannot be spoofed by
outsiders or other AOL members.

5.5.3 S/MIME for Webmail
The security of the Official AOL Mail system depends upon the security of the AOL network and the
AOL client software. Although the implementation might use S/MIME or a similar digital signature
system, it could be implemented with a variety of simpler means as well. Although proponents
of cryptography might be tempted to argue that the S/MIME-based system would be more secure,
such a system would still rely on the AOL client software to verify the S/MIME signatures.

Moving forwards, we believe that webmail providers such as Hotmail and AOL should work to
support S/MIME directly in their systems. Today these services display S/MIME signatures as a
small attachment that cannot be easily decoded and understood. Instead, we believe that they
should validate the S/MIME signatures and display an icon indicating a signed message has a valid
signature.

Once S/MIME messages are properly validated, we believe that the next step is for webmail
providers to obtain S/MIME certificates on behalf of their customers and use those certificates
to automatically sign all outgoing mail. This is ethically permissible because the webmail provider
has verified the identity of the sender, at least to the point of knowing that the sender can re-
ceive email at the given email address. Major webmail providers could do this by establishing
themselves as CAs and having Microsoft distribute their CA keys through the Windows Update

200 CHAPTER 5. Solving Secure Email’s “Grand Challenge” with Signature-Only Email

mechanism; smaller webmail providers could work deals with existing CAs to obtain certificates
that allow extension of the certification chain. This proposal is somewhat similar to Yahoo!’s Do-
mainKey proposal, [Del04a] except that the signatures would be created with S/MIME and could
be verified with software that is already deployed to hundreds of millions of desktops.

5.5.4 Improving the S/MIME client
Given that support for S/MIME signatures is now widely deployed, existing mail clients and web-
mail systems that do not recognize S/MIME-signed mail should be modified to do so. Existing
systems should be more lenient with mail that is digitally signed but which fails some sort of se-
curity check. For example, Microsoft Outlook and Outlook Express give a warning if a message is
signed with a certificate that has expired, or if a certificate is signed by a CA that is not trusted.
Such warnings appear to both confuse and annoy most users; more useful would be a warning that
indicates when there is a change in the distinguished name of a correspondent—or even when the
sender’s signing key changes—indicating a possible phishing attack. We shall return to this topic in
Chapter 7.

This research presented in this chapter shows that there is significant value for users in being able
to verify signatures on signed email, even without the ability to respond to these messages with
mail that is signed or sealed. The technology has been deployed. It’s time for us to start using it.

CHAPTER 6

The Key Certification Problem:
Rethinking PKI

This chapter is an extended look at the prior art, practice, and problems of the Public Key Infras-
tructure (PKI) approach to public key certification.

6.1 A Tale of Two Protocols
Skeeter and Bubba, FTP Software, 1991
Levy, Kastenholz and Knowles realized that they could improve the security of TCP by putting a
Diffie-Hellman key agreement step directly into TCP’s three-way handshake. The exchange was
implemented with TCP options #16 (“Skeeter”) and #17 (“Bubba”). [Kas01] If a TCP implementa-
tion supporting these options made a connection to a second TCP implementation that supported
the options, the two network stacks would used the protocol to decide upon a key and use that key
to encrypt all future communications with the IDEA block cipher. [Lev04]

Because there was no certification of the remote system, the Skeeter/Bubba scheme only provided
defense against passive eavesdropping, not against an active attacker who could mount a man-in-
the-middle attack. The project was abandoned for two reasons. First, an engineer at FTP thought
that it would be wasteful to have computers calculate large prime numbers for every TCP connec-
tion (none of those working on the project had any training in cryptography and knew how to
optimize the system). Second, people in the company who understood security criticized the solu-
tion because it was susceptible to the man-in-the-middle attack. Today the Bubba and Skeeter TCP
options with the cryptic reference to “[Knowles]” in the Internet’s list of Assigned Number RFCs
(e.g., RFC 1700[RP94]) are the only remnants of the project.

201

202 CHAPTER 6. The Key Certification Problem: Rethinking PKI

SSL, Netscape Communications, 1994
The Netscape Navigator web browser, released in beta form on October 13, 1994, came with built-
in support for the company’s then-proprietary SSL encryption protocol.[Net94a, Net94b]

The early Netscape browsers came with a single pre-loaded X.509 certificate for the RSA Data
Security Commercial Certification Authority; this certificate was used to authenticate remote SSL
servers. These servers were only trusted if they presented the Netscape client with an X.509 cer-
tificate that was signed by the RSA CA and if the certificate had the server’s DNS address in the
Common Name (“CN”) subfield of the X.509 certificate’s subject’s Distinguished Name. Without a
proper certificate, Navigator 1.0 refused to create a “secure” connection.

By requiring the use of certificates to enable encryption, Netscape kicked off the market for cer-
tification services. And by mandating the use of a particular key, Navigator established the RSA
CA as the world’s preeminent certification authority. Future versions of SSL permitted the use of
client-side certificates as well, to positively identify web users. But client-side certificates were not
mandatory, and that market never really developed.

Navigator 2.0 shipped with a pluggable PKI that supported new CAs by having the user click on
a hyperlink and downloading the CA’s certificate. The program came with seven certificates pre-
installed: CommerceNet, MCI Mall, Netscape Test, ATT Research, RSA Commercial, ATT, and RSA
Secure Server. In 1995 RSA’s certification services were transferred to a new company, VeriSign,
which was created solely for that purpose. Nevertheless, the name “RSA Certification Authority”
continues to appear on many certificates.

6.1.1 Understanding the failure of PKI
This chapter will argue that a series of technical decisions made in the 1980s and 1990s to de-
ploy a broad-based PKI system based on X.500-style naming, the X.509 certificate format, and the
approach of having multiple Certificate Authorities that could be loaded into client software was
fundamentally flawed. Although some organizations have been able to make some aspects of the
PKI model work in some situations, the overall system has not achieved anywhere near the adop-
tion that was widely expected in the 1990s. PKI tried to solve too many separate problems at once
and ended up solving none of them particularly well. Instead, the market favored easier-to-use
solutions that could be incrementally deployed.

The comparison of the Skeeter/Bubba system and Netscape’s early SSL is revealing: Skeeter/Bubba
was abandoned because the system couldn’t make the kinds of security guarantees that would
later be made by proponents of SSL. By using anonymous Diffie-Hellman, Skeeter/Bubba would
have provided protection against passive eavesdropping but not against active man-in-the-middle
attacks. SSL provided defense against both kinds of attacks, assuming that the PKI was properly
administered.

Without training in PKI, the engineers at FTP couldn’t imagine how to add identity certification to
the system that they had created. In fact, they didn’t need to. Skeeter/Bubba could have trivially
incorporated a self-signed RSA or El Gamal key as part of the protocol. The Skeeter/Bubba imple-
mentation could have maintained a record of keys used by remote TCP stacks and issued an alert
if those keys changed, similar to the way that SSH does. [Ylo96] This approach would have caught

6.2. REINTERPRETING THE HISTORY OF PKI 203

man-in-the-middle attacks that took place after the first time that two systems made contact. But
the FTP engineers didn’t understand the technology that they were implementing, and they failed.

The engineers at Netscape designed a certificate-based solution that was technically unassailable.
But by limited certificates to those signed by a single key, it may have also limited the number
of organizations that could trivially deploy SSL-based servers. SSL could have supported anony-
mous Diffie-Hellman key agreement as an alternative strategy for establishing a secure connection
between client and server for the cases where the server did not have a valid X.509 certificate.
(The SSL 3.0/TLS protocol includes this mode of operation in the standard, although few imple-
mentations actually support it.) Such a strategy might have allowed for more rapid deployment
of SSL-enabled servers, as servers could have been deployed without the difficulty of obtaining
a third-party certificate. Instead, a relatively small number of certificates were issued (as will be
shown in Section 6.2.7), and the company issuing those certificates saw spectacular growth in its
stock valuation as a result.

It is commonly held that halfway security measures are generally not useful: witness that one of the
reasons that the FTP engineers abandoned their system is that it would not have been secure against
man-in-the-middle attacks. But while the scheme could not have defended against some active
attackers, it would have been more than adequate to defeat the password sniffers that plagued the
Internet in the 1990s. [Gar96b, FM97]

Netscape’s success appeared at the time to be the result of two primary factors. For consumers,
Netscape’s easy-to-use interface and the point-and-click navigation offered by the web gave many
a compelling reason to go online. But for businesses, it was the promise that Netscape’s technology
would provide “military-strength cryptography” that opened up the real possibility that the Internet
might one day be usable for online banking and commerce.

A decade later, Netscape’s dream is largely realized. Yet many of the security promises turned out to
have been hollow. To understand why, and how this history can be turned around, a short overview
is in order.

6.2 Reinterpreting the History of PKI
From the beginning, those promoting public key technology have subscribed to a view that keys
should represent human identities. This immediately presented a problem, because it meant that
deploying public key technology required that notions of identity needed in order to create a global
PKI.

6.2.1 Diffie and Hellman’s “public file”
Diffie and Hellman’s seminal paper on public key cryptography introduced the concept of a “public
file” that contained the enciphering keys for all of the participants in a public key system. One of
the purposes of this public file is “to authenticate user A to user B [and] vice versa. By making
the public file essentially a read memory, one personal appearance allows a user to authenticate his
identity many times to many users.” [DH76, p.34]

The Public File was essentially a database of triplets consisting of names, addresses and keys:

204 CHAPTER 6. The Key Certification Problem: Rethinking PKI

(name, address, kname)

The presence of this triplet in the Public File indicated that the information is certified.

Although [DH76] left the terms “name” and “address” undefined, they are commonly taken to
mean “legal name” and “street address.” Today the term “Certificate Authority” is widely used to
describe the kind of Public File envisioned by Diffie and Hellman.

A second feature, unmentioned in [DH76], is that there was to be a single public file. That is, a
theoretical user looking up the identity of a theoretical person would never needed to consider
which directory in which to look—because there was only one!

This scheme also failed to consider what would happen if two individuals with the same name
resided at the same address.

6.2.2 Certificates [Koh78]
Kohnfelder proposed the concept of certificates in his 1978 undergraduate thesis “as an aid in sim-
plifying the communication problems encountered when implementing the method” of the Diffie-
Hellman public file. [Koh78, p.2] The motivation, Kohnfelder wrote, was to create a way by which
keys could be securely acquired from the Public File. The solution was for the Public File to sign its
transmissions to its users!

Once Kohnfelder made this conceptual breakthrough—the realization that digital signatures could
be used to sign public keys in addition to messages—he was quick to realize that certificates could
be used to keep a local copy of public keys and eliminate the need for participants to continually
refer back to the Public File:

“Continually referencing the Public File is a nuisance. When a communicant is initially
contacted he must suspend that communication, get the appropriate key from the Public
File, and then resume the original communication. Thus either the communicant must
use two communication lines at once or break and then reinitiate a communication
link.”[p.39]

With certificates, writes Kohnfelder, it is no longer necessary for the communicants to involve the
Public File in their day-to-day communications:

“The use of certificates allows key information to be obtained as reliably as if it were
from the Public File without ever making contact with the Public File. There is a cer-
tificate for each communicant in the system. Each certificate can only be created by the
Public File and contains a name and key information pair. Communicants can check that
a certificate was created by the Public File. Communicants convey their key information
to others simply by sending their certificates.”[p.40]

6.2. REINTERPRETING THE HISTORY OF PKI 205

Kohnfelder used this notation to describe a certificate:

< AU , EU (·), “U” >

Where AU denotes the public file’s authenticator, EU (·) denotes the “encryption function” of the
certificate holder (what we today call the certificate holder’s public key), and “U” denotes the
“plaintext name” of the holder. [p.41]

Today we might want a certificate using this notation to indicate that the signature is actually
signing the Name and Key tuple:

{name, kname}sig-pf

6.2.3 X.400, X.500 and X.509

In 1980s a variety of large telecom interests sought to build a grand unified electronic network for
all forms of data communications. They called this project the Open Systems Interconnect (OSI).

The OSI email system was defined by X.400, an international standard developed by CCITT (since
renamed the ITU-T). This system standardized all aspects of electronic email, including message
creation, transit, delivery, multi-media encapsulation, and security. X.400 also provided for message
transit between the X.400 world and Telex, facsimile, and physical mail.[Alv97, Wik] X.400 can be
thought of as a single system designed to provide functionality similar to what the SMTP, POP, MIME
and S/MIME standards do today.

X.500 was the directory service designed to support the X.400 mail system. The standard’s Directory
Access Protocol (DAP) can be thought of as a master directory of names, addresses, phone numbers,
and other information that was designed to be used both inside and outside organizations. X.500
can be thought of as a combination of the today’s Internet Domain Name System (DNS) and the
Lightweight Directory Access Protocol (LDAP).

Names in the X.500 system were called “distinguished names,” implying that they were unique (that
is, distinguishable). These names are created from a set of relative distinguished named (RDNs) that
are normally displayed as a short one-or-two letter abbreviation, an equal sign, and a human-
readable string. The RDNs are concatenated together, separated by forward slashes, to form the
distinguished name. This model meshed remarkably well with the telecom companies that created
it, most of which had monopoly control for a single geographical area.

For example, if John Wilson were a user at the University of Auckland’s computer science depart-
ment, he might have a certificate indicating that his common name was “John Wilson,” that he
was a member of the Organization Union “Computer Science,” which was in turn a member of
the Organization “University of Auckland,” which in turn was in the Country “NZ.” Each of these
organizations could in fact maintain their own certifying CAs, as illustrated in Figure 6-1.

Because the directory could contain confidential information such as lists of employee names, X.500

206 CHAPTER 6. The Key Certification Problem: Rethinking PKI

included provisions for authentication and access control lists. One level of access control was
needed to view parts of the non-public directory, while another level was required to make changes.
(This is similar to today’s Dynamic DNS protocols.)

Several mechanisms were specified for access control to the directory: passwords, a simple challenge-
response mechanism, and the use of public keys. Thus was born the X.509 certificate standard as a
system for controlling access to and modification of X.500 directories.

No information regarding access control or permissions was stored in the original X.509 certificates,
because the only intended use of the certificates was for directory access control. (This limitation
was overcome in X.509v3, which created an extension mechanism.) Many people who use them
consider the X.500 and X.509 systems to be unwieldily, a classic result of design by committee.
“Although no real directories of this type were ever seriously deployed, PKI designers and users
have had to live with the legacy of this approach ever since,”[Gut02b, p.2]

6.2.4 X.509 and PEM
Rather than invent its own certificate format for distributing public keys, when the when the IETF
PEM committee needed a data format for holding certificates, it adopted X.509. Thus, a system
that was designed to use private keys as tools for controlling access to directory information was
significantly changed into a system that used possession of those private keys as proof of identity.

Subsequent standards such as S/MIME and SSL followed suit.

6.2.5 Distinguished Names in Practice
One of the key differences between the X.500 standard as envisioned and the way that Distin-
guished Names have played themselves out is that there has been only a passing effort to ensure
that the names are correct and globally unique.

For example, consider the SSL certificates used to certify the Amazon.com web server, shown in
Figures 6-2 and 6-3. The issuer’s self-signed root certificate has the country name of “US,” the
organizational name “RSA Data Security, Inc.,” and the organizational name “Secure Server Certi-
fication Authority.” The distinguished name on the subject’s certificate states that Amazon.com is
located in Seattle, Washington, US, and that the common name is www.amazon.com , which is the
practice with SSL certificates.

The problem here is that the Subject’s certificate was not in fact issued by RSA Data Security: it was
issued by VeriSign, Inc., an independent company. As previously noted, RSA sold its certification
services to VeriSign in 1995—ten years before the certificate was issued! A footnote on page 16
of the VeriSign Certification Practice Statement version 3.0 notes that the Organization (O) field of
VeriSign’s CA Certificates states should say “VeriSign, Inc,” but that “An exception to this is the
Secure Server CA, which indicates “RSA Data Security, Inc.,” but is now a VeriSign CA.”[Ver05b]

Unfortunately, there is no reference to the CPS in either the Issuer’s Certificate or the Subject’s
Certificate, making the authority of the CPS over these certificates questionable at best. A secondary
problem is that Amazon.com is a Delaware corporation, not a Washington corporation.

www.amazon.com

6.2. REINTERPRETING THE HISTORY OF PKI 207

RDN

RD
N

C=NZ
National CA

O=University of Auckland
Organisational CA

OU=Computer Science
Departmental CA

CN=John Wilson

RDN

DN

Figure 6-1: X.500 directory and certificate model. A different certificate authority (CA) is attached to each part of the
directory to manage access control, while relative distinguished names (RDNs) define a path through the directory and
together from a distinguished name. From [Gut02c, Fig. 1], slightly modified and used with permission

% openssl s_client -connect www.amazon.com:https
...
CONNECTED(00000003)

Certificate chain

0 s:/C=US/ST=Washington/L=Seattle/O=Amazon.com Inc./CN=www.amazon.com
i:/C=US/O=RSA Data Security, Inc./OU=Secure Server Certification
Authority

Figure 6-2: The X.500 Distinguished Name (DN) for the subject (“s:”) and the issuer (“i:”) of the SSL certificate for
Amazon.com’s secure web server, read on March 23, 2005 with the OpenSSL command above. (Although not displayed
by OpenSSL, the client certificate was issued on 1/5/05 and expires on 1/6/06.)

Furthermore, since the CA’s name is not technically part of the Distinguished Name, if another CA
were to issue a certificate allegedly for Amazon.com but given to another entity, those two certifi-
cates would be indistinguishable in many web browsers. In practice this hasn’t been a problem, but
in theory it is a very significant problem. Thus, even though X.509 was built to give assurances of
globally meaningful identity, in practice it does not.

6.2.6 A taxonomy of PKI trust models
Kaufman, Perlman and Speciner have created a taxonomy of PKI trust models.[KPS02, §15.3] That
taxonomy discusses seven trust models which appear to cover all variations present or that have
been proposed:

Top-down models:

• The Monopoly Model, in which a single organization is universally trusted by all companies,
countries, universities, organizations, and individuals in the world. “This is a wonderfully

208 CHAPTER 6. The Key Certification Problem: Rethinking PKI

RDN

RDN

C=US
(VeriSign, Inc.)

O=RSA Data Security, Inc.
(VeriSign, Inc.)

OU=Secure Server Certification

DN

RDN

RDN

C=US
(VeriSign, Inc.)

ST=Washington

L=Seattle

O= Amazon.com Inc

RDN

DN

Issuer’s Certificate: Subject’s Certificate:

CN=www.amazon.com
RDN

Figure 6-3: A graphical representation of the X.500 distinguished names presented in Figure 6-2

simple model, mathematically,” the authors note dryly. “This is the model favored by organi-
zations hoping to be the monopolist.” There are many disadvantages to this model, not the
least of which is that “the entire security of the world rests on that one organization never
having an incompetent or corrupt employee who might be bribed or ticked into issuing bogus
certificates or divulging the CA’s private key”

This is the model that was proposed by [DH76].

• The Monopoly plus Registration Authorities Model, in which the monopolist has delegated
the task of registering individual keys. “This model’s advantage over the monopoly model
is that it is more convenient and secure to obtain certificates... However, all of the other
disadvantages of the monopoly model apply.”

• The Delegated CAs Model, in which the monopolist signs the delegating CA’s certificate,
and the delegated CA signs the subject’s certificate. The advantage to this approach is that a
relying party can see the chain of trust.

• The Oligarchy Model, in which there are many trust anchors, each of which can issue certifi-
cates for any name in the universe. This model spares users monopoly pricing, but it is less
secure than the monopoly model, since a compromise at any of the trust anchors can subvert
the entire system.

This is the model that has been deployed in today’s browsers and S/MIME clients.

• The Top-Down Model with Name Constraints, in which the root CA places constraints on
the kinds of names that can be certified by the delegated CAs. This model eliminates some
of the problems with both the Monopoly model and the Delegated CAs Model, but it still has
the problems that are inherent in a single root.

6.2. REINTERPRETING THE HISTORY OF PKI 209

Public Key Server -- Index ‘‘george bush ’’

Type bits /keyID Date User ID
pub 1024D/5FC77CDB 2005/04/12 George W. Bush <gwbush@whitehouse.gov>
pub 1024D/0CB5C0BC 2004/09/21 George Walker Bush (DOD) <president@whitehouse.gov>
pub 1024D/53BB7633 2004/03/04 George Walker Bush (DOD) <president@whitehouse.gov>
pub 1024D/CC9755AF 2003/09/04 George W. Bush (POTUS) <president@whitehouse.gov>
pub 1024D/D53B305C 2003/06/27 George W. Bush (Seal of the President of the U.S.)

<george@whitehouse.gov>
pub 1024D/5ED285FC 2003/05/06 Thomas A. Amoroso, MD FACEP (George W Bush Delenda Est)

<tamoroso@aq.org>
pub 1024D/8135507E 2003/03/28 George Bush <bush@hell.com>
pub 1024D/35687EDD 2001/12/19 George W Bush <don’t_mess_with_Texas@yazhoos.gov>
pub 1024D/9E26D3E6 2001/10/26 George W. Bush <gwbush@whitehouse.gov>
pub 1024D/5E315572 2000/09/15 george w bush <pdcl_2@hushmail.com>

Figure 6-4: A search for the string “george bush” on the PGP public key server on April 29, 2005, shows the kinds of
attacks that can be waged against the Anarchy Model. It is highly unlikely that any of these keys actually belong to any
individual named “George Bush.”

This is the model that was adopted by PEM. The “name constraints” part of the model is
similar to the Domain Name System.

Non-Hierarchical Models:

• The Anarchy Model, in which each user is responsible for configuring their own trust an-
chors. “To get the key of someone whose key is not in your set of trust anchors, you can
search through the public database to see if you can find a path from one of your trust an-
chors to the name you want. This absolutely eliminates the monopoly pricing, but it is really
unworkable on a large scale.”[KPS02]

This is the is the model that is used by PGP.

Kaufman, Perlman and Speciner readily admit that this model works well for small com-
munities where the members are trustworthy, but that it falls apart when there are hostile
players who inject many bogus certificates into the system—especially when nothing limits
the number of certificates that each player can create. (See Figure 6-4).

• The Bottom-Up Model with Name Constraints, in which each organization creates their a
private PKI and then allows other CAs to issue names for a particular portion of the global
namespace. This is similar to the model adopted by Lotus Notes, and it is becoming the
defacto model of many PKI “bridges” that are currently being deployed in the United States.

Kaufman, Perlman and Speciner seem to like this model a great deal (not tremendously sur-
prising, considering the team’s history), although they note that there is nothing to prevent a
single “carbon-based life form” from obtaining multiple certificates under different identities.
That might even be a feature.

6.2.7 The SSL Server PKI today: E-Soft’s survey
So just how successful was Netscape and the rest of the Internet community in establishing the PKI
certificate infrastructure on which rests SSL’s resistance to man-in-the-middle attacks?

210 CHAPTER 6. The Key Certification Problem: Rethinking PKI

Count %
Total Valid Certificates 88,690 42.3%
Invalid Certificates:

Certificate-Host Mismatch 49,563 23.6%
Unknown Signer 44,963 21.4%
Self-Signed 17,891 8.5%
Expired Certificate 16,547 7.9%

Total Invalid Certificates: 120,906 57.7%

Table 6.1: Results of the Security Space March 2005 survey of invalid SSL certificates. Invalid certificates do not total
because some certificates have multiple problems.[Sec05b]

The E-Soft security consulting firm in Ontario, Canada, has conducted a monthly “Security Space”
survey of web servers across the Internet since September 1998. The company’s March 1st, 2005
survey of 209,596 responding SSL-enabled servers found that only 88,690 servers (42.3%) had
certificates that were valid. Of the remaining certificates, 49,563 (23.6%) had a certificate-host
mismatch; 44,963 (21.4%) were signed by an unknown CA (that is, a CA not distributed with the
Microsoft Internet Explorer browser); 17,891 (8.5%) were self-signed; and 16,547 (7.9%) were
expired. [Sec05b] More than 10 years after Navigator first shipped, it seems that more than half of
the sites that are using SSL are nevertheless vulnerable to man-in-the-middle attacks because they
do not have valid certificates. These results are presented in Table 6.1.

To analyze the certification trends, we downloaded six years of the E-Soft’s survey data and per-
formed a meta-analysis to determine the trends of self-signed and expired certificates over that time
period. After working with E-Soft to correct a variety of data discrepancies that were observed, the
following conclusions were reached:

• The significant drop in number of SSL site certificates between September 1998 and March
1999 is due to a change in the way that E-Soft found the sites that it included in its analysis.
At first, sites were found through a combination of link-following from existing sites (“spi-
dering”) and systematic probing of the IP address space and, in one case, a download and
probing of an entire top-level-domain. Reinke believes that the probes and zone transfers
found many test systems that were not designed for public use. In March 1999 E-Soft ceased
probing for web sites and restricted itself to those found through the “spidering” technique.

• E-Soft did not obtain a copy of the GeoTrust CA key until the fall of 2001. As a result, the
spike in sites that are signed by an “unknown signer” June 2001 through October 2001 is
probably a result of GeoTrust coming online; the sudden drop of sites Security Space reports
as being signed by an “unknown signer” in November 2001 is probably the result of E-Soft
acquiring the GeoTrust CA key.

• The steadily increase number of sites signed with an “unknown signer” in 2003 and 2004
may be the result of VeriSign using a new key for signing sites that E-Soft cannot use because
of license restrictions.[Rei04]

Figure 6-5 shows the total number of SSL certificates included in the E-Soft survey over the six years
of data from September 1998 through March 2005. Figure 6-6 shows the percentage of certificates
that were valid.

6.2. REINTERPRETING THE HISTORY OF PKI 211

A large number of the “unknown signers” may actually be web sites created with the OpenSSL
CA.pl perl script. This script creates both private keys for a fictional “snake oil CA” and for the
web site as well. Such certificates would appear as “unknown signers” in the E-Soft data, not as
self-signed sites. This hypothesis cannot be verified, as E-Soft has declined our invitation to share
its raw data so that an analysis of X.509 Subject and Issuer names can be performed.

Despite these caveats, the E-Soft data is important because it reflects X.509 certification trends in
general, rather than those of the most popular sites on the Internet. As such, the data indicates that
web site administrators have been steadily increasing both the number of systems equipped with
SSL. Meanwhile, the percentage of X.509 certificates that were “valid” slowly climbed from roughly
10% to somewhere between 40% and 50%. Finally, while the number of self-signed certificates has
remained more-or-less constant, the number of “unknown signers” has steadily increased.

On the other hand, the Netcraft April 2005 web server survey found 62 million web sites—counted
by hostnames—a gain of roughly 1.7 million sites over the March 2005 survey.[Net05a] Of these,
approximately 28 million were labeled by Netcraft as “active.” If these numbers are both to be
trusted and comparable with the E-Soft numbers, then there are roughly 100 times as many web
sites HTTP-only web site than web sites that implement both HTTP and SSL-protected HTTPS. This
may be reasonable, as many web sites clearly do not have an SSL component. Likewise, many
businesses contract with third-party web sites for services such as shopping carts or credit-card pro-
cessing; these services are typically provided under the third party’s domain name. Thus, thousands
of web sites that claim to be “secure” may, in fact, all use the same third-party SSL domain name to
collect a credit card numbers. Fundamentally, such outsourcing is indistinguishable to users from
a phishing attack.

Perhaps SSL will see deeper penetration in another 10 years...

6.2.8 The SSL Client PKI today: Counting Thawte Freemail Certificates
Gutmann notes there are few studies available that allow one to quantify the success of client-
side PKI deployment. Most studies that consider PKI for authenticating users tend to be post-
mortem analyses of failed projects.[Gut03, p.45] But surprisingly, one source of data to gauge
the success of client-side PKI is the serial numbers that Thawte Consulting places on its Thawte
Freemail certificates.

Thawte Freemail Digital ID certificates are unique in today’s world: these certificates are the only
certificates for which the CA key is widely distributed by software vendors, that work with S/MIME,
and that are available for free. Thawte’s original business model was to give away the certificates
with the Common Name “Thawte Freemail Member” and then to charge the certificate holder a
small fee to have the user’s actual name appear in the Common Name field. Thawte refuses to
comment on the success of this business strategy, but given the apparent lack of individuals using
Freemail Certificates, it has not been very successful.

Every X.509 certificates contains a certificate serial number. According to Section 3.3.13 of the draft
X.509v4 standard, certificate serial numbers must be “An integer value, unique within the issuing
authority, which is unambiguously associated with a certificate issued by that CA.”[Tel01, p.14]
That is, no two certificates from a confirming CA may have the same serial number, but otherwise

212 CHAPTER 6. The Key Certification Problem: Rethinking PKI

Q
u

es
ti

o
n

ab
le

 s
am

p
lin

g
 re

g
io

n
Q

u
es

ti
o

n
ab

le
 s

am
p

lin
g

 re
g

io
n

setacifitreC LSS fo htworG

0

000,05

000,001

000,051

000,002

000,052

peS
-9
8

De
c-
98

a
M
r-9
9

Ju
n-
99

peS
-9
9

De
c-
99

a
M
r-0
0

Ju
n-
00

peS
-0
0

De
c-
00

a
M
r-0
1

Ju
n-
10

peS
-0
1

De
c-
01

a
M
r-0
2

Ju
n-
20

peS
-0
2

De
c-
02

a
M
r-0
3

Ju
n-
30

peS
-0
3

De
c-
03

a
M
r-0
4

Ju
n-
40

peS
-0
4

De
c-
04

ce

rt
if

ic
at

es
 in

 s
u

rv
ey

Figure 6-5: Total SSL Certificates in the E-Soft SSL Survey. The full survey data can be found at http://www.
securityspace.com . (For comparison, the Netcraft April 2005 web server survey found 62 million web sites—
counted by hostnames, as opposed to IP addresses. Of these, approximately 28 million were labeled by Netcraft as
“active.”[Net05a])

serial numbers can be whatever the issuer wishes. Thus, a CA could put on its serial number the
time-of-day down to the nanosecond that the certificate was issued, a hash of the certificate’s public
key, or even an ordinal counting the total number of certificates that the CA has issued.

In the course of working on this thesis, we obtained a Thawte Freemail certificate on September
10, 2004 with serial number 0d 04 d8 (85320810). A second certificate was obtained for an
unrelated purpose by Marvin Garfinkel on September 26, 2004, with serial number d1 1d a9
(85956110). These numbers seemed suspiciously close, possibly indicating that Thawte might be
issuing certificates in sequential order.

To test this theory, we obtained two Freemail certificates on March 25, 2005. Those certificates were
obtained 20 minutes apart and had decimal serial numbers of 940,275 and 940,282, a difference
of 7. Once again, this seems to indicate that Thawte was indeed issuing certificates in sequential
order, although it wasn’t possible to tell from this sampling if numbers are being skipped. (See
Table 6.2.)

A linear regression of all four certificate serial numbers and issuance dates found an average certifi-
cate issuance rate of 446 certificates/day (R2 = 0.99993443, p = .00002). Since Thawte’s certificates
have a lifetime of 1 year, a rate of 446 certificates/day translates into roughly 160,000 certificates

http://www.securityspace.com
http://www.securityspace.com

6.2. REINTERPRETING THE HISTORY OF PKI 213

0

01

02

03

04

05

06

07

08

09

peS
-9

8

Dec
-9

8
a

M
r-9

9

Ju
n-

99
peS
-9

9

Dec
-9

9
a

M
r-0

0

Ju
n-

00
peS
-0

0

Dec
-0

0
a

M
r-0

1

Ju
n-

10
peS
-0

1

Dec
-0

1
a

M
r-0

2

Ju
n-

20
peS
-0

2

Dec
-0

2
a

M
r-0

3

Ju
n-

30
peS
-0

3

Dec
-0

3
a

M
r-0

4

Ju
n-

40
peS
-0

4

Dec
-0

4

hctamsim tsoh-trec%

dengis-fles%

rengis nwonknu%
deripxe%

dilav%

Q
u

es
ti

o
n

ab
le

 s
am

p
lin

g
 re

g
io

n

Figure 6-6: Percentage of SSL certificates that are valid or that are invalid because they have a certificate-hostname
mismatch, they are self-signed, they are signed by an unknown signer, or because they are expired. This graph based
on an analysis of the E-Soft survey at http://www.securityspace.com

that are outstanding at the present time. This is roughly 75% of the number of SSL server certificates
in the E-Soft survey.

One way to check the accuracy of this number would be extrapolate back and see if the lifetime
count of Freemail certificates makes sense. If Thawte really has issued 940,000 Freemail certificates,
than the current rate could account for approximately 6 years of issuance. In fact, the Thawte
Freemail CA certificate has validity dates from 12/31/1995 through 12/31/2020—indicating that
Thawte has been making certificates for at least 9 years with this key. The regression numbers are
consistent if the Freemail service ramped up from a standstill to its current rate of issuance.

A spokesperson for Thawte said that she “can neither confirm nor deny the e-mail certificate vol-
umes we produce due to competitive reasons.”[Bax05]

For comparison, on March 20, 2005 the PGP key server keyserver.kjsl.com was found to have
305,884 keys in its key database—a collection rate of roughly 30 thousand keys per year, as the
key servers first became generally available in 1994. As keys cannot be deleted form the PGP key

keyserver.kjsl.com

214 CHAPTER 6. The Key Certification Problem: Rethinking PKI

Certificate SN
Principal Hex Decimal Date Elapsed Days
Simson Garfinkel 0d 04 d8 853,208 September 10, 2004 0
Marvin Garfinkel 0d 1d a9 859,561 September 26, 2004 16
Jared Garfinkel 0e 58 fe 940,275 March 25, 2005 196
Draken Garfinkel 0e 58 fa 940,282 March 25, 2005 196

Table 6.2: Thawte Freemail certificates obtained for this dissertation

server, it is unknown how many of these keys are active and how many are abandoned.[Har05]

The E-Soft report shows that the use of PKI for certifying servers has been reasonably successful:
both the number of SSL servers and the number of servers with valid certificates has steadily in-
creased. It’s only the percentage of servers with valid certificates that has leveled off.

On the other hand, the Thawte analysis makes it clear that the use of PKI for certifying the identity
of individuals on the public Internet has been a failure. Although there are many organizations that
use PKI technology internally, this technology is invariably used to certify a pre-existing relation-
ship, not to convey identity to unrelated third parties. That is, these are private PKIs, not Public
PKIs. Some people call this use of PKI technology “PKI with a little-p.”

6.2.9 On the difficulty of obtaining a Thawte Freemail certificate
One reason that might explain the relative paucity of user certificates issued by Thawte is that
Internet users simply don’t think that it is important to obtain these certificates.

To test this possibility, we documented the step-by-step procedure required to obtain a Freemail
certificate. In all, 26 steps were required:

1. Go to http://www.thawte.com/ and select “Personal E-mail certificates” from a hidden
menu.

2. Click a button labeled “join.”

3. Agree to Thawte’s 2000-word Certificate Practice Statement.

4. Specify the “Charset For Text Input,” name, date of birth, and nationality. (Thawte does not
issue certificates to children under 13, possibly to avoid problems with the US Children’s
Online Privacy Protection Act. Thawte also does not issue certificates to people over 95 years
old.)

5. Provide a National Identification Number (e.g., a driver’s license number, passport number,
or social security number).

6. Provide an email address.

7. Choose Language Preference and Charset Preference settings for the certificate.

8. Pick a personal password. According to Thawte, “This is the most important page in the entire
enrollment process.”

9. Enter a preferred contact phone number and answers to at least 5 challenge questions. The
questions include “What is your mother’s maiden name? What is your father’s middle name?

http://www.thawte.com/

6.2. REINTERPRETING THE HISTORY OF PKI 215

What do you enjoy doing the most? What is your partner’s nickname? What is the make of
your fridge? What is the location of your dream holiday? Who is your favorite author? Who
is your favorite actor? What is your car registration? How many pets do you have?”

10. Confirm enrollment information by clicking on a link.

11. Receive an email message sent to the email address that was provided in Step 6.

12. Click on the link that is sent in the email and enter the “Probe” and “Ping” values that were
sent. (e.g. “6LCUcsXpsarvnRTxy4yf9EU” and “K4nUHbt9TdsJ7T79w8pXUE”)

13. Check the box “I enrolled because an ESO requested I obtain Name Validation or Strong
Extranet Certificates” if “you are enrolling because an PKI Security Officer (SO) has requested
that you obtain a Name Validation Certificate or a Strong Extranet Certificate.” (Notice that
the ESO acronym is never defined.)

14. Enter the email address provided in Step 6 as a username, and enter the password provided
in Step 8 into a pop-up browser box.

15. Request an “X.509 Format Certificate” by clicking the “request” button that contains a shop-
ping cart. (The other option is to click on the button labeled “test” but users are told “Please
do not request these certificates unless you know what you are doing.”)

16. Select the program you are using: Netscape Communicator or Messenger, Microsoft Internet
Explorer, Lotus Notes R5, OperaSoftware Browser, or C2Net SafePassage Web Proxy.

17. Confirm your employer. In the case of Freemail certificates, the only employer that can be
selected is “No Employment Information Available.”

18. Select the email address to put on the certificate. (If the box isn’t checked, the certificate
won’t work.)

19. Select which of the “Strong Extranet” certifications that should appear on the certificate.

20. Configure X.509v3 certificate extensions, either by accepting the default extensions, or by
explicitly configuring them. Users are advised to avoid clicking on configure “unless you
know what you are doing.”

21. Select either a 2048 (High Grade) bit key or a 1024 (Medium Grade) bit key.

22. Wait for the Key Generation to complete.

23. Confirm the certificate request.

At this point Thawte sends email #2 which says “Thank you for requesting a certificate from us.
We will issue it as soon as possible and notify you by email when it is done.”

By the time the email was received, the certificate was in fact already issued.

24. Click on the easy-to-miss link labeled “here” to go to the personal e-mail certificates manage-
ment page.

25. Click on the word “Navigator” (if you are using Mozilla Firefox.)

26. Click on the button with an icon of a dog labeled “fetch.”

When this process was finished, there is no visual indication that anything has happened, although
the certificate had been installed in the web browser. Using the certificate with Mozilla Thunderbird

216 CHAPTER 6. The Key Certification Problem: Rethinking PKI

required exporting the certificate and private key from Firefox and importing the certificate into
Thunderbird—a complicated process. But perhaps the most infuriating part of this entire process
is the fact that only certifies the holder’s email address appears on the Freemail certificate, yet
the registration process requires that the user provide a full legal name, national identification
number (such as a social security number or passport number), date of birth, and other confidential
information. This is a clear violation of the European Union’s data protection rule, which requires
that the collection of personal information to be minimized. What’s even worse, it was evident that
the only piece of information that Thawte actually verified was the email address. This verification
could have been trivially performed simply by mailing the certificate to the user’s email address, or
by mailing a link that could be used to download the certificate.

Based on this analysis, we concluded that it is likely that only the most highly motivated individuals
will go through this process and provide such personal information to Thawte.

As an aside, it is also worth noting that neither the mail that the Thawte certificate server sends out
nor the mail sent by the company’s press officer is digitally signed. One could also question a CA
certificate that has a validity period through 12/31/2020 but only a 1024-bit RSA public key.

6.3 Alternatives to X.509
X.509 is important because it is the basis of the Internet’s PKI. But X.509 is not the only PKI standard
currently in use. This section briefly reviews four other PKI systems and explores how they perform
key certification.

6.3.1 Key certification and distribution in PGP
PGP is an email security program that was specifically written to enable anti-government activists
in the US and Central America to have electronic communications that could not be intercepted by
their government.1

Because of this design goal, PGP does not require trusted third parties to either make or certify
keys. Instead, PGP users can make their own keys and immediately use them to sign messages.
Users can send their keys out over networks or place them on floppy disks and distribute them
using “sneaker-net.”

Keys can also be downloaded from an untrusted location (e.g., a key server or a web page) and
authenticated through the use of the key’s hash, or “fingerprint,” that is itself obtained in a trusted
manner. For example, it is common practice in some communities for people to place hashes of
their PGP fingerprints on their business cards.

PGP provides for third-party key certification using a mechanism that Zimmermann calls “the web
of trust.” Briefly, PGP allows any PGP user to “sign” a key belonging to any other PGP user. By
signing a key one is making an assertion that the public key really belongs to the individual whose
name is on it. PGP then allows users to decide which individuals that they trust and which they

1Although in 1991 Zimmermann said that he released PGP because he feared that legislation pending in the US
Senate would have made the use of strong cryptography illegal in the United States, he has since said that he specifically
intended for PGP to be used by democracy activists in Central and South America. [Zim00]

6.3. ALTERNATIVES TO X.509 217

do not. In this manner, the set of trusted keys for each PGP user is a graph that places the user at
the graph’s center, surrounded by edges that connect the user to a set of trusted individuals, and
finally connected through a second set of edges to all individuals that are certified by all individuals
that are trusted by the PGP user. Although in principle the web could extend to higher orders, the
initial PGP implementation limited the span of the trust graph to two, and that limitation has been
preserved ever since.

PGP appears to work well in small trusted groups, but its promoters have not been successful in
scaling the PGP key certificate model to a large user base.

6.3.2 SPKI/SDSI
The simple public key infrastructure (SPKI) / Simple Distributed Security Infrastructure (SDSI) is
an effort to overcome the complexity and scalability problems of X.509-based PKI systems. In SDSI
public keys are valid globally, but identifiers (“names”) bound to public keys are only valid locally
to the entity that creates the binding. Multiple names per key are allowed. In SPKI, authorizations
are made locally. SPKI/SDSI is specified by RFCS 2692[Ell99] and RFC 2693[EFL+99].

Although there has been some academic work with SPKI/SDSI technology, there have been no
significant deployments.

6.3.3 PKI and Key certification and distribution in Lotus Notes
With its integrated PKI and more than 100 million users, Lotus Notes is one of the most successful
deployments of PKI technology to date.[Zur05b] One of the reasons that Notes has been so suc-
cessful is that each organization is an independent PKI island: there is no attempt to place all of the
various Notes installations under the umbrella of a single parent PKI. As a result, each organization
deploying Notes is free to establish its own identification and certification policies.

Notes uses a proprietary PKI system in which the system administrator makes each user’s keys in
advance, certifies them, and distributes the keys to Notes users in a so-called “user file.” The public
keys are stored in the Notes directory. Since every Notes user in the directory has a key pair, it is a
simple matter to encrypt mail for any recipient that a Notes user can look up.

Instead of using X.500-style Distinguished Names, the Notes identification system has the appear-
ance of the individual’s name, a slash, and the name chosen by Notes administrator for their Notes
installation. Thus, Zurko’s Notes name is:

Mary Ellen Zurko/Westford/IBM

It is easy to see that Zurko’s affiliation is with some kind of facility that IBM has in Westford. The
name doesn’t make clear whether Westford is a geographic location or an area of specialization,
but it ultimately isn’t very important.

Organizations that wish to exchange secure information with each other can cross-certify. When
cross-certification occurs, the installation name naturally appears when identities are displayed in

218 CHAPTER 6. The Key Certification Problem: Rethinking PKI

the Notes interface. So if IBM chooses to cross-certify with Philips and Zurko receives a signed
message from Jan Brands, the name she sees in her Notes client might look like this:

Jan R. Brands/EHV/SC/PHILIPS

In the case of Brands, not only is it easy to see that his affiliation is with Philips, but it is also
evident that he is with a group called EHV that’s part of some group called SC. We don’t need
to know that EHV means “Eindhoven” and that SC means “Semiconductors” in order for this Jan
R. Brands readily distinguishable from another Jan R. Brands who might be in a different Philips
group. (The John Wilson problem would rear its ugly head if Philips had two Jan R. Brands working
at the Eindhoven office.)

This is not simply an X.509-style certificate without the individual components (O, OU, C and L)
being labeled: In this hypothetical example, IBM’s management has made an affirmative decision
to sign the root key of the Phillips Corporation and give it the name /PHILIPS . IBM’s manager
could just as easily given the Philips Corporation it the name /YUMMY.

Any organization can purchase a copy of Notes and call itself IBM. But unless that organization
cross-certifies itself with IBM, the copy of the Notes client running on Zurko’s computer won’t
display the other organization’s certificates with the /IBM suffix.

The Notes S/MIME implementation allows individual Notes users to make their own personal cross-
certification decisions based on received S/MIME certificates. This certification path is shown when
signed messages are displayed in the notes interface; the interface even allows the user to specify
alternative names that should be displayed, as shown in Figure 6-7.

Using the notation introduced earlier in this chapter, Notes certified identities could be represented
like this:

{name, kname}sig-pfname-pf

If we expand our notation so that information displayed on the screen is printed in CAPITALIZED
BOLDFACE, then Notes certified identities actually appear like this:

{NAME, kname}sig-pf/NAME-PF

Thus, Notes uses global identifiers with locally meaningful names. This approach makes it rather
easy for Notes users to visually distinguish identities that have been certified by different Notes
administers—even in the case where Notes domains have cross-certified.

6.3.4 Key certification and distribution in Groove Virtual Office
Built by many people who had worked on the original Notes system, the Groove Virtual Office is
designed to overcome many of the problems that were discovered through the use of Lotus. For

6.3. ALTERNATIVES TO X.509 219

Figure 6-7: Notes allows individual users to certify S/MIME keys that they receive. In this panel, Jan Brands at Philips
is given the option of certifying a particular Thawte Freemail certificate. Image courtesy of Jan Brands, used with
permission.

Figure 6-8: When Notes displays a digitally signed message, the distinguished name on the certificate and the certifier
are displayed at the bottom in the status. In this case, the display indicates that the identity was certified as a result of
the trust dialogue shown in Figure 6-7. Image courtesy of Jan Brands, used with permission.

220 CHAPTER 6. The Key Certification Problem: Rethinking PKI

example, many people participate in different organizations using different kinds of identities: A
consultant might have the organization that she belongs to, where she is an employee, the organi-
zation where she is consulting, where she is a contractor, and a parent/teacher association, where
she is a parent. Groove recognizes that the same individual can have multiple roles by allowing a
single user to work with multiple identities without having to log out and log back in to the Groove
system.

Each Groove identity consists of a key pair that is used for signing and another that is used for
sealing.2 Each user’s sealing key pair are certified by the signing keys. Groove supports three
key certification models. When identification names for the keys are displayed in the Groove user
interface (Figure 6-9), they are displayed in one of five colors, the color choice depending upon the
certification model that is in use and the level of certification that the key has received:

• A single Groove administrator can certify all of the keys used in the organization. This is the
traditional PKI model. Groove shows such identifies in teal.

• Two organizations choose to cross-certify—that is, to trust each other’s identity assertions.
Groove displays these identities in blue.

• Individuals can trade keys (easily done through the Groove interface) and then directly certify
each other’s keys—for example, by reading a key fingerprint over a telephone. This is similar
to the PGP direct certification model. Groove displays these identities in green.

• Identities that are unauthenticated are displayed in black.

• If Groove discovers that there are two identities in a user’s address book that have the same
name, it will display those identities in red. The user is then given a chance to disambiguate
the two identities.[MBA05] (Figure 6-10)

Using the notation introduced earlier, the visual displayed Groove certification would appear like
this:

[
{NAME, kname}sig-pf/NAME-PF

]
CERTIFICATION-TYPE

According to Groove’s designers, this certification model has worked well in circumstances that are
not amenable to traditional certification practices:

“For example, negotiators in the talks between the Sri Lankan government and the
Tamil Tiger rebels used Groove Virtual Office. Neither side wanted the other to run a
certifying server. Even cross-certification was unacceptable because of intense political
sensitivities.. . . With direct authentication, two parties who want to communicate se-
curely can authenticate each other without having to trust a third party or even each
other. In the case of the Sri Lanka peace talks, this allowed the two sides to communi-
cate in a neutral space that no one controlled. In a corporate world, direct authentica-

2Different keys are used to so that an organization can escrow sealing keys without the need to escrow signature
keys. This allows the organization to unseal the contents of any message without giving the organization’s management
the ability to sign messages so that they appear to be signed by the employee.

6.3. ALTERNATIVES TO X.509 221

Figure 6-9: the groove launch bar shows the identities that
are known to the Groove user. Where the identities have
been certified by an administrator through the use of a PKI,
Groove uses the Lotus Notes syntax of a slash followed by
the organization’s name. Different colors are used for dif-
ferent kinds of authentication. Illustration courtesy Groove
Networks. Used with permission.

Figure 6-10: If two names in the Groove Launchbar have
the same visual name but a different public key, the user is
invited to resolve the conflict with the Resolve Name Conflict
panel. To resolve the conflict, the names are given different
visual appearances. Illustration curtesy Groove Networks.
Used with permission.

222 CHAPTER 6. The Key Certification Problem: Rethinking PKI

tion allows you to securely communicate with an external party without having to wait
for your IT department to issue a certificate.” [MBA05]

6.3.5 Gutmann’s survey recommendations
Finally, Gutmann has performed a “PKI Technology Survey and Blueprint”[Gut01], which looks at
the question: “ If you asked experienced programmers, sysadmins, and technical project managers
how they would implement certificate management, what would the technology framework for
your PKI look like?” The survey then creates a blueprint for deploying PKI based on the responses
from his participants. The survey makes the following recommendations:

• For an identifier, replace the X.509 Distinguished Name with either an email address, a DNS
name, or an IP address.

• For a unique identifier, replace the X.509 Distinguished Name with a globally unique identifier—
for example, a randomly chosen 128-bit number.

• For storage of certificates, replace the X.500 directory with a standard database.

• For access to certificates, replace the OSI DAP or the revised LDAP with an HTTP-based
protocol.

• For validity checking, replace the X.509 certificate revocation lists with a repository presence
check: if the certificate is in the repository, it is valid, otherwise it isn’t.

• For historical queries, replace the timestamp services that have evolved with some kind of
system based on authority records.

It’s important to note that all of these changes can be implemented without changing the basics of
X.509 certificate formats, the S/MIME email encryption standard, or a multitude of other technol-
ogy. Most of the changes can be implemented simply by changing the way that certificate Subjects
are represented, how the certificates are stored, and by abolishing the existing revocation services.

6.4 Fundamental Problems with PKI
In 1996, Davis and others asserted that was simply too complex or too under developed to be
deployed to end users.[Dav96] Davis argued that the problem of certifying root keys for CAs would
be a fundamental stumbling block in deploying PKI. Even if the root keys (aka “root anchors”) were
distributed with software, he argued, users would still need to manually verify those roots and
verify them as being correct, so that they could be ensure that the security chain was unbroken.
Otherwise there would be no way to trust the trust infrastructure.

In fact, the reverse seems to have happened. Roots were distributed with consumer software, but
consumers did not verify the roots. In fact, consumers seem to be generally uninformed that the
roots even exist! Much of the entire trust infrastructure distributed with software is simply invisible
to most users. This is fine as long as things work properly. Frequently, it does not. As evidenced
by the E-Soft survey (Section 6.2.7), it is a common experience on the Internet today to reach an
SSL-protected web site that does not have a valid certificate. Users sensibly respond by ignoring
these messages. (e.g., Figure 6-11) Today it is a relatively rare happenstance that the PKI that we
have deployed actually protects a user from a spoofing attack.

6.4. FUNDAMENTAL PROBLEMS WITH PKI 223

Figure 6-11: On the Internet today, when an SSL warning appears in a web browser, almost invariable the errors is the
result of a configuration problem or the failure to have a registered CA. Spoofing attacks are almost never the source
of these errors. This figure shows the error generated by Microsoft Internet Explorer at MIT when the user attempts to
visit the MIT Certification Authority web site.

If PKI ever successful, then the day will come that PKI warnings have largely been eliminated except
for the occasional attack. Otherwise there is no reason to have the warnings at all. But even if all
of the bugs could be worked magically worked out, PKI itself would still not “work” as one might
wish. This is because there are fundamental problems with the X.500/X.509 approach of having
names that on public key certificates that represent the legal names of specific individuals. Those
problems are:

• Names are not unique (the John Wilson Problem).

• Revocation appears to be an insolvable problem.

• The correct number of Public Files is not determinable.

• X.509 Distinguished Names are too complicated for people to understand.

• X.509 Distinguished names aren’t distinguished.

• The IETF Standard for the format of ARPA Internet text messages (RFC 822) allows comments
in email addresses that can conflict with X.509 Distinguished Names.

To understanding these failings, this section will analyze each in turn with respect to three possible
usage scenarios:

224 CHAPTER 6. The Key Certification Problem: Rethinking PKI

Alice

Alice wants to contact the web site of Kovagis, a company that she has never
done business with before, which has obtained a shipment of super-cool mo-
torcycles. Alice wants to reserve a bike but Kovagis will only accept payment
by bank transfer. Alice wants to be sure that is at the right company before
she gives them her bank information.

Bob

Bob wants to send a message to Alice that is digitally signed with his key
and sealed with her’s, so that nobody else can read it. Bob met Alice at
CHI2005 but he neglected to get her credit card; he knows that she works at
MIT and he wants to propose to her, so it is very important that no one else
intercept the message or know that it is from him. Unknown to Bob, Alice
has co-workers who are both malicious and nosy.

Catherine

Catherine was 8 when Grandmother Goldenbucks died in June 2006.
Grandma, an early employee at Microsoft, used a digital signature to sign
her will a will that which left a ton of money to Catherine. In 2016 Catherine
turns 18 and is surprised to learn that the terms of Grandma’s will are now
being challenged by other members of the Goldenbucks family.

PKI comes with significant costs to the users and to society—costs both in the fees that must be
paid to the CAs, the cost of running the CAs, and the inability of users to create and manage their
own keys without a CAs blessing. If PKI can’t protect against these kinds of targeted attacks, then
it might be time to reevaluate the decision to use PKI in the first place.

6.4.1 Names are not unique (the John Wilson Problem)
Although cryptographically secure keys are unique by definition, names are not. When looking up
a name in the Public File, there is no guarantee that there will only be one key with that name in
the database. Ellison identified this failing as the “John Wilson Problem,” named after a co-worker
at Intel who had the same name as seven other Intel employees.[Ell02]

Intel’s IT department attempted to disambiguate the John Wilsons by forcing the individuals to use
their middle initials in their email addresses and on their certificates (each of the John Wilsons
fortunately had different initials). Ellison writes that this attempt to solve the John Wilson Problem
was not successful because those middle initials were not significant to people outside of Intel. As
a result, each John Wilson routinely received paper and electronic mail destined for another.

On one occasion, two John Wilsons were ticketed on the same flight from the Seattle International
Airport to Portland. As it turns out, they were given each other’s tickets and boarding passes! This
was a significant problem because one John Wilson was continuing on a second flight to Eugene

6.4. FUNDAMENTAL PROBLEMS WITH PKI 225

while the other had Portland as his terminal destination. “The solution was for John to go to the
gate and have them page John Wilson—and then, when the other John Wilson appeared, trade
boarding passes.” [Ell02, p.168] When Ellison tells this story in person, he stresses the fact that
the incident happened after the heightened security measures following the 9/11 terrorist attacks
were implemented. Ellison notes that the airline simply did not have enough information in its
reservation database to disambiguate between the two individuals.

Gutmann observes that the practical impact of the John Wilson problem is that X.509-based sys-
tems generally “turn a key distribution problem into an equally intractable name distribution
problem.”[Gut02b, p.4]

Let’s see how Alice, Bob and Catherine handle the John Wilson Problem:

Alice

Alice is very concerned about the John Wilson Problem: how does she know
that the Kovagis web site that she has reached is the correct Kovagis Cor-
poration? She knows that Kovagis is the name of the company, but what
if some group of hackers filed a “Doing Business As” form with the City of
Cambridge and obtained their own certificate for Kovagis. (Mazières re-
ports that a DBA from Cambridge is all that was required for obtaining a
certificate from VeriSign.[Maz00]) Since Alice has never done business with
Kovagis, nor have any of her friends, she is out of luck. Of course, if they had
done business with Kovagis, Alice could rely on her friends’ certification—
she wouldn’t need the certification by an allegedly trusted third party.

Bob

If Alice is the only Alice at MIT, then Bob is fine: he can just download her
certificate from the MIT certificate server and send her an email. On the
other hand, if there is more than one Alice in the directory, then Bob has
a problem, for has no obvious way to distinguish between them. He could
of course send email to each one and ask if she is the Alice that he met
at CHI2005, but if Alice’s evil co-worker Alice B. gets the email, she will
probably bluff back in an attempt to get Bob to spill the beans.

226 CHAPTER 6. The Key Certification Problem: Rethinking PKI

Catherine

Catherine’s evil relatives are claiming that the Grandmother Goldenbuck
who signed the digital will wasn’t really the Goldenbuck who worked at
Microsoft, but the woman’s sister who lived in Kirkland and never really
amounted to much. (They had a wicked father who gave all of his daugh-
ters the same first name but different middle initials. Alas, both daughters
resented their middle initials and stopped using them.) At this point, Cather-
ine and her evil relatives all need to go to court and resolve the validity of
the will through traditional fact-finding techniques such as testimony and
the examination of other contemporaneous documents.

An alternative solution, notes Gutmann, is to use public keys themselves as global identifiers, since
they are unique, and to allow users or local administrators to create their own “local identifiers” to
describe who the keys actually belong to. This is the approach used by both PGP and SPKI/SDSI.
Sadly, this solution doesn’t work for Alice, Bob or Catherine. They all need the ability to a PKI-
based solution to provide high assurance for an initial, unmediated transaction. PKI lets them
down. Indeed, the problem may not be solvable, and may instead represent a risk that is best
managed through the use of insurance, rather than cryptography.

6.4.2 Proper revocation appears to be unsolvable
A certificate can be thought of as a local copy of a remote datum. By replicating and distributing
certificates throughout a system, it is possible to reduce the load on the Public File and to achieve
high availability in the event of a network partition.

Kohnfelder himself noted that the mere existence of certificates creates the need for some kind of
revocation procedure—for example, when the private key is lost or compromised. “The problem is
similar to that of preventing misuse of lost credit cards,” he notes.[Koh78, p.42] He proposes three
solutions to the problem: flooding the system with a list of certificates that are no longer valid—
what we now call a Certificate Revocation List (CRL); putting an expiration date on certificates,
so that old certificates eventually expire out; and real-time verification of a certificate’s freshness
should a communicant suspect that an enemy has stolen the certificate holder’s private key.

But revocation cannot be made reliable in all cases. For example, if there are multiple revocation
servers, then there is a chance for them to be out-of-sync with each other, making it possible for one
server to say that a certificate is valid while another says that it is not. On the other hand, if there
is only a single revocation server, then an attacker who has compromised a certificate can continue
to use the compromised certificate by mounting a denial-of-service attack against the revocation
server and taking it offline. Relying parties are then forced to choose between accepting a certificate
that might possibly be bad, and rejecting all other certificates—at least some of which would almost
certainly be good. This is an example of Fox and Brewer’s CAP Principle [FB99, Bre00], which holds
that it is not possible to build network systems that are simultaneously are Consistent, Available, and
Partition-tolerant. Ellison notes that the Public File achieves Consistency and Partition-tolerance at
a loss of Availability, while certificates achieve Availability and Partition-tolerance at the cost of
Consistency.[Ell02]

6.4. FUNDAMENTAL PROBLEMS WITH PKI 227

VeriSign, one of the world’s leading Public Files in 2005, lists four circumstances in which users
should revoke their keys:

• if the customer loses their private key;

• if the public key is compromised;

• if incorrect information appears on the certificate;

• if the certificate is not working properly. [Ver05c]

By contrast, the X.509v4 draft standard specifies 10 reasons that can be given for revoking a key,
as shown in Figure 6.3.

Depending on the use of the certificates and the threat model, a revocation service may need to
devote considerable attention to the issue of time and sequence management. If a certificate used
for so-called “non-repudiation” purposes (e.g., signing contracts) needs to be revoked because of
key compromise, then the following information might need to be recorded:

T1 the time of the compromise;

T2 the time that the compromise was detected;

T3 the time that the compromise was reported to the CA; and

T4 the time that the CA made the information available on its CRL.

Each of these times is critical because they could conceivably have different implications for a
relying party that had been given a contract signed by the attacker. The owner’s insurance company
might be liable for abuse that occurred between T1 and T2 because no one was at fault (other than
the attacker); the owner might be liable for abuse that occurred between T2 and T3 because he
or she had not reported the compromise in a timely manner; and the CA might be liable for a
compromise that occurred between T3 and T4. Certainly, if these times are not recorded in the CRL
itself, they would almost certainly need to be reconstructed in the event of litigation.

Let’s see how the revocation issue affects Alice, Bob and Catherine:

Alice

Under most circumstances, revocation doesn’t impact on Alice. Since Ko-
vagis supplies its public key as part of the SSL protocol, Alice won’t ever
experience the old, revoked certificate. The only potential for harm would
be if an attacker both compromised the Kovagis private key and was able
to divert the kovagis.com DNS entry to the hacker’s own web site. Most
of today’s web browsers do not have revocation checking enabled, perhaps
evidence that today’s e-commerce community does not consider proper re-
vocation to be very important.

kovagis.com

228 CHAPTER 6. The Key Certification Problem: Rethinking PKI

Bob

Revocation is somewhat important for Bob. If Bob’s private key was com-
promised, it will only matter if that attacker is sending out messages that
claim to be from Bob. If Alice’s old key was compromised, the attacker
will still need to be wiretapping her email in order to be able to intercept
and decipher Bob’s message. (Of course, if the attacker is not wiretapping,
then there is considerably less reason for Bob to seal his message in the first
place.) More likely, Alice lost her key. If Bob uses the old certificate, then
Alice will send back an email that she can’t understand it and Bob will send
a new message sealed with Alice’s new certificate.

Catherine

Revocation is a big deal for Catherine. Trying to make a legal claim 10 years
after the will was signed, Catherine needs to be able to prove in court that
Grandmother’s certificate was valid when the document was signed. But she
can’t, because VeriSign and Thawte (and possibly other CAs) are removing
certificates from their CRLs when those certificates expire. Thus, there is no
way to know if the certificate had or had not been revoked when it was used.
An added problem for Catherine is that the 1024-bit CA key that was used
to sign Grandma’s certificate may itself be compromised by the year 2016,
given faster processing speed of the computers available then. So even if the
will is deemed valid today, at some point in the future it will not be possible
to rely on the will’s cryptographic protection to prove its validity. Future
courts will instead need to rely on the determination of older courts.

6.4.3 A single “public file” cannot be both logically consistent and correct; multiple
public files cannot be authoritative.

In perhaps the single most prescient paragraph of his entire thesis, Kohnfelder wrote:

“The Public File solves many problems, but it is also a great potential threat to system
security. An enemy that had broken the Public File encryption function could authorita-
tively pass out bogus encryption functions and thereby impersonate any communicant
in the system. Even without breaking the Public File encryption function such imper-
sonation is possible by tampering with the records kept by the Public Fife. The Public
File could not work in high security applications since it would not be trusted. Con-
sider a Public File coordinating all diplomatic communications in the world; who could
reliably operate such an authority?” [Koh78, p.16]

To put this in the language of today, one of the fundamental problems with certification authorities
is that a single root would be unacceptable to the multitude of nations and other political entities
that inhabit our planet.

6.4. FUNDAMENTAL PROBLEMS WITH PKI 229

CRLReason note
unspecified
keyCompromise Used in revoking an end-entity certificate; it indicates that it is known

or suspected that the subject’s private key, or other aspects of the subject
validated in the certificate, have been compromised;

cACompromise Used in revoking a CA-certificate; it indicates that it is known or sus-
pected that the subject’s private key, or other aspects of the subject vali-
dated in the certificate, have been compromised;

affiliationChanged Indicates that the subject’s name or other information in the certificate
has been modified but there is no cause to suspect that the private key
has been compromised;

superseded superseded indicates that the certificate has been superseded but there
is no cause to suspect that the private key has been compromised;

cessationOfOperation Indicates that the certificate is no longer needed for the purpose for
which it was issued but there is no cause to suspect that the private key
has been compromised;

certificateHold not specified in the standard.
removeFromCRL not specified in the standard.
privilegeWithdrawn Indicates that a certificate (public-key or attribute certificate) was re-

voked because a privilege contained within that certificate has been
withdrawn;

aaCompromise Indicates that it is known or suspected that aspects of the AA validated
in the attribute certificate have been compromised.

Table 6.3: The draft X.509v4 allows CAs to specify 10 reasons why a certificate might be compromised.

But if there is more than one CA, the result is the Gutmann’s “Which Directory?” problem[Gut04a]:
when there are multiple CAs or directories, how do you know which is the correct directory to
consult? What if the CAs contain inconsistent or contradictory information? If a person’s key
doesn’t exist in any of the directories that you have consulted, how do you know that you have not
inadvertently failed to consult the correct directories?

Kaufman et al. argue that is logically impermissible to use a list of multiple directories in an
attempt to get around the policy problems inherent in a single directory. The problem is that this
comprehensive list of directories and the directories themselves can now be viewed as a single
directory—a directory that either requires coordination between the subdirectories, or else allows
there to be contradictory mappings.[KPS02]

For example, it is completely possible using today’s X.509 technology for an organization such as
Dun & Bradstreet to issue certificates to corporations that certify the corporation’s identity using a
combination of their stock symbol, their state and their country. For example:

cert1 = {MSFT/WA/US}D&B1

230 CHAPTER 6. The Key Certification Problem: Rethinking PKI

(Once again, what is in bold is visible to the user, while the information that is not in bold is
included merely for the convenience of the reader.)

But unless there is some way for a user to be sure that they have the correct Dun & Bradstreet
root certificate, an attacker who wanted to impersonate Microsoft could trivially create a new D&B
certificate and use that certificate to sign a fraudulent MSFT certificate:

cert2 = {MSFT/WA/US}D&B2

Just as the certificates cert1 and cert2 are visually indistinguishable unless the user looks at the cer-
tificate fingerprints, so too are the signing certificates D&B1 and D&B2. In today’s world, the way
that D&B1 and D&B2 would be distinguished is that one of these certificates would be present on
D&B’s web site, http://www.dnb.com/ , while the other one—the attacker’s—would not be. Es-
sentially, this means that the Domain Name System has become the official list of CAs: it arbitrates
which is the official Dun & Bradstreet, and which is the imposter/attacker.

All hierarchies with globally meaningful names share this problem. Logically, such an entity cannot
be both comprehensive and correct. The legal battles over Domain Name System names in the
1990s were largely the result of this fact. Today organizations have come to accept the fact that they
may not be able to have globally unique DNS names that are both meaningful and that reflect the
names that the corporations normally use to refer to themselves—because the domain name may,
in fact, be owned by another organization. The result is that today’s DNS is neither comprehensive
nor correct: MIT was clever and secured the domain name mit.com in addition to mit.edu and
mit.net , but Harvard didn’t grab harvard.com , and as a result harvard.com now belongs to
the Harvard Book Store—and harvard.net belongs to Allegiance Telecom in Dallas, Texas.

Some businesses have decided to adapt to these inconsistencies in the Domain Name System by
choosing the names of new companies based on the availability of appropriate domain names.
They then publicize these names, teaching potential customers the association between the domain
name and the product or service being sold. This is similar to using a public key as a global identifier
and then giving it local meaning, as is the case with SPKI/SDSI.

So how does the fact that a public file cannot be consistent and correct affect Alice, Bob and
Catherine?

Alice

Alice doesn’t have a problem with the zero/one/many CA problem, since
she knows that the company’s name is Kovagis, and that company name has
been explicitly chosen because the word does not appear in Google and the
kovagis.com domain was available. Even if an attacker manages to get a
certificate name that says Kovagis on it, Alice’s transaction will be protected
by the DNS. Indeed, the DNS is the main thing that is protecting Alice, not
the X.509 certificate on the SSL-enabled web site.

http://www.dnb.com/
mit.com
mit.edu
mit.net
harvard.com
harvard.com
harvard.net
kovagis.com

6.4. FUNDAMENTAL PROBLEMS WITH PKI 231

Certificate Issuer
Certificate Issuer:

/O=Notesdev/CN=Westford Internet CA

Subject:
/O=IBM/OU=Westford/CN=Mary Ellen Zurko/E=Mary_Ellen_Zurko@notesdev.
ibm.com

Figure 6-12: The X.500 Distinguished Name (DN) for Mary Ellen Zurko at IBM, received in an X.509 certificate used to
sign an email message on March 22, 2005.

Bob

Bob is not sure where to go to get Alice’s certificate. He might search the
VeriSign and Thawte web sites, to no avail. It turns out that Alice is using
an MIT CSAIL S/MIME key, which means that Bob may be out of luck, since
there is no easy way to look up these certificates.

Catherine

Because there were many CAs when Catherine’s Grandmother obtained her
Digital ID, Catherine hopes that Grandma picked a CA that’s still respected—
and that the CA’s key can be independently obtained. Otherwise there is no
way that the court-appointed cryptographer is going to be able to argue that
the will was signed in 2006, and not last week in March 2016.

6.4.4 X.509 distinguished names are hard for people to understand
On the surface, there appear to be significant usability problems with X.509 Distinguished Names
(DN). Because they are inherently rooted in geography, it is not immediately clear how a DN should
be structured for an organization that operates in more than one state or country. One approach is
to omit the Country and Locale fields entirely, as shown in Figure 6-12.

A second problem with DNs is that there appears to be no software available for desktop computer
users that actually displays certificates and the DNs that they contain in a manner that makes any
sense to users. For example, many programs that display certificates don’t even bother to explain
what the initials like “O” and “OU” actually mean. Whether this is a fundamental result of the
X.500 syntax or simply a result of programmer disinterest remains to be seen. (Problems with the
display of DNs on X.509 certificates are discussed in Chapter 5.)

Perlman asserts that the distinguished names present on X.509 certificates were never intended to
be shown directly to human beings, but that this display was supposed to be mediated by some
kind of application program. [Per05b]

As it turns out, this problem is something of a red herring for our three fictional characters:

232 CHAPTER 6. The Key Certification Problem: Rethinking PKI

Alice

Alice is using Mozilla Firefox to view the Kovagis web site. Firefox decodes
the web site’s certificate and displays the name in the browser’s status bar in
a form that’s easy to read. Alice doesn’t see this, because she’s looking at the
motorcycle photos.

Bob

Bob’s copy of Outlook Express shows him the distinguished name on Alice’s
certificate. It’s ugly but he’s able to figure it out. He’s a bit confused why it
says that Alice’s Organization is the MIT Comput Science & Artificial Intelli-
gence Laboratory, yet the certificate itself was issued by the MIT Laboratory
for Computer Science (as is the case with the client-side certificates that
CSAIL is currently issuing).

Catherine

Catherine’s copy of Word 2016 decodes the certificate on her grandmother’s
signed will. Ten years in the future, Microsoft’s engineers have finally figured
out how to display distinguished names in a manner that makes sense, so
Catherine is happy.

6.4.5 Distinguished names aren’t distinguished
Another problem with Distinguished Names is that they do not appear to be distinguished. In
many cases, they aren’t even valid! Gutmann discusses this issue at length in his X.509 Style
Guide[Gut00], in which he gives dozens of examples showing the misuse of distinguished names.
Entrust, for example, placed a liability statement in the issuer DN of its certificates, making that field
unusable with X.500 or LDAP directories. Other certificates have DNs with zero length. Another
CA chose a non-standard character set for names, and then placed characters in the name field that
were illegal for that non-standard character set.

ISO character sets can cause problems for another reason as well: font encoding makes it is possible
for different DNs to appear visually indistinguishable on the computer’s screen. For example, it is
possible to construct names that use accents to create normal-looking unaccented characters. A
dotless “ı” and a dot “˙” can be merged together appear to resemble a lower-case “ ı̇,” but in fact
they are not, as a close examination of the third quoted glyph in this paragraph reveals. (The dot
and the ı in the previous sentence were intentionally offset by a point to make it easier to see that
they are in fact different glyphs. The offset could have been made invisibly small, had the author
wished.)

This problem, termed a homograph attack, has also been observed in relation to the Internet’s
recent adoption of international domain names. [The05a] As a result of this attack, The Mozilla
Foundation decided to disable support for IDNs in Firefox 1.0.1 and Mozilla 1.8 beta [Mar05a];

6.4. FUNDAMENTAL PROBLEMS WITH PKI 233

Apple issued a security update to remove the display of look-alike characters from URLs displayed
in the Safari web browser. [Com05a] Microsoft did not have to issue a patch for Internet Explorer
because it did not support international domain names.

Do the problems with Distinguished Names affect our fictional characters? Not really:

Alice

Alice cares a lot about the homographic attack. Has she updated her copy
of Firefox? Is that an “i” in the kovagis.com domain, or is there something
funny happening with the Unicode? Alice doesn’t remember if she typed
the domain name herself, or if she clicked on a link that was in an email
message she saw. Flustered, she closes her browser. Then she realizes that
she doesn’t remember how Kovagis.com spelled its name...

Bob

Bob isn’t worried about the homographic attacks because he knows that
MIT CSAIL, being a small organization, probably has better control over the
certificates that it is issuing than a large organization like Thawte does.

Catherine

The homographic attack doesn’t affect Catherine: the court-appointed ex-
pert can look at the raw Unicode bytecode and verify that it’s plain ASCII.
On the other hand, the expert does notice that Grandma put a URL in the
DN field that likes to a web page that no longer exists. This is noted in the
report, but deemed to be insignificant.

6.4.6 RFC822 comments can conflict with X.509 Distinguished Names

Yet another problem with the X.509 system has been the expansion of distinguished names to incor-
porate RFC822-style email addresses. The problem here is that RFC822 allows email addresses to
include a so-called comment—usually the human-readable name associated with an email address.
According to the standard, this comment is to be “ignored by the mailer.”[Cro82a, §A.1.2, p.36]
Nevertheless, most mail clients commonly display this comment to the user.

The problem here is that the comments in the RFC822 names may contain information that conflicts
with the distinguished name on the certificate. Examples of comments from the standard and how
these comments can be used to create misleading names are shown in Table 6-13.

Kovagis.com

234 CHAPTER 6. The Key Certification Problem: Rethinking PKI

RFC822-style mailbox comments from RFC822:
Alfred Neuman <Neuman@BBN-TENEXA>
"George, Ted" <Shared@Group.Arpanet>
Wilt . (the Stilt) Chamberlain@NBA.US

Misleading RFC822 mailbox comments (not from RFC822):
George Washington <Neuman@BBN-TENEXA>
"Chamberlain@NBA.US" <attacker@nowhere.org>

Figure 6-13: The top box shows examples of RFC822 “comments” in mailboxes, taken from [Cro82a]. Many X.509
systems allow mailbox names with comments to be included in fields that expect distinguished names. The bottom
box shows how these comments can be used to create misleading addresses. The RFC822 mailbox name comment
is typically not certified by the Certificate Authority but is nevertheless displayed to the user, creating a potential for
spoofing the user with uncertified information.

Alice

The email address issue does not affect SSL certificates, so Alice isn’t af-
fected.

Bob

After Bob and Alice exchange email for several days, Alice’s co-worker
Evelyn gets a hotmail account alice-at-home32@hotmail.com
and obtains a digitally signed certificate with the RFC822 name
"alice@csail.mit.edu" <alice-at-home32@hotmail.com >.
Evelyn sends email to Bob with the new certificate and he replies. Thinking
that the mail is going to alice@csail.mit.edu because that is the name
on the certificate, the highly personal message actually goes to Evelyn’s
Hotmail account.

Catherine

Grandma’s certificate was used for signing, not S/MIME, so this attack isn’t
relevant.

6.4.7 Summary: which attacks matter to whom?
Table 6.4 shows that each persona is affected by two or more of the problems and resulting possible
attacks with the X.509-based system, but that no single attack effects all of the scenarios. This is
more evidence that a one-size fits all PKI model is probably not the right choice for deploying this

alice-at-home32@hotmail.com
alice@csail.mit.edu

6.4. FUNDAMENTAL PROBLEMS WITH PKI 235

Alice

Bob

Catherine

Names are not unique big problem big problem big problem
Proper revocation is unsolvable not important not important big problem
Can’t have one public file; can’t have
many

not important important very important

X.509 Distinguished Names are hard
to understand

no problem no problem no problem

Distinguished names aren’t distin-
guished

a problem no problem no problem

RFC822 comments can conflict with
X.509 Distinguished Names

not applicable big problem not applicable

Table 6.4: How each potential problem with X.509-based PKIs affects each scenario.

technology on a massive scale.

236 CHAPTER 6. The Key Certification Problem: Rethinking PKI

6.5 Making PKI Usable
This section explores the three approaches that have been tried so far to make PKI systems usable:
complete mediation, education, and mathematical innovation.

6.5.1 Complete mediation: HushMail and the “signing fool”
As discussed in Chapter 5, one approach to making PKI easier to use is to provide the user with a
completely mediated environment. This is the approach taken by HushMail, a web-based secure
mail provider. All of HushMail’s encryption and PKI operations take place inside an Java applet
that is downloaded into the user’s web browser. Although the user’s private and public keys are
both kept on the HushMail server, they are kept encrypted, and only decrypted inside the Java
applet. Indeed, Hush Communications tells users that if they irretrievably lose their passwords,
their only alternative is to open a new account. While HushMail doesn’t provide a comprehensive
PKI solution, it does provide an easy-to-use secure email system that can interoperate with people
using PGP on the open Internet.

Another example of the complete mediation approach is the so-called “Signing Fool”—a program
that automatically signs all outgoing messages with the user’s private key, without regard to the
message content. (The Stream proxy is an example of such a program.)

Even though automatic signatures do not demonstrate intentionality—and thus may fall-short of
standards required for non-repudiation under certain legal regimes—they still have value. For
example, a “Signing Fool” makes it easier to track down the source of a computer that is infected
with a worm, since the messages sent with forged from: address are signed with the key of the
sending machine, not with the key of the person whose address is being forged.

6.5.2 Education: Whitten’s “Lime”
Whitten has developed a system called Lime to demonstrate and test her theories regarding safe
staging and metaphor tailoring. Lime only uses safe staging for key certification, and not for the
basic functions of sending and receiving cryptographically protected mail. The reason, says Whit-
ten, is that interfaces for signing and sealing can be presented in a clear and usable way without
staging. “Key certification, by contrast, is extremely confusing and difficult to present clearly, and
does not need to be visible in the main window since we expect that it will be used only when
public keys are traded.” [Whi04a, p.30]

Thus, if Whitten were to answer the question posed in her 1998 paper with the research from
her 2004 dissertation, it would seem that Johnny can’t encrypt because he doesn’t know how
to properly certify keys. Lime overcomes this barrier by presenting its user with a series of six
help screens that teach Johnny how to do it. (The title of Whitten’s 2004 DIMACS talk on Lime
was actually titled “Giving Johnny the Keys.”) Table 6-14 in this thesis presents my summary of
Whitten’s screens; Figure 6-15 shows Whitten’s sixth help screen. In addition to these help screens,
additional help appears on the program’s windows, as shown in Figure 6-16.

Although Lime was a “Wizard-of-Oz” prototype, constructed solely for the purpose of conducting
a user test, Whitten reports that the safe staging in Lime was able to increase participant success
from 0% and 10% to 45% in her key certification experiment.[Whi04a, p.iv]

6.5. MAKING PKI USABLE 237

Help Screen Purpose
1 Initialization sequence
2 Generate a key pair
3 Store the key pair securely with a pass phrase
4 & 5 Introduces “digital signatures” and “encryption”
6 A “quick briefing on the need to trade public keys.”

Figure 6-14: The six help screens presented in Whitten’s “Lyme” prototype. [Whi04a]

Figure 6-15: Whitten help screen #6 explains to the
user how how public keys are traded. Used with per-
mission.

Figure 6-16: Whitten’s panel for trading keys reiter-
ates much of the information on the help screen and
provides users with the necessary controls to accom-
plish their tasks.

6.5.3 Change the math: Identity Based Encryption
A third approach to making PKI easier to use is to change the underlying mathematics on which
today’s public key systems are based.

For example, Identity Based Encryption schemes, proposed by Shamir [Sha85] and recently sum-
marized by Bellare et al. [BNN04a], overcome the fundamental usability problem of public key
cryptography that requires a user to create a public key before they can receive an encrypted mes-
sage. These schemes typically rely on a Trusted Third Party which creates a set of parameters for a
particular instantiation of the cryptosystem. The TTP maintains a set of private parameters, which
must remain secret, and a set of public parameters, which need to be published to all system users.
Public keys for participants in the IBE system can be created using the cryptographic hash of a
unique identifier, such as an email address, and the public parameters. Private keys can be created
using the same hash and the private parameters. Thus, any user in the system can send crypto-
graphically sealed email to any participant in the system, even if the recipient hasn’t yet registered!
(Security of the message is not compromised because the TTP never receives the encrypted mes-
sage: it goes straight to the intended recipient.) Once a recipient has received the sealed message,
that recipient contacts the Trusted Third Party to obtain their private key necessary to unseal the
message. Adida have proposed that the centralization of trust can be mitigated by using different
Trusted Third Parties for each mail domain and using the DNS to distribute the public parameters

238 CHAPTER 6. The Key Certification Problem: Rethinking PKI

for each domain.[AHR05a, AHR05b]

The primary advantage of IBE is that a system participant can make a public key without having to
contact the Trusted Third Party. This allows, for example, Alice to create Bob’s public key while she
is on an ocean liner and unable to communicate with either Bob or the TTP (provided that Alice
has previously obtained the public system parameters.) Whether this one neat trick is sufficient
to justify the deployment of completely new algorithms, new data formats, and new standards re-
mains to be seen. A hybrid system might use the Boneh-Franklin scheme to distribute conventional
S/MIME certificates made by the TTP.

The Boneh-Franklin Identity Based Encryption [BF01] system is being commercialized by Voltage,
a Palo Alto, California-based company created by the inventors. Although Voltage originally de-
veloped and deployed a system for sending and receiving encrypted mail, the company’s current
direction appears to be the development of secure messaging systems that exist apart from the
email infrastructure—for example, systems for providing document-level cryptographic protection.

6.5.4 Missing: a sense of certificate history
Missing from all of the implementations is a sense of certificate history. In each of the systems
considered above, certificates have the same level of trust the first time that they are received and
the thousandth time that they are received: they are either trusted or they are not trusted.

This is not the way that other kinds of human relationships work. Although the path of introduction
matters in most relationships, as relationships progress humans tend to invest more credibility in a
person’s actions than in their pedigree. This is especially true in modern societies, as evidenced by
the fact that more people choose their mates as a result of several person-to-person interactions—
dating—rather than through arranged marriages.

Certainly it is possible for an individual to misrepresent herself in relationships, gain trust, and
then to betray that trust in a high-valued attack. Mitnick outlines many such attacks. [MS02] The
high divorce rate in the US is pehaps indicative of others. But it is unlikely that interfaces which
do not present history information make users less susceptible to these attacks than interfaces that
do: even if the interface does not present history information directly, that information is available
indirectly in the computer system by consulting sources such as logfiles or old email messages.
Human beings also retain information inside their brains. It would seem reasonable, then, to
design a certification model that uses historical information, rather than one that ignores it.

6.5.5 Conclusion
Technical innovation favors solutions that can be deployed incrementally or “bottom-up.” By keep-
ing costs low, small-scale initial deployments make it possible for engineers and early adopters
to tinker with systems and make subtle modifications, allowing the technology to evolve from a
laboratory curio into a tool that performs a valuable function. Many people attribute the success
of personal computers in the 1980s to their “bottom-up” appeal: the computers cost so little that
they could be purchased with discretionary funding, effectively avoiding the centralized control of
information processing that gripped American businesses and many universities in the 1970s.

A hallmark of successful incremental solutions is that they tend to follow the 80-20 Principle,[Jur05]

6.5. MAKING PKI USABLE 239

solving some problems well and leaving others unaddressed. This is sometimes seen as a feature,
as the partial success creates an incentive to invest more time, energy and money into completing
the solution. (Of course, the 80-20 Principle also implies that finishing the last 20% of the work
requires 80% of the funding.)

The data from E-Soft shows that when merchants are sufficiently motivated, some of them will try
to obtain the certificates and some of these certificates may even end up being properly installed.
But likewise, the relatively small number of Thawte S/MIME certificates that have been issued
implies that without a compelling motivation, most users will simply not go to similar trouble of
obtaining a certificate—even if the certificate is monetarily free and can be acquired with less than
an hour’s effort.

In this chapter we have explored how the deployment of PKI systematically avoided opportunities
for incremental deployment, resulting in a system that today is used by some corporations and not
very many individuals. In Chapter 7 we will see an alternative to this conundrum: self-made and
self-signed certificates that are certified not through third parties, but through their continued use
in ongoing relationships.

240 CHAPTER 6. The Key Certification Problem: Rethinking PKI

CHAPTER 7

Key Continuity Management

Key Continuity Management is a promising technique for realizing the ease of anonymous end-to-
end encryption while still alerting the user to many kinds of active attacks. By eliminating reliance
on trusted third parties, the cost and usability barriers of deploying cryptographic protection are
dramatically reduced. This chapter introduces KCM, presents patterns for its use, and presents the
results of a user test designed to test KCM’s protection against likely spoofing attacks.

7.1 Key Continuity Management
Key Continuity Management (KCM) is an attractive approach for using PKI technology without
third-party certification. The model was introduced with SSH [Ylo96], and formally named by
Gutmann [Gut04b].

7.1.1 KCM in a nutshell
KCM is based on two observations made earlier in previous chapter. The first is the impossibil-
ity of having a top-down identification infrastructure that correctly presents globally meaningful
names. The second is the observation that a man-in-the-middle attack can be detected after the
first exchange between two trusting parties by observing changes in public keys.

Whereas systems based on PKI rely on trusted third-parties to certify the legitimacy of keys, KCM
allows users to decide for themselves which keys to accept, which to be suspicious of, and which
to reject. The idea is to flag the key as “new” to the user the first time the key is seen paired with
a specific identifier (in this case, an email address). After this initial presentation, the user is then
warned if the pairing between the identifier and the key changes at some point in the future.

Applications that implement KCM can ignore both X.509 distinguished names and certification
chains, and instead become directly aware of the public key that each certificate contains. Alter-

241

242 CHAPTER 7. Key Continuity Management

natively, KCM can be used to augment PKI-based applications in cases where there is no registered
trust root for a specific certificate.

When KCM is used with a client/server based system, the client remember a server’s public key
the first time that the key is presented. Subsequent uses of that same key the require no user
intervention. Users are be notified if the server’s key changed. Using the taxonomy presented in
Section 6.2.6, KCM combines the Anarchy Model with an appreciation for certificate history.1

If programs that process certificates implement KCM, then the programs that provide certificates
no longer need to be equipped with certificates that are certified by a trusted third party: instead,
self-signed certificates can be automatically created when the software is run for the first time after
installation. This is, in fact, what may SSH implementations currently do.

The primary advantage of KCM is that it is easy to set up. The primary disadvantage of such a
system is that it offers no protection against an attacker that can presents a legitimate key to the
user upon that user’s first interaction with the attacker’s service. In such a case, a KCM-based
system will accept the attacker’s key and, in fact, warn the user when the key a for the legitimate
service is presented instead.

Keys used for KCM can be quite simple: it may be advantageous for key certificates to intentionally
exclude information such as IP address, DNS name, legal names, or other information. After all,
secure keys are by definition unique. If this information is not in the key, then the information can
change and the underlying security system can tolerate such changes. This allows trust to transcend
addressing—potentially important for mobile services. The key becomes its own identifier.

7.1.2 Justification for key continuity management
Gutmann argues that “assurance through continuity” is generally more important to users than
assurance through absolute identification. Users don’t really care about formal legal names, he
argues: they simply want services to be consistent, so that they are the same the next time as they
were the last time. The success of McDonalds, he and others argue, is not due to the quality of
the restaurant’s food, but its consistency. Other examples abound. “Coke is Coke no matter what
shape bottle (or can) it’s in, or what language the label is in....Continuity is more important than
third-party attestation.”[Gut04b]

Biometric practitioners have long recognized the difference between assuring continuity of identi-
fication vs. absolute identification. Nanavati et al. distinguish between verification systems, which
answer the question “Am I who I claim to be?”, and identification systems, which answer the ques-
tion “Who am I?”[NTN02, p.12] What Nanavati terms verification systems are essentially systems
that ensure for identification continuity: they ensure that the body that now stands before the bio-
metric sensor is the same as the body that originally registered. The distinction between bodies and
people is discussed in [Gar00, p.65–p.66].

One of the most successful uses of biometrics to date has been stand-alone access control systems.
1KCM as described here does not handle issues such as certificate expiration, where there is a desire to have an orderly

progression from one certificate to another. One way to envision such a system would be to use the old key to sign the
new certificate. This would require some kind of specification or standard, but it could almost certainly be worked within
the existing X.509 certificate formats.

7.1. KEY CONTINUITY MANAGEMENT 243

These systems contain a database of locally stored templates, rather than identities, that are al-
lowed access: any individual presenting the appropriate biometric (be it thumbprint or an iris)
that matches a stored template is granted access. An alternative approach is to use a biometric to
validate a person’s identity, then to have a list of identities (e.g. names or public keys) that are
allowed access. Such systems have been less successful in the marketplace because they are more
difficult to manage, more brittle in operation, and have negative privacy implications.

Another justification for the use of KCM is that it is less brittle in light of modern business rela-
tionships than PKI-based alternatives employing third-party certification. For example, the Internet
banking service provided by the Massachusetts-based Cambridge Trust Company is authenticated
with a certificate belonging to the Metavante Corporation of Milwaukee, Wisconsin. (Figure 7-1)
This out-sourcing relationship is not indicated anywhere on the Cambridge Trust web site. The
only indication that a customer has is that the “Log In” button on the Cambridge Trust web site
links to the URL https://cib.ibanking-services.com/cib/login.jsp on a web server
operated by Metavante. A security-conscious Internet user might reasonably look at the Metavante
web site and decide that they are being subjected to a so-called phishing attack. A KCM system, by
contrast, would tell the user the first time they hit the login button that the computer was visiting
a new site for the first time—matching the user’s expectations. Afterwards, no warning would be
generated unless the user was actually subject to an attack.

7.1.3 KCM security vs. traditional CA-based security
One of the primary criticisms of KCM is that it does not offer the same degree of security as tradi-
tional certification by trusted Certificate Authorities. This belief implicitly assumes:

• That certification by Certificate Authorities actually provides a high-degree of security and
assurance.

• That it is so cheap and easy to obtain third-party certificates that legitimate businesses will in
fact obtain them, rather than live with the risk of not using them.

We have observed that neither of these conditions are true. Many phishing sites have been discov-
ered with valid SSL certificates signed by respected Certificate Authorities.[M.04, Col04] In some
cases attackers have broken into web sites with valid SSL certificates and set up their attacks in
unauthorized directories. But it is also possible for attackers to obtain CA certificates from organi-
zations such as VeriSign with a certified DBA (“Doing Business As”) licenses; Mazières writes that
he was able to obtain a VeriSign certificate for $440 from VeriSign for a business that was not listed
in the phone book and that, for all practical purposes, did not exist.[Maz00, p.16] Meanwhile, the
E-Soft survey shows that many organizations running SSL servers do not feel motivated to obtain
properly signed SSL certificates from respected CAs.

7.1.4 Examples of KCM
Many systems have been found that implement aspects of the KCM model:

• As previously noted, one of the best examples of KCM is SSH. Under normal operation SSH
alerts the first time that a new service is contacted. After that first contact, however, SSH is
silent unless the server’s key changes.

https://cib.ibanking-services.com/cib/login.jsp

244 CHAPTER 7. Key Continuity Management

Figure 7-1: The Internet banking service provided by the Massachusetts-based Cambridge Trust Company is authenti-
cated with a certificate belonging to the Metavante Corporation in Milwaukee, Wisconsin.

SSH keys can change for a number of reasons. For example, keys frequently change when
a computer’s operating system is upgraded and a new version of SSH is installed. When
students return to a university in September after a long summer break and are told that the
SSH key of their mail server has changed, the change can be easily explained—the sysadmins
have upgraded the server over the summer. On the other hand, if a student goes to the Black
Hat “hacker” convention in Las Vegas and is alerted that the SSH key of their mail server
has changed, the changes probably indicate that someone at the conference is mounting a
man-in-the-middle attack over the conference 802.11 Wi-Fi network.

• Current versions of some SSL clients will warn the user when a client connects to an SSL-
secured server that is using an X.509 key that is either invalid or signed by an untrusted CA.
The user has the choice of trusting the server or not trusting the server. At this point most SSL
implementations will abandon all subsequent key checks for the web site, but some clients
(such as the client in Apple Mail) will remember the SSL certificate and will alert the user if
the remote site changes its certificate at some later point in time.

• Microsoft’s S/MIME implementation in Outlook Express and Outlook offers a kind of manual

7.1. KEY CONTINUITY MANAGEMENT 245

Figure 7-2: Microsoft’s S/MIME implementation allows users to explicitly trust or not trust a certificate, bypassing the
trust inherited from the certificate’s issuer. This is a kind of manual KCM.

KCM in which users who receive S/MIME-signed mail can decide to “Explicitly Trust this
Certificate,” as shown in Figure 7-2. Certificates can also be explicitly untrusted, even if they
are signed by a CA that is trustworthy.

• Stajano and Anderson’s “Resurrecting Duckling” security model for ad-hoc networking imple-
ments a subset of KCM. In this model, child devices choose to trust the first “mother” device
that they see (like a duckling imprinting on its mother). After the initial trust decision is made,
the only way to change a device’s trust settings is to reset the device, a process that erases all
of the device’s internal state (like a duckling that is killed and then resurrected).[SA99]

• The 802.11 Wi-Fi client built into MacOS 10.3 will alert the user when a new wireless network
is detected and ask the user if the network should be trusted in the future. The operating
system remembers the last five trusted networks in the ˜/Library/Preferences/com.
apple.airport.plist file. When new networks are trusted, the older networks gracefully
age out.

Based on these observations, comments by Gutmann, and the research performed in the course of
this dissertation, a proposed set of Rules for Key Continuity Management appears in Figure 7-3.

7.1.5 Disadvantages of KCM
KCM is not without its disadvantages.

In a world where all certificates are actually certified by trusted third parties, the Distinguished

~/Library/Preferences/com.apple.airport.plist
~/Library/Preferences/com.apple.airport.plist

246 CHAPTER 7. Key Continuity Management

1. Programs that need to provide certificates should automatically generate self-signed certifi-
cate C bound to identity I when identity I is first configured.

2. The first time that a self-signed certificate C is received for an identity I, the user should be
notified that a new identity has been presented.

3. On each subsequent presentation of that same self-signed certificate C for identity I, the
system should indicate that the certificate has not changed. Ideally, the system should track
the total number of times that the (C, I) pair has been presented and make this information
available to the user in a manner that is inobtrusive but evident.

4. If the user receives a message claiming to be from identity I that is not accompanied by a
certificate C, the user should be warned that the identity usually employs digital certificates,
but for some reason it is not doing so.

5. If the user receives a message claiming to be from identity I that is accompanied by a new
certificate C2, the user should be warned that the certificate has changed and that an attack
may be in progress.

6. The system should visually distinguish unverified KCM identities from identities that have
been verified by a trusted third party.

Figure 7-3: Proposed rules for Key Continuity Management

Name on a certificate can be believed to mean something that can be certified. For example, a
VeriSign Class 1 Digital ID that claims to be from marketplace-messages@amazon.co.uk
almost certainly was issued to an individual or organization that had the ability to receive email
messages sent to the marketplace-messages@amazon.co.uk —after all, this is what VeriSign
promises in its Relying Party Agreement.

In a KCM-certified world, the only way for a user to be sure that the holder of a Digital ID has the
ability to receive email at a particular address is by sending that Digital ID holder an email message
and awaiting an unambiguous reply. For example, one could request a “signed return receipt” as
specified in RFC 2634 [Hof99] and implemented in a compliant S/MIME client such as Outlook
Express.2

In a world with trusted third parties, users—by definition—rely on those parties. In a KCM world
the users are mostly on their own—just as SSH users are today. If your laptop tells you that the
server’s SSH public key has changed, the change might be because somebody has reinstalled the
server’s operating system. Or the change might be because you are trying to access your server
from a wireless “hot spot” at the DEFCON hacker convention and somebody is trying to mount
a sophisticated man-in-the-middle attack to steal your username and password. There’s really no
way to be sure.

2Unfortunately, it’s also possible for users to employ unreliable techniques such as sending an email message to the
address and waiting for a response. In the Johnny 2 user test several users were spoofed by sending a question and then
misinterpreting a message from the Attacker as if it were a response to their question!

marketplace-messages@amazon.co.uk
marketplace-messages@amazon.co.uk

7.1. KEY CONTINUITY MANAGEMENT 247

7.1.6 The KCM spoofing attacks
As the above analysis illustrates, the primary risk of KCM is the spoofing attack—that is, that an
attacker may convince a KCM user that he or she is someone else.

Consider the case in which Alice and Maria are two individuals that are engaged in a long-running
dialogue using email clients that implement KCM. Each message that Alice and Maria exchange is
digitally signed; their mail clients verify the signatures and check that the (email address, public key)
pairing has not changed.

If an attacker wishes to spoof Alice—perhaps to trick Alice into sending some confidential docu-
ments to a HotMail address—that attacker can’t forge Maria’s digital signature because the attacker
does not have Maria’s private key. But there are three other specific attacks that the attacker might
employ:

1. The New Key Attack. The attacker might send mail to Alice with Maria’s From: address and
signed by a different key. The attacker could claim that she is having computer problems—
hence the new key—and ask that the confidential documents be sent to Hotmail.

2. The New Identity Attack. The attacker might send mail to Alice with a new key and a new
From: address. The attacker could once again claim computer problems, or the attacker
could simply claim that she is working from home and doesn’t have access to her work com-
puter system.

3. The Unsigned Message Attack. Finally, the attacker could send mail to Alice with a forged
From: address, but this time the message could be sent without an accompanying signature.

These attacks are not unique to Key Continuity Management: in particular, both attacks #2 and #3
can be conducted with a traditional system based on keys certified by Certificate Authorities.

This chapter doesn’t mean to argue that KCM is a superior authentication strategy to third-party
certification in theory. Instead, it argues that certification with third-party party Certificate Authori-
ties has so many barriers to its use that there are many times it is not used in practice. At very least,
KCM is more secure than no certification at all. When faced with CAs that do not actually certify
the identity of certificate holders, KCM may actually provide more security than CA-based systems,
since KCM-based systems will warn when keys are changed.

7.1.7 Applying key continuity management to S/MIME
Given that support for S/MIME is broadly deployed, it would seem that the only barrier to its
general use for securing email is the difficulty that users have in obtaining certificates. (Other
problems remain if these certificates are to be used for signing contracts.)

One approach that would get S/MIME certificates into more hands would be for the existing CAs
that give away free e-mail only certificates to work with the S/MIME client vendors so that the
these certificates could be automatically obtained when a new email address was configured into a
mail client. Currently, the only established CA that issues free e-mail only certificates reports that
it is not interested in creating such a system,[Ing05] but this could change.

As an alternative to Digital IDs issued by a trusted third party, S/MIME clients could implement a

248 CHAPTER 7. Key Continuity Management

Figure 7-4: Three spoofing attacks possible against a user (lower left) employing Key Continuity Management to certify
a series of communications with Maria Page (mpage@campaign).

form of KCM. Indeed, much of what is required for a functioning KCM system is already present in
the S/MIME standard and clients: every S/MIME message is supposed to include all signing cer-
tificates, and S/MIME clients are supposed to incorporate certificates from every received message
into the message store.

Full support for Key Continuity in the S/MIME environment would require the following:

• S/MIME clients would need to automatically generate a new certificate for every new mail
identity when that identity is first used.

• If the same identity is to used to send email from multiple clients, the clients would need to
distribute the certificate and the corresponding private key.

• S/MIME clients would need to notify the user the first time that a message from an email
address is certified by a private key that matches an accompanying self-signed Digital ID.

• S/MIME clients would need to track how many times each (certificate,email address) pair
had been received and present this information to the user.

• S/MIME clients would need to alert the user if the self-signed Digital ID for a particular email
address changed.

• S/MIME clients would need to alert the user if an email address that normally used digital

mpage@campaign

7.2. PATTERNS FOR IMPROVING MESSAGE SECURITY 249

signatures sent a message that was not digitally signed.

• S/MIME clients would need to distinguish between identities that are certified with self-signed
certificates and those which are certified through external authorities—the theory being that
an external authority would become more trustworthy if it was observed to sign many certifi-
cates with which the user is in communication.

Much of this could be done today without modification to S/MIME clients, solely through the use of
a mediating proxy and a specially created “permissive” certification hierarchy. The design of such a
system is presented in Appendix D.

7.2 Patterns for Improving Message Security
Based on the analysis of user desires and expectations for secure messaging, the analysis of software
capabilities, and the consideration of PKI’s history, this thesis proposes the following patterns for
improving the security of today’s email systems without negatively impacting the usability of those
systems. In many cases, applying these patterns will simultaneously increase usability and security.

• LEVERAGE EXISTING IDENTIFICATION (page 330)
Use biometric, PKI, and other strong identification systems to authenticate pre-existing re-
lationships, rather than creating new ones. For example, both AOL and E*TRADE recently
decided to allow their users to purchase RSA Security’s SecurID 2-factor authentication to-
kens for use with their services.[Sec04][Sec05a] In both of these cases, the services are using
SecurID to validate pre-existing relationships, rather than to certify new ones.

• EMAIL-BASED IDENTIFICATION AND AUTHENTICATION (page 331)
The ability to read email at a pre-arranged email address can be used as a weak authenti-
cation. This approach, called Email-Based Identification and Authentication, is now being
widely used for password recovery[Gar03a] and proof-of-identity in some anti-spam systems.
It can be leveraged for recovery of passwords from desktop applications (which would send
email to remote systems to unlock passwords), for distributing private keys to bootstrap PKI,
and many other purposes.

• SEND S/MIME-SIGNED EMAIL (page 332)
As discussed in Chapter 6, the vast majority of Internet users who are not using Webmail
systems now have the ability to receive and validate mail that is signed with S/MIME sig-
natures, provided that those signatures are made with a certificate from Thawte or VeriSign.
Organizations sending bulk do-not-reply email should send it signed with S/MIME signatures.

• CREATE KEYS WHEN NEEDED (page 333)
Software should automatically create keys and self-signed certificates when installed, rather
than waiting for users to manually perform these operations. Although SSH[Ylo96] now
performs this function, today’s email systems do not. Without the easy availability of self-
signed S/MIME certificates, there has been no incentive for software vendors to develop easy
tools for working with this certificates.

• MIGRATE AND BACKUP KEYS (page 337)
When keys are created, they need to be migrated to every machine that might need use of
them. Keys also need to be backed up. For example, if a person reads email on multiple

250 CHAPTER 7. Key Continuity Management

computers, each of those computers needs to have access to the S/MIME private key that is
needed to unseal any signed messages. Currently this is a difficult and error-prone manual
process. It can and needs to be automated

• TRACK RECEIVED KEYS (page 335)
In order to make use of self-signed certificates, it is necessary for the computer to track the
recipient’s history with the certificate and to make that history understandable to the user.
The theory is that a self-signed certificate is not very trustworthy on the first day that it is
seen, but that it becomes more trustworthy with extended use. Software needs to be able to
be able to distinguish those conditions to the user.

• TRACK RECIPIENTS (page 336)
Likewise, it is important for client software to understand the difference between a corre-
spondent who has the ability to send and receive S/MIME-encoded mail, one that has the
ability to send signed but not to receive sealed, and the ability to use other message security
systems such as PGP. Currently this kind of tracking must be performed by the users of mail
security software. This functionality needs to be moved into the software itself.

• KEY CONTINUITY MANAGEMENT (page 334)
When an X.509 certificate is received that is not signed by a trusted CA, the certificate’s trust
settings needs to be directly managed by the client software using the certificate history as
guidance.

• DISTINGUISH INTERNAL SENDERS (page 338)
Visually distinguish between mail sent from within an email system with mail sent from out-
side the system that has the same From: address as internal senders. This is pattern codifies
the practice described in Section 5.5.2

7.3 Testing KCM with Johnny 2
The study described in this chapter, Johnny 2, is based on a radical reinterpretation of Whitten
and Tygar’s Johnny results. It is possible that the usability problems uncovered in the Johnny user
study were not driven by the PGP 5.0 program itself, nor by the lack of training offered within
the program, nor by PGP’s key certification process, but by the underlying key certification model
used by PGP. Johnny 2 seeks to determine whether or not the usability barriers can be overcome by
replacing third-party certification with Key Continuity Management.

Whitten and Tygar uncovered many usability failings in PGP 5.0. Among these failings were the
program’s use of two incompatible public key encryption algorithms (RSA and El Gamal), the use
of a nonsensical feather to denote signing, and the lack of user-accessible logs that detailed the use
of third-party key servers.

But while the usability failings found in PGP 5.0 can certainly explain the failure of PGP 5.0 in the
marketplace, these failings can’t explain the similar failure of every other secure messaging system
that implements public key cryptography. Such a failure can be explained by a common usability
failure in the underlying certification model used by these systems: Before Alice can send Bob a
piece of sealed email, Bob needs to first create a public key and get that key to Alice. Furthermore,
Bob needs to either convey the key directly to Alice, so that she knows that it really came from Bob,

7.3. TESTING KCM WITH JOHNNY 2 251

or needs to somehow certify the key so that Alice will trust it. This this problem can be called the
Public Key Deadlock.

7.3.1 Johnny 2
This project started as an attempt to replicate the setting of Whitten and Tygar’s original Johnny
study, but replacing PGP with a system that implements KCM. The goal was to test the hypothesis
that users could complete the same task using software based on the KCM model with a higher
success rate than observed in Johnny using the traditional model.

Johnny 2 needed to demonstrate that relatively näıve users with KCM could defend themselves
against a variety of relatively sophisticated of spoofing attacks. To do this, Johnny 2 needed to
answer two separate but related questions:

1. Can Key Continuity Management make the task of sending and receiving secure email easier
for untrained users?

2. Are the warnings that can be provided by a Key Continuity Management system sufficient to
allow users to guard against spoofing attempts by third parties?

During the course of the user study, it became apparent that the Johnny 2 study could also answer
a number of other important questions:

• Do users who have been selected specifically so that they profess no knowledge of public key
cryptography know, nevertheless, what it means to “encrypt” and “sign” a message?

• If users can encrypt email messages simply by clicking a button that says “Encrypt,” will they
click that button when they are sending information that has been designated by their boss
as being confidential?

• If users can sign email messages simply by clicking a button that says “Sign,” would they click
that button?

• If users are faced with a situation in which they want to send a message with encryption but
can’t because they do not have a key for their intended recipient, what will they do?

Whitten and Tygar interpreted their Johnny results as an indication that security software has spe-
cific usability problems that make it different from non-security software. As such, the authors
reasoned, security software must be developed with special care and using special techniques.

Although it may be possible to use safe staging and metaphor tailoring to teach untrained users the
ins-and-outs of key certification, these techniques may be necessary for the sending and receiving
of secure email if the underlying trust model can be revisited.

7.3.2 Deconstructing the Johnny scenario and findings
Care was taken to replicate as much of the Johnny experiment as possible to allow the results
in Johnny 2 to be compared directly with those of Johnny. In this way, it was hoped that any
differences in the results could be attributed to differences in the underlying key certification model,
rather than to differences in experimental setup or methodology.

252 CHAPTER 7. Key Continuity Management

The scenario in Whitten’s original Johnny paper was interesting and straightforward: the experi-
mental participant has shown up for work the first day as a volunteer at a political campaign that is
trying to get a candidate elected to some state-wide office in Pennsylvania. The volunteer has been
assigned the role of Campaign Coordinator and is responsible for sending the candidate’s schedule
to members of the campaign team. Quoting from Whitten’s initial briefing document:

“It is very important that the plan updates be kept secret from everyone other than
the members of the campaign team, and also that the team members can be sure that
the updates they receive haven’t been forged. In order to ensure this, you and the
other team members will need to use PGP to encrypt and digitally sign your email
messages.”[WT98, p.38]

According to [WT98, p.26], to succeed at the task of sending signed and encrypted email to the
members of the campaign team, participants in the study needed to accomplish the following steps:

• Generate a key pair of their own.

• Make their public key available to the campaign team members, either by sending it to the
key server, or by emailing it to them directly.

• Get the campaign team member’s public keys, either by fetching them from the key server or
by sending email directly to the team members to request their public keys

• Encrypt the secret message using the team members’ public keys, sign it using their own
private key, and send it.

Participants who completed these four steps within a 90-minute time limit were considered to have
successfully completed the Johnny experiment. The job of the users participants was apparently
complicated by the fact that these four steps were never explicitly stated: participants had to figure
out the steps on their own by hunting around through the PGP interface and documentation.

Participants that accomplished these four tasks were sent email with additional tasks:

• Decrypt a signed and encrypted message from the campaign manager Maria Page.

• Make a backup copy of private and public keys.

• Create a key revocation certificate with the private key, so that the keys can be revoked at a
later point in time even if the private key is lost.[WT98, p.27]

Considering that Whitten and Tygar excluded participants who had prior knowledge of public key
cryptography, it is surprising that any of the participants were able to complete these tasks!

Table 7.1 presents a summary of the individual user tests from Whitten’s Johnny experiment.

Key Certification in Johnny
One problem with the Johnny scenario is that none of the keys created or used by the experiment
participants were ever certified in a manner that would protect against an active man-in-the-middle
attack. Specifically:

7.3. TESTING KCM WITH JOHNNY 2 253

Success Succeeding
Task Rate Johnny Participants
Successfully generated a key pair 92% P1, P2, P3, P4, P6, P7, P8, P9,

P10, P11, P12
Obtained the public keys of other team members 50% P3a, P6, P8b, P9c, P10d, P11e,

P12
Sent mail that was signed with their own key and
encrypted with the other campaign members’ key

25% P6, P9, P12

Decrypted and read Maria’s reply 33% P6, P8, P9, P12
Backed up their keys 42% P1, P4f, P6, P8, P10
User created a revocation certificate 8% P6
User that completed all tasks 1 P6g

a“With some prompting from the test monitor posing as Maria.”
bAfter receiving “three successively stronger hints from the test monitor posing as Maria
c“after two fairly explicit prompts from the test monitor posing as Maria.”
d“After prompting”
eBut P11 didn’t trust the keys; see text.
fBackup was in the same folder as the original key ring
gScores P11’s arguably correct decision not to trust the other campaign worker keys as a failure. See discussion in

main text.

Table 7.1: A summary of results from Whitten’s Johnny experiment; drawn from information presented in [WT98].

1. Participants were not provided with PGP fingerprints of the campaign workers’ keys.

2. Participants were not allowed to call the fictional campaign workers to read a key fingerprint
over the phone.

3. Participants were not provided with certified photographs of the campaign workers, and then
given the ability to compare these photographs with photographs that had been digitally
signed by the key owners as being authentic representations of the key owners. (This is a
feature that exists in the current version of PGP but did not exist in PGP 5.0; nevertheless,
this form of certification could have been performed manually using PGP 5.0, for example, by
signing PostScript files that display a person’s photograph and key ID when they are printed.)

4. Participants were not given campaign worker keys on a trusted floppy disk.

One of the Johnny participants seemed aware of this problem. P11 “didn’t successfully send signed
and encrypted email because she was afraid to trust the keys she got from the key server.... Too
afraid of making a mistake to trust the keys that she got from the key server, alarmed by the default
“untrusted” key properties, didn’t appear to notice that the keys were all signed by Maria.”[WT98,
p.35] As a result, P11 is scored in Table 7.1 as not having successfully completed all tasks. But
in fact, P11 may be the only participant who successfully completed all tasks: given the Johnny
scenario, all of the other participants may have fallen prey to an elaborate spoof attack conducted
by the opposing campaign.

The Johnny scenario seems to implicitly assume that both the campaign email and the campaign
keys stored on the PGP key server are secure. If so, then the cryptography provided by PGP is

254 CHAPTER 7. Key Continuity Management

protecting against an adversary who can conduct passive eavesdropping of the campaign’s Internet
connection, but it does not protect against an attacker who can create their own PGP key, upload
it to the keyserver, and then use that key to spoof the user playing the role of the Campaign
Coordinator. This is not an adversary that was commonly seen in 1997, and it is not one that is
commonly seen today. Today’s adversaries find it much easier to upload keys to a key server, which
can be done fro manywhere in the world, than to eavesdrop on the communications between two
computers on a local area network.

7.3.3 CoPilot: A realization of key continuity management
Had Whitten and Tygar used a system like Stream (see Appendix D on page 413) for Johnny, it is
likely that they would have seen radically different results:

• Whereas PGP 5.0 required that users manually create their keys, Stream automatically creates
public/private key pairs as necessary and distributes the user’s public key certificate to email
correspondents on every mail message that it sends.3 Thus all users in the study would have
been able to create successfully generate a key pair, because the software would have done
this for them automatically.

• Whereas PGP 5.0 required that users explicitly choose to sign and encrypt outgoing email,
Stream automatically encrypts and signs all outgoing email whenever it has a key for the
intended recipient. Although Stream did not automatically consult the PGP key servers to
look up keys for email addresses when such keys were not in the user’s local keyring, such an
obvious additional feature could have been implemented if there was need.4 Since the keys
for the campaign team members were all uploaded to the PGP key server in 1998 (and are
still there to this day, in fact—see Figure 7-5), all users in the study would have been able
to obtain the keys for the campaign members and send them mail that was signed with the
Campaign Coordinator’s key and encrypted for the appropriate recipient.

• Since Stream automatically decrypts encrypted mail that it receives and verifies the signa-
tures, all users in the study would have been able to decrypt and read the email that Maria
Page sent them.

• Although Stream did not create backup certificates or revocation certificates, this procedure
could have been easily automated as part of the automatic key creation process. If it had been
automated, all users in the study would have been able to perform the function—and they
would have done it without prompting by Maria.

In other words, had Whitten and Tygar used a system such as Stream that automated all key
management and cryptography functions for Johnny, it is quite likely that 12 out of 12 of their
subjects would have been able to complete all tasks. This is because the only tasks that Johnny
tested are those tasks that were (or could be) automated by Stream.

The primary objection to systems such as Stream is that they automate key handling, but at the
cost of leaving the user more vulnerable to a variety of man-in-the-middle and spoofing attacks.
Thus, these systems violate Whitten’s “Rules for making security invisible,” which basically states

3Recall that the S/MIME encryption standard also aggressively distributes the user’s S/MIME certificate.
4Indeed, the MailCrypt PGP plug-in for GNU Emacs implements this functionality.[Bud02]

7.3. TESTING KCM WITH JOHNNY 2 255

Public Key Server – Index “wanton.trust ”

Type bits /keyID Date User ID
pub 1024D/57D7649C 1998/07/09 campaign coordinator2 <ccoord@wanton.trust.cs.cmu.edu>
pub 1024D/506B10DD 1998/07/09 campaign coordinator <ccoord@wanton.trust.cs.cmu.edu>
pub 1024D/C431A239 1998/06/26 *** KEY REVOKED ***

alma <alma@wanton.trust.cs.cmu.edu>
pub 1024D/6DE02262 1998/06/24 *** KEY REVOKED ***

Campaign Coordinator <ccoord@wanton.trust.cs.cmu.edu>
pub 1024D/2F815D2C 1998/06/23 *** KEY REVOKED ***

Campaign Coordinator <ccord@wanton.trust.cs.cmu.edu>
pub 1024D/F0DBC67F 1998/06/23 *** KEY REVOKED ***

Campaign Coordinator <coord@wanton.trust.cs.cmu.edu>
pub 1024D/591C3F74 1998/06/18 *** KEY REVOKED ***

ccoord <ccoord@wanton.trust.cs.cmu.edu>
pub 1024D/FA90DCC2 1998/06/17 *** KEY REVOKED ***

ccoord <ccoord@wanton.trust.cs.cmu.edu>
pub 1024D/EE0E3657 1998/06/17 *** KEY REVOKED ***

Campaign Coordinator <ccoord@wanton.trust.cs.cmu.edu>
pub 768D/4BAC8697 1998/05/29 Paul Butler <butler@wanton.trust.cs.cmu.edu>
pub 1024D/87B70A3D 1998/05/29 Maria Page <mpage@wanton.trust.cs.cmu.edu>
pub 1024R/F618116D 1998/05/28 Ben Donnelly <bend@wanton.trust.cs.cmu.edu>
pub 1024D/B49B8110 1998/05/28 Sarah Carson <carson@wanton.trust.cs.cmu.edu>
pub 1024D/AEB041ED 1998/05/28 Dana McIntyre <dmi@wanton.trust.cs.cmu.edu>

Figure 7-5: The PGP keys for the Johnny study campaign team members were uploaded in May 1998 and were still
present on the key servers on January 15, 2005, as shown by this search of the keyserver at http://pgpkeys.mit.edu/ for
the string “wanton.trust.”

that security systems should not be invisibly automated if there is a chance that the systems will
sometimes make mistakes.[Whi04a, p.9]

Gutmann and others have suggested that the most users could achieve perfectly serviceable security
if they simply had a system that automatically warned them when the keys of their correspondents
changed. This is the essence of his Key Continuity Management proposal.

Johnny 2 tests this suggestion with a second-generation secure messaging proxy called CoPilot and
a modification to the Johnny scenario that incorporates a series of spoofing attacks that are specifi-
cally designed to exploit weaknesses in the KCM model. CoPilot was designed and implemented as
a “Wizard-of-Oz” prototype for the Johnny 2 study. The term “Wizard-of-Oz” is used to indicate that
users were tested on a prototype that works with the assistance of the experimenter working “be-
hind the curtain.” This follows the example that Whitten set with Lime, a system that she designed
and tested for her dissertation, without implementing in its entirety.

CoPilot Design
CoPilot is designed to be realized as a plug-in for programs such as Eudora, Outlook, or Outlook
Express. Copilot could also be implemented as a combination POP and SMTP proxy, in a manner
similar to Stream. The specific technique of implementation doesn’t matter, as long as CoPilot is
able to act as a filter on all incoming and outgoing messages, and as long as CoPilot has a trusted
channel through which it can communicate with the user.

256 CHAPTER 7. Key Continuity Management

For the purpose of the Johnny 2 study, CoPilot’s message engine is implemented as an outgoing
message filter that processed messages as they were sent by the experimenter. CoPilot’s user in-
terface was implemented as an HTML frame around the message with a JavaScript-enabled button
that could change the content of the CoPilot message.

CoPilot implements Key Continuity Management using a small set of rules:

• When any message containing a S/MIME certificate is received, that certificate is added to the
certificate store. (S/MIME clients like Outlook Express are do this automatically, but CoPilot
needs to track dependencies between certificates.)

• The first time that CoPilot receives a digitally signed message from a particular email address,
that message is flagged with a yellow border.

• If subsequent digitally signed messages are received from that address, those messages are
flagged with a green border. CoPilot will tell the user how many previous email messages
have been received that were signed with the same certificate.

• If subsequent digitally signed message is received from that address that is signed with a
different key, the message is flagged with a red border. The user can elect to trust such a key
by clicking a button in the user interface. The user can change his or her mind by clicking the
button a second time.

• If CoPilot receives an unsigned message from an email address for which it usually receives
signed messages, the unsigned message is displayed with a gray border.

• If CoPilot receives an unsigned message from an email address that it has never previously
seen, the message is displayed with a white border. Once the majority of email that is received
by a user is signed, this option could be eliminated and all unsigned mail could be displayed
with a gray border.

CoPilot’s color codes are summarized in Table 7.2 on the next page. These colors are similar to those
used by Cranor for the P3P Privacy Bird, which used green to indicate that a web site matches a
user’s preferences, yellow to indicate that a web site does not have a P3P policy, red to indicate that
the site does not match the policy, and gray to indicate that the tool is turned off.[CAG02]

Although it might appear that an unsigned message should be a red condition, there are many
instances in which legitimate email is sent by agents that do not have possession of the necessary
private key. For example, Microsoft’s “Outlook Web Access” will validate S/MIME signatures, but
has no provisions to allow a sender to digitally sign outgoing messages. The author reads and
responds to email using SnapperMail on a PalmOS-based wireless phone and an IMAP server;
unfortunately, none of the mail clients that run on PalmOS have S/MIME support. SnapperMail’s
maker revealed that there are no plans to add support for S/MIME because of the added licensing
fees for an S/MIME support library that could run on the Palm, and because of the lack of user
demand.[Nic05]

If S/MIME support were extended to webmail systems and handheld devices, and if both certificates
and private keys could be automatically migrated between these systems, one could imagine that
CoPilot’s gray color could be eliminated and replaced with red. (Key migration is discussed in
Appendix D on page 413.) In these circumstances, the system would properly give a strong warning

7.3. TESTING KCM WITH JOHNNY 2 257

Frame CoPilot
Color Displayed Text CoPilot Meaning

Yellow This message is yellow because it is the first signed
message that you have received from this email ad-
dress.

A Yellow Border will appear around an email mes-
sage the first time a particular Digital ID is used with
an email address.

Green This message is green because you have received
$COUNTmessages from this Digital ID.

A Green Border will appear around an email mes-
sage each successive time that a particular Digital ID
is used with an email address.

Red This message is red because email from $QFROMwas
previously sent using different Digital #$SN_OLD.
This message was sent using Digital ID #$SN_NEW

A Red Border will appear around an email message if
the Digital ID used with that email address changes.
This might indicate that the sender has moved to a
different computer, or that someone else is trying to
impersonate the sender.

Gray This message is gray because it was not sent using
a Digital ID and the sender of this message usually
uses Digital IDs.

A Gray Border indicates that no Digital ID was used
to send the message. The sender might have for-
gotten or have a computer problem. Alternatively,
the message might be sent by someone else who is
trying to impersonate the sender.

Table 7.2: The color codes displayed by the CoPilot program. The descriptions in this table are the same as those that
are supplied to users in the Color+Briefing group, as described in Section 7.3.6. The text displayed in the right-hand
column is representative text that is displayed with the message from the user test.

CoPilot differs from Stream in several important ways:
• Whereas Stream supported the PGP encryption standard,a CoPilot supports the S/MIME stan-

dard.

• Whereas Stream was written in C++ and used GPG as an encryption engine, CoPilot is largely
written in python and uses OpenSSL as its encryption engine.

• Whereas Stream was operational and used by the author for several months, CoPilot only
functions well enough to generate messages for the Johnny 2 user test.

• Whereas Stream could send email messages to the user but otherwise had no user interface,
CoPilot’s design includes a rich user interface that gives users some control over trust man-
agement.

aErik Nordlander spent a semester adapting Stream to work with S/MIME, but the work was not completed.

Table 7.3: CoPilot vs. Stream

if a user who had previous used certificates in

The name “CoPilot” comes from the idea that CoPilot functions as a kind of security expert who
watches over the user’s shoulder and understands how to perform a variety of security-relevant
tasks. CoPilot maintains a database of email addresses and certificates—implementing the Track
Received Keys pattern—and displays the information in context to the user.

7.3.4 Johnny 2: Giving the Johnny scenario teeth
In the Johnny 2 scenario, the fictional campaign team has decided to equip its computers with
CoPilot. Ben Donnelly, the campaign’s IT coordinator, has loaded S/MIME certificates for some

258 CHAPTER 7. Key Continuity Management

but not all of the campaign members into the address book of the computer being used by the
Campaign Coordinator. Johnny 2 thus tests the key continuation model and, hopefully, controls for
other variables.

Johnny 2 clarifies and further develops both the political campaign and the Attacker. To make
the task seem more realistic, the individual campaign members are given roles and backstories, as
shown in Table 7.4.

The instructions that the participants received for the task consisted of three paragraphs of text that
appeared in the human subject consent form and a single page entitled “Initial Task Description.”
In retrospect, hiding the task inside the human subject consent form may have been a mistake—a
mistake that Whitten did not make. Many of the people who participated in the study as subjects
appeared to be serial human subjects who participate in many studies on the MIT campus and have
been apparently conditioned to ignore the verbiage contained in the consent forms. This problem
was avoided by reading every word of the consent form to the subjects. Nevertheless, by placing
the text inside the consent form, the attack and the security precautions were not at the forefront
of the subject’s mind when the experiment began. This helped in the establishment of a realistic
test scenario.

The Attacker is an affiliate with the opposing campaign who is determined to use trickery to obtain
the schedule, but is not willing or able to break into the candidate’s email server or call the candi-
date’s ISP and have the password on the candidate’s email server reset. Instead, the Attacker tries
to trick the experimental subject (playing the role of the Campaign Coordinator) into revealing the
candidate’s secret campaign schedule.

Equipped with knowledge of the campaign’s personnel (perhaps obtained by previously calling up
the campaign and getting a list of the workers), the Attacker sends a series of three email messages
to the subject posing as members of the Campaign. In each of these email messages the Attacker
tries to get the subject to send the candidate’s schedule to one of several Hotmail accounts. In
the scenario, the Attacker has previously created these accounts with names that are similar to
members of the campaign. This employs an approach that is outlined by Mitnick.[MS02] For the
experiment, the messages constitute an escalating attack that can be used to gauge the effectiveness
of various defenses offered by CoPilot.

As it happens, the Attacker’s messages are sent on the subject’s first day on the job. And what is the
subject doing this first day? The subject is sending out copies of the Candidate’s coveted schedule to
all of the members of the campaign team, each message sent at the request of Campaign Manager
Maria Page. Due to a variety of circumstances, no other member of the Campaign team is in the
office.

Not content with simple trickery, the Attacker attempts to maximize his chances of success by
jamming the Campaign’s telephone lines. Such attacks are actually quite easy to do, and have in
fact been carried out in the past during actual political campaigns—a similar attack was carried out
against New Hampshire’s state Democratic party in an attempt to counteract the party’s get-out-
the-vote effort on Election Day 2002.[Sch04b]

Thus, Johnny 2 is an experiment that is similar to Johnny, but which looks at the intersection of

7.3. TESTING KCM WITH JOHNNY 2 259

Experimental Subject:
Campaign Coordinator ccord@campaign.ex.com Experimental subjects are told: “You are the Cam-

paign Coordinator.”

Campaign Personnel:
Maria Page mpage@campaign.ex.com Campaign Manager and the Coordinator’s boss.
Paul Butler butler@campaign.ex.com Campaign finance manager.
Ben Donnelly bend@campaign.ex.com IT coordinator. Officially Paul’s assistant, but also a

full-time student at the University of Pennsylvania.
Sarah Carson carson@campaign.ex.com “A full-time graphics designer.”
Dana McIntyre dmi@campaign.ex.com Office manager, but away for the week because her

husband is having surgery. (Don’t worry, it’s a rou-
tine procedure.)

Attacker:
Attacker Paul butler@campaign.ex.com Claims to be Paul Butler, having computer problems.
Attacker Sarah sara carson personal@hotmail.com Claims to be Sarah Carson, sending email from home

using her “personal Hotmail account” because she
can’t get to her campaign email from home.

Attacker Maria mpage@campaign.ex.com Attacker “Maria” sends an unsigned message to the
Campaign Coordinator asking that the schedule be
sent to both Ben and Sarah.

Table 7.4: Personas used in the Johnny 2 experiment.

usability and security issues that are likely to arise if the underlying problems that were diagnosed
in the Johnny experiment are resolved. Another way of interpreting Johnny 2 is that it is the Johnny
experiment updated to one of the leading security problems of our time: the “phishing” attack.

Figure 7-6 summarizes the similarities, non-material differences, and the material differences be-
tween Johnny and Johnny 2.

7.3.5 The Johnny 2 messages and the experimenter’s work bench
The Johnny 2 test consists of a series of eight email messages sent to the experimental subject
playing the role of the Campaign Coordinator. Each message has a specific purpose and is designed
to elicit a particular response. Table 7.5 presents a summary of the messages. The actual messages
appear in Appendix C on page 381, where they are discussed in detail.

It is apparent from reading Whitten’s reports and thesis that messages sent to test subjects during
the Johnny trial were composed interactively during the experiment and sent by the experimenter.5

This approach was rejected out-of-hand for Johnny 2 for several reasons, including:

• Composing messages during the trial could lead to mistakes such as typographical errors,

5Although the Whitten’s writings contain many technical details of the Johnny experiment, notably missing are the
actual messages that were sent by the experimenter to the study participants. In December 2004 Whitten was contacted
and asked for a copy of the messages. Whitten responded that she had not retained them, but recalled that the messages
were “pretty minimal” and consisted of little more than a three-message sequence:

1. “I couldn’t decrypt that message, something must be wrong.”
2. “I still can’t decrypt that message, something is still wrong.”
3. “I still can’t decrypt that message, are you using my key to encrypt?”[Whi04b]

260 CHAPTER 7. Key Continuity Management

msg CoPilot
Color Sender Content

#1 Yellow Maria Page Introductory message introducing Maria and giving the Campaign Coordinator
details of the campaign worker’s stories. The Coordinator is told to reply. This
message provides the subject with information and verifies that they can read
and respond to written instructions. This message is also an internal control:
Subjects that do not respond to Message #1 within a reasonable amount of time
are disqualified and withdrawn from the experiment.

#2 Green Maria Page The Campaign Schedule and a command telling the Coordinator to send a copy
of the schedule to Paul Butler and Dana McIntyre. This message further tests that
the subject can respond to a written command from Maria. It also gets the subject
into the rhythm of reading an email message and responding by sending out the
schedule.

#3 Green Ben Donnelly Ben asks the Campaign Coordinator for a copy of the schedule. The message is
green because Ben’s Digital ID was previously installed on the computer.

#4 Red Attacker Paul Paul says that he is having computer problems and asks the Coordinator to send
a copy of the schedule to both Paul’s campaign account and his personal Hotmail
account, Paul_J_Butler@Hotmail.com . This message is digitally signed with
a Digital ID that claims to be from butler@campaign.ex.com but which is
signed by a different Digital ID. This is a new key attack.

Note: This message has a “Reply-to:” header that causes a reply to be sent to
Hotmail. In retrospect the Reply-to header complicated the scenario and should
not have been present.

#5 Yellow Attacker Sarah Attacker Sarah sends email from her Hotmail account sara_carson_
personal@hotmail.com saying that she is working at home and asking that
the schedule be sent to the personal account. This message is digitally signed with
a valid Digital ID—it is simply an email address and ID that the subject has not
previously seen, making this a new identity attack.

#6 Gray Attacker Maria If the subject does not succumb to both message #4 and message #5, then mes-
sage #6 is sent. This message is an unsigned message that purports to come from
Maria Page, the Campaign Coordinator’s boss. Attacker Maria says that she has
tried to call the office but that the phones are not working. Maria says she has
been on the phone with both Paul and Sarah and that they both need copies of
the schedule; please send them! Now! Do it! This is an unsigned message attack.

#7 Green Maria Page In this message, the real Maria Page asks the Campaign Coordinator to send copies
of the schedule to Ben Donnelly and Sarah Carson. Some subjects were confused
that Maria sent this message, as they had already sent a copy of the schedule to
Ben in response to message #3. (In the scenario, Maria didn’t know that Ben had
asked for the schedule.) Participants who fell for Attacker Maria in message #6
were especially confused; they couldn’t understand why Maria was now asking
them to email the schedule to Sarah’s campaign address when she had just asked
that the schedule be sent to Sarah’s personal Hotmail address. This message was a
very useful test message to probe precisely what the subject thought had happened
in message #6.

#8 Green Maria Page Maria thanks the subject for participating in the experiment and tells the sub-
ject that it is now time for the “Debriefing Interview.” Although it wasn’t strictly
needed, this message gave the experimenter a gentle and in-scenario way to end
the experiment.

Table 7.5: The Johnny 2 Messages

Paul_J_Butler@Hotmail.com
butler@campaign.ex.com
sara_carson_personal@hotmail.com
sara_carson_personal@hotmail.com

7.3. TESTING KCM WITH JOHNNY 2 261

Similarities:
• The same recruitment poster was used, except that the name and contact information for

“Alma Whitten” was substituted with the name and contact information for “Simson.”

• The compensation to subjects was the same.

• The same preliminary interview was used to weed out individuals who had experience
with programs like PGP, who knew the basics of public key cryptography, or who knew the
difference between “asymmetric key cryptography” and “symmetric key cryptography.”

• Similar language was used in the consent form, with minor changes to reflect that the study
was taking place at MIT with Outlook Express and CoPilot and not at CMU with PGP.

• The campaign team personas all have the same names and email addresses.

Non-material Differences:
• Instead of testing users on a Macintosh with Eudora and PGP, users were tested on a com-

puter running Windows and Outlook Express.

• Instead of being recorded with a video recorder, the computer’s screen and user comments
were recorded using Camtasia Studio 2.[Tec05]

• The email domain used in Johnny was wanton.trust.cs.cmu.edu , while the email
domain used in Johnny 2 is campaign.ex.com .

• Campaign members are given specific roles, making the personas more believable.

• Instead of being given the secret campaign schedule on a piece of paper, a more detailed
secret schedule was sent to the subject playing the role of the Campaign Coordinator in an
email message.

Material Differences:
• Johnny 2 tests Key Continuity Management, not mutual certification.

• Johnny 2 has an articulated attack that is consistent between user trials.

• Johnny 2 has both internal controls on each experiment run and a control group.

• Johnny 2 has statistically significant results.

Figure 7-6: Similarities, non-material differences, and material differences between Johnny and Johnny 2

messages being sent to the wrong address, messages being sent without encryption or signing,
and so on.

• If different test subjects received different messages, it would be difficult to perform anything
but a qualitative analysis on the research findings.

• Given the need for the experimenter to take notes, the added overhead of writing detailed
replies to email messages would have been very demanding.

• If the experimenter was obviously responding to the subject’s email, the experiment would
have lost considerable verisimilitude.

Instead, a program called the “Johnny 2 Experimenter’s Work Bench” was created for adminis-

wanton.trust.cs.cmu.edu
campaign.ex.com

262 CHAPTER 7. Key Continuity Management

Figure 7-7: The Johnny 2 Experimenter’s Work Bench. As the experiment takes place, the experimenter successively
presses each “OK” button on and takes notes in the two text areas on the bottom. Notes are automatically timestamped
every minute and the notes file is saved with every keystroke. The transcript is stored in an RTF file where it may be
reviewed by the experimenter or processed with automated tools.

trating the experiment (Figure 7-7). This program consisted of a graphical user interface run-
ning on the experimenter’s Macintosh computer and two underlying programs, sendmessage and
send_signed , that performed the actual business of sending email messages to the subject. The
work bench program gives the experimenter a place to make notes, automatically timestamping
them each minute and noting when each test message is sent to the subject:

• send_signed , the program that actually sent the S/MIME-signed email messages called
for in the Johnny 2 experimental protocol. Written in the Python programming language,
send_signed has command-line arguments for specifying:

1. The private key to sign the message

2. The matching public key certificate, which is appended to the end of the message

3. The recipient’s email address (ccord@campaign.ex.com in the Johnny 2 experiment)

4. The message body

5. The CoPilot template to use. Templates available include the red, yellow, green (2 ver-
sion), gray (2 versions), and “none.”

6. The previous certificate serial number that CoPilot saw with a given email address. This
option was used for creating the first attack message.

7.3. TESTING KCM WITH JOHNNY 2 263

7. The message subject.
8. The reply-to address that should be used, if any. This option was also used for creat-

ing the first attack message.
9. The number of previous email messages that have been seen using this certificate.

10. Carbon-copy recipients. (These recipients are listed on the message sent to the experi-
mental subject, but not actually sent to the email addresses.)

• sendmessage , the program that implemented the “business logic” of the Johnny 2 experi-
ment. It is a Unix shell script that accepts two arguments: the message number to send and an
optional “-z” argument. Providing the “-z” argument caused the subject to receive messages
bordered with the uninformative grey border, rather than with a colorful and informative
CoPilot border. Essentially, this option turned off the CoPilot program. It was used for the
NoColor cohort, as described in the next section.

The send_signed Python program contains much of the machinery that is needed to implement
a fully functional CoPilot program. All that is needed in addition is either an Outlook Express
plug-in or a functioning POP and SMTP proxy, such as that created for the Stream program, and a
persistent database. Although such a program could easily have been created, it was not necessary
to do so to complete the Johnny 2 testing.

7.3.6 Three cohorts: NoColor, Color, and Color+Briefing
By now it was clear that the Johnny 2 experiment was very different from the original Johnny
experiment. Thus, Johnny could not be used as a control for Johnny 2. Instead, it was necessary to
devise a new set of controls for Johnny 2.

Each Johnny 2 experimental run contained three internal controls implemented as specific test user
tasks. The tests consisted of messages #1, #2, and #7. Before and after the attacks, the Campaign
Coordinator is asked by Maria Page to reply to Maria’s first message (#1) and send a copy of the
campaign schedule to the four legitimate campaign personas (#2 and #7).

Because Johnny 2 was designed to test the effectiveness of the CoPilot user interface and Key Con-
tinuity Management approach, Johnny 2 further divided the experimental pool into two categories:
those for whom the CoPilot program was engaged (the Color group), and those for whom it was
not engaged (the NoColor group). Those in the Color group saw all email messages with the col-
ored borders and explanatory text, while those in the NoColor group saw all email messages in
a gray boarder with no explanatory text. Figure 7-9 compares the Outlook Express interface that
users in the Color and NoColor groups saw.

A disturbing trend emerged during the first dozen runs: although the NoColor group was be-
ing routinely spoofed, as expected, the Color group was also being spoofed! This was not what we
wanted to have happen. Careful observation of the subjects revealed that many were simply screen-
ing out the information that CoPilot was providing: the HTML interface integrated so successfully
into Outlook Express that many users reported that they thought it was just another email header
that they could safely ignore. And without reading the mail headers, the colors had no meaning.
Subject S10 went so far as to report on her debriefing interview that she “found the colors very
annoying”—entirely missing the point of the CoPilot interface.

264 CHAPTER 7. Key Continuity Management

In the test, you will be asked to play the role of a volunteer in a political campaign. After you
volunteered, you were given the role of Campaign Coordinator. Your task is to send updates
about the campaign plan out to the members of the campaign team by email. It is very important
that the plan updates be kept secret from everyone other than the members of the campaign
team, and also that the team members can be sure that the updates they receive haven’t been
forged. In order to ensure this, you and the other team members will need to use CoPilot to
make sure that all of the email messages are secure.

Your email address for the purpose of this test is ccord@campaign.ex.com , and your
password is volnteer. You should use the title “Campaign Coordinator” rather than using your
own name.

Outlook Express and CoPilot have both been installed, and Outlook Express has been set
up to access the email account. No manuals for these programs are provided, but there may be
some online help. A pad of paper and pens are also provided, if you want to use them.

Before we start the test itself, I’ll be giving you a very basic demonstration of how to use
Outlook Express to send and receive mail. The goal is to have you start out the test as a person
who already knows how to use Outlook Express to send and receive email, and who is just now
going to start using CoPilot to make sure your email can’t be forged or spied on while it’s being
delivered over the network. The Outlook Express tutorial will take about 5 minutes, and then
we’ll begin the actual testing. You can also use Mozilla Thunderbird if you would prefer, but not
all of the advanced features of CoPilot work with Mozilla.

Figure 7-8: The task description that was hidden in the consent form. The entire consent form appears in Sec-
tion C.2.2 on page 384. The option to use Mozilla Thunderbird was removed after the consent form was granted
approval by MIT’s Committee On the Use of Humans as Experimental Subjects..

Figure 7-9: Johnny 2 message #1 with CoPilot engaged (left) and not engaged (right). In both cases the messages are
signed. However, when CoPilot is engaged, the program displays a yellow border and explains that the border is yellow
because this is the first time that the user has received a signed message from the email address mpage@campaign.
ex.com . In both cases the Outlook Express address book is displayed in the lower left-hand corner.

ccord@campaign.ex.com
mpage@campaign.ex.com
mpage@campaign.ex.com

7.3. TESTING KCM WITH JOHNNY 2 265

Digital IDs allow Outlook Express to authenticate the sender of email messages.

A Yellow Border will appear around an email message the first time a particular Digital ID
is used with an email address.

A Green Border will appear around an email message each successive time that a particular
Digital ID is used with an email address.

A Red Border will appear around an email message if the Digital ID used with that email
address changes. This might indicate that the sender has moved to a different computer,
or that someone else is trying to impersonate the sender.

A Gray Border indicates that no Digital ID was used to send the message. The sender might
have forgotten or have a computer problem. Alternatively, the message might be sent by
someone else who is trying to impersonate the sender.

Figure 7-10: The briefing received by the subjects in the Color+Briefing group. Each box was typeset with the back-
ground of the box being the color that the box purported to describe. The briefing took 50 seconds to read out loud to
the subjects; the briefer directed the subject’s attention to the printed words by pointed to each word as the word was
read.

Rather than scuttle the experiment, at this point a decision was made to add a third cohort. This
group, called Color+Briefing, received a written briefing before the experiment started that con-
sisted of one sentence that described what a Digital ID is and four color-coded boxes that described
what the CoPilot colors red, green, yellow and gray mean. The briefing appears in Figure 7-10.

This briefing was seamlessly incorporated into the study by printing up a separate set of “Initial
Task Description” documents which appear in Section C.2.2 on page 384. To help ensure a random
distribution of the remaining subject trials, the number of test subjects in each pool was increased
from 12 to 14. The remaining number of NoColor, Color and Color+Briefing scheduled sub-
ject trials were randomly shuffled and assigned. The final ordering appears in Section C.3.1 on
page 402. Table 7.6 on the following page summarizes these cohorts.

This rather small intervention resulted in a significant change for those who received it: nearly
all of the subjects in the Color+Briefing group detected the spoof and were able to avoid being
tricked by the attacker some of the time. One possibility is that the subjects were primed to the
possibility of a spoofing attack and were now on the lookout. But another possibility is that as a
result of being told what these colors meant, the subjects now knew what to look for and, as a
result, were not screening out indicators that they would have otherwise ignored. These results are
discussed in detail in Section 7.5.

It is important to note that the only difference between these three groups was the activity of the
CoPilot program and the presence (or absence) of the written briefing. All three groups received
the same digitally signed (or unsigned) messages. All three groups were free to use the security
features in Outlook Express to learn more about the Digital IDs that were used to sign the messages.

266 CHAPTER 7. Key Continuity Management

Cohort # subjects Distinguishing characteristics
NoColor 14 Subjects in the NoColor group were presented with an interface

that had CoPilot’s Key Continuity Management system disabled
and all messages were surrounded with a gray border.

Color 14 Subjects in the Color group were presented with CoPilot’s stan-
dard multi-color interface, as discussed in Section 7.3.3.

Color+Briefing 15 Subjects in the Color+Briefing group were presented with CoPi-
lot’s standard interface and given a briefing (Figure C-15) de-
scribing what a Digital ID is and what the different CoPilot colors
might mean. This briefing was included on the “Initial Task De-
scription” document that the subjects received and additionally
read to the subjects by the experimenter.

Table 7.6: Differences between the NoColor , Color and Color+Briefing cohorts

7.3.7 S/MIME setup
Johnny 2 makes extensive use of the S/MIME facilities that are built in to Outlook Express 6. OE6
is used to verify the signature on incoming signed S/MIME messages; to allow the user to send
S/MIME signed and sealed message by clicking a button; to verify the contents of a certificate;
and to manage certificates through the OE6 address book. In order to make use of these capabil-
ities, S/MIME certificates needed to be created for each of the experiment personas. Ideally, such
creation would be performed automatically by CoPilot. Because this feature of CoPilot was not
implemented, certificates had to be manually created or obtained by the experimenter.

One way to create the certificates would have been to obtain them from a commercial CA such as
VeriSign or Thawte. This option was considered and rejected for three reasons. First, there was
the issue of expense. Second, there was the issue of legality: because they are attempting to create
a true Public Key Infrastructure, CAs such as VeriSign and Thawte require that users click through
many legal agreements to get a certificate: it was not clear whether or not obtaining certificates
for fictional entities would be consistent with the spirit, let alone the letter, of these organizations’
Certificate Practice Statements. The third reason that commercial certificates were rejected was a
matter of pride: the author felt that he could not claim to really understand how S/MIME works,
and thus argue how to improve it, unless he was able to create his own S/MIME certificates, import
those certificates into programs such as Outlook Express, use those certificates, and also write
command-line programs to create and send S/MIME-signed and encrypted email.

Creating the certificates turned out to be an important learning experience. A complete discussion
of the process appears in Section C.4.

7.4. WALK-THROUGH 267

7.4 Walk-Through
This section describes the specific experimental procedure that we used for Johnny 2.

7.4.1 Windows and Microsoft Outlook Express 6 configuration
User testing was done on a Dell Optiplex GX270 computer with a 2.4GHz Pentium 4 CPU, 1 Gi-
gabyte of RAM and a 40 Gigabyte hard drive. The computer was Windows XP Professional Ver-
sion 2002 Service Pack 2. Display was a 17-inch Dell 1703PFt LCD display set at a resolution
of 1280x1024 pixels, although the resolution was lowered to 1024x768 if the user had problem
reading the small text. A photograph appears in Figure C-7 on page 385.

Subjects were given the option of using a Dell mouse (2 button with a scroll-wheel) or a Logitech
Marble Mouse trackball. (None of the subjects chose the trackball.) A Dell 103-key keyboard was
provided.

Testing was done with a specially created account named “Campaign Coordinator” with the pass-
word volnteer—the same account and password as used by Whitten and Tygar in 1998. The email
program was Microsoft Outlook Express 6 (OE6) version 6.00.2900.2180 (xpsp sp2 rtm.040803-
2158).

Outlook Express 6 Email Accounts
OE6 was pre-configured with a single account named “email.” This account was for a user name
“Campaign Coordinator” with the email address ccord@campaign.ex.com . The incoming mail
server was pop.ex.com with a POP3 account named “ccord” and the password “volnteer”. POP3
mail was downloaded over SSL. Outgoing messages were sent to the SMTP server csail.mit.edu.

The email account’s Security tab was configured with a certificate called “Campaign Coordinator.”
The certificate was issued to “Campaign Coordinator” by the “Certification Manager,” valid from
12/9/2004 to 12/9/2005. OE6 was configured to use this same certificate for both signing and
encrypting.

As in Johnny, each of the five campaign team members were represented by an email account
that was accessible to the experimenter. Attacker accounts consisted of actual Hotmail accounts
that had been obtained for the purpose of the experiment. All Digital IDs used in the experiment
were created with OpenSSL, manually loaded in to the Outlook Express Address Book by sending
messages digitally signed with the certificates to the Campaign Coordinator account.

Figure 7-11 shows the computer’s screen at the beginning of the user test.

OE6 Options
Like most Microsoft programs, OE6 program preferences are sent through an Options panel that is
accessed through the Tools menu. The OE6 options panel contains 10 sub-panels accessed through
a set of double-decker tabs. These tabs contain 49 check boxes, 3 pull-down menus, 3 spinners,
and push-buttons that can display 21 different sub-panels.

For the purposes of the Johnny 2 study, there were two very important settings. Both of these
options are checked by default in the standard Outlook Express 6 installation:

ccord@campaign.ex.com

268 CHAPTER 7. Key Continuity Management

Figure 7-11: The computer’s desktop at the start of the Johnny 2 experiment. Outlook Express 6 is the main program,
with the program’s folder list (top left), message list (top center), message preview (bottom center), and address book
(bottom left) clearly visible. This screen is displayed for all subjects, no matter whether they are NoColor , Color or
Color+Briefing .

• The option “Automatically put people I reply to in my Address Book” on the “Send” tab of the
“Options” panel was checked. When checked, this option causes a sender’s email address to
be automatically incorporated into the user’s address book when the message is replied to.

• The option “Add senders’ certificates to my address book” on the “Advanced Security Settings”
panel of the “Security” tab of the “Options” panel was checked. When checked, this option
automatically incorporates received S/MIME certificates into the user’s address book when
the message is viewed.

7.4.2 Reminder, greetings and briefing
Subjects were sent an email reminding them of the time and location of the experiment at 5pm the
day before their trial. This email contained detailed instructions on how to navigate through the
MIT Stata Center to room 32-G828, where the testing took place.

The orientation for the test had four components:

1. Prior to the subject’s arrival, subjects were assigned to one of three groups: NoColor, Color
or Color+Briefing.

2. All subjects were presented with a copy of the consent form (see Figures C-10 through C-13.
This form was read to the subjects, signed, and then placed in a locked file cabinet.

The consent form made the following points clear:

• That the subjects were helping to test Outlook Express and CoPilot, not being tested
themselves.

7.4. WALK-THROUGH 269

• That it would be extremely helpful if the subjects could “think aloud” as much as possible
during the test.

• That the premise of the test was that the subjects were volunteering for a political cam-
paign, and that their task would be to send email updates to the members of the cam-
paign team, using CoPilot to make sure that all of the email messages are secure—a
term which is defined by context to mean “not forged” and “secret from everyone
other than the members of the campaign team.”

• What their email address and password would be for the purposes of the test.
• That Outlook Express and CoPilot were already installed, and that the online docu-

mentation, pad and pen were there for them to use as much as they liked.
• That they would be giving a brief tutorial on the basic use of Outlook Express before

the actual testing began.[WT98, p.25, with differences noted in bold]

3. Subjects in the NoColor and Color group were presented with the Initial Task Description
shown in Figure C-14 on page 391, while those subject in the Color+Briefing group were
presented with description shown in Figure C-15 on page 392.

(Subjects were not told if they were in the NoColor, Color or Color+Briefing groups—
subjects were not even made aware of the fact that there were multiple groups to which they
could be assigned.)

The Initial Task Description document was read to the subjects by the experimenter, and
placed next to the computer’s keyboard so that the subjects could easily refer to it at a later
point if desired.

4. At this point, subjects were given a brief demonstration of Outlook Express. Points specifically
mentioned were that the Send/Recv button could be used to send and receive mail; that new
mail comes into the inbox; and that information on people in the address book could be
learned by right-clicking on the name and then selecting the “Properties” menu. No mention
was made of how to use the “Sign” and “Encrypt” buttons visible in the OE6 interface—in
fact, no mention was made of those buttons at all.

7.4.3 Experiment sequence
The experiment began when the first email message was sent. During the experiment new email
messages were sent when it was clear that the subjects had finished responding to an email mes-
sage, or when roughly 10 minutes had passed since the sending of the previous email message.

The experimenter sat next to the left of the subject, outside the subject’s field of view, taking notes.
Questions that the subjects asked regarding non-security features of Outlook Express (for example,
how to forward a message) were answered, but any question regarding the operation of an Outlook
Express S/MIME feature, the Outlook Express Address Book, or the CoPilot interface was answered
“I don’t know.” Subjects who asked for additional information regarding the briefing were referred
back to the briefing.

Subjects who were quiet for extended periods of time were reminded “don’t forget to think out
loud.”

At the conclusion of the experiment, subjects were given a “Debriefing Questionnaire” and asked

270 CHAPTER 7. Key Continuity Management

additional questions by the experimenter to clarify their understanding and the motivation of the
actions that they had taken.

7.4.4 Experiment screens
The following photographs show how the messages are framed by CoPilot and displayed to the test
subject by Outlook Express. Figures 7-12 through 7-15 show a sample of the screens that were seen
by the Color and Color+Briefing groups. Figures 7-16 compares the colored messages with those
seen by the NoColor group.

7.4. WALK-THROUGH 271

Figure 7-12: Message #1 (Yellow): Maria Page wel-
comes the Campaign Coordinator to the team and intro-
duces the campaign members. Because this is the first
time that CoPilot has seen this message, it is displayed
with a yellow border.

Figure 7-13: Message #2 (Green): Because this is the
second message that CoPilot has seen from Maria Page,
CoPilot displays this message in green.

Figure 7-14: Message #3 (Green): CoPilot received
Ben’s key from Maria (because Maria cc’ed Ben in her
message). Because Maria’s key is trusted, this key is
trusted as well, and it appears in green.

Figure 7-15: Message #4 (Red): CoPilot displays At-
tacker Paul’s message in red because CoPilot had pre-
viously seen a Digital ID with this email address that is
different from the Digital ID that Attacker Paul is actually
using. This attack is possible because CoPilot uses Key
Continuity Management with self-signed keys, but CoPi-
lot can detect it.

272 CHAPTER 7. Key Continuity Management

Displayed to Color and Color+Briefing. Displayed to NoColor.

Figure 7-16: A side-by-side comparison of the second message as displayed with CoPilot enabled and with it disabled.

7.5 Results and Discussion
A total of 43 subjects were run, with 15 in the Color+Briefing group and 14 in the other two.
Details of subject recruitment appears in Section C.1.1 on page 381.

Runs averaged 40 minutes in time, with the shortest run lasting 17 minutes and the longest lasting
53. This section summarizes the most significant results observed from the subjects. When reported
in tables, χ2 values were calculated using a logistic regression.

7.5.1 Task comprehension
Overall, the subjects clearly comprehended both the task in which they were asked to participate,
and the tools that they were given for performing that task. No users were confused by the fact
that they were being sent messages that were digitally signed.

Subjects also quickly dropped into the routine of the scenario. Subjects who were very suspicious
and interested in the security of messages #1 and #2 lost their interest by the time message #3
arrived. This was a surprising observation, as our subjects had signed up for a “Security Study” and
had specifically been told that the other campaign might be trying to steal the campaign schedule.

Many subjects said that they felt as if they were under “time pressure” to complete the task within
a certain period. This pressure appeared to come from the scenario itself, rather than from other
commitments that the subject might have created outside the scenario. For example, several sub-
jects noted that Attacker Paul said that he needed the schedule within the next 30 minutes—these
subjects kept looking at the clock and at the timestamp of the that Attacker Paul had sent, to see if
there was still time to satisfy his request! The subjects wanted to help the fictional personas.

In follow-up interviews it was clear that users generally understood that signing a message allowed

7.5. RESULTS AND DISCUSSION 273

% subjects Clicked “encrypt”
resisting attacks to seal email

Cohort n sometimes always sometimes always
NoColor 14 43% 0% 50% 21%
Color 14 50% 29% 36% 36%
Color+Briefing 15 87% 33% 20% 13%

χ2 6.13 3.61 2.96 0.29
p = 0.013 0.57 0.087 0.59

Table 7.7: Summary Results of Johnny 2 User Study

a recipient to verify who had sent the message and that “encrypting” (or sealing) the message
prevented “the wrong people” from viewing the message’s contents. Several of the users who
received the unsigned message attack from Attacker Maria asked her to resend the message signed
with her Digital ID so that they could verify that the message really did come from her. Most of
were not sure if they were being attacked or not, but they felt that they could rely on the Digital
ID to tell them if the Maria Page who sent message #6 was the same Maria Page who had sent the
initial campaign email messages.

Interestingly, these same users were generally unaware that signing a message also provided in-
tegrity guarantees. In our experience, most email users are not aware of the fact that a message
can be intentionally and maliciously modified as it moves through a computer network or waits
for delivery on a mail server. Although we did not specifically ask our users if they realized this
possibility, only one (S39) of the users in the study raised this possibility that a message might be
maliciously modified. That user was so paralyzed by the notion that a malicious attacker might
be modifying the email messages she was receiving that she was unable to complete all of the
experiment tasks!

Many users, especially those in the NoColor group, struggled for some way to verify the authenticity
of the attack messages. Some settled on a form of Email-Based Identification and Authentication[Gar03a]:
they sent an email message to the attacker’s apparent campaign address to see if the attacker could
read and reply to such messages. Unfortunately, this approach was sometimes their undoing: the
subjects occasionally succumbed to the unsigned message attack from Attacker Maria because the
message appeared to have been written in response to a message that the subject had just written!

7.5.2 Evaluating KCM
As evidenced in Table 7.7, we found that CoPilot’s KCM interface significantly (p < 0.001) en-
abled users in the Color and Color+Briefing groups to resist some attacks—in particular, the “new
key attack” and the “unsigned message attack” (Table 7.8). The interface did not inoculate sub-
jects against the “new identity attack.” A discussion of these attacks appears in Section 7.1.6 on
page 247.

KCM Against the New Key Attack
KCM worked significantly (p = 0.001) better against the new key attack than no KCM—especially
when the subjects were briefed that a new key might indicate that “someone else is trying to im-

274 CHAPTER 7. Key Continuity Management

% of subjects that tried to send the schedule when requested by:
new new unsigned
key identity message

Group Maria 1 Maria 2 Ben attack attack attack
NoColor 100% 92% 100% 71% 79% 75%

(14/14) (11/12) (14/14) (10/14) (11/14) (9/11)
Color 93% 100% 92% 64% 50% 58%

(13/14) (13/13) (11/12) (9/14) (7/14) (7/12)
Color+Briefing 100% 100% 100% 13% 60% 43%

(13/15) (14/15) (13/14) (2/15) (9/15) (6/14)

χ2 2.20 0.018 0.79 10.61 1.02 3.98
p = 0.14 p = 0.89 p = 0.37 p = 0.001 p = 0.31 p = 0.046

Table 7.8: Percentage of subjects that sent email containing the secret campaign schedule in response to commands
from Maria and Ben, and in response to the three attacks. Numbers in parenthesis indicate the number of subjects who
responded compared to the number who were subjected to the test condition. Subjects who misinterpreted the Maria
1 message and sent email to all campaign workers did not feel the need to comply with the Maria 2 or Ben messages
because they had already done so; they were omitted from the sample. Because of the way in which the subjects
responded to earlier messages in the scenario, not all subjects were exposed to the unsigned message attack.

personate the sender” (Figure C-15). The improvement was dramatic when users were specifically
briefed of the two likely conditions that might result in a red message: “that the sender has moved
to a different computer, or that someone else is trying to impersonate the sender.”

KCM Against the New Identity Attack
KCM did not work significantly (p = 0.31) better than no KCM against the new identity attack.
It can be argued that this is because the subjects were not primed that a yellow border could
be an attack. We do not think that this criticism is warranted, however, because many subjects
verbally debated whether or not the yellow message was in fact from the real Sarah who was in the
campaign or from some other Sarah. Many rationalized that the key and the email address were
different because Sarah was using her home computer—the justification present in message #5.
Our subjects knew that they might be under attack: they simply decided to trust Attacker Sarah.

Only two subjects noticed that Attacker Sarah’s Hotmail address had a misspelling in the name.
S27 discovered the inconsistency before sending the message to Attacker Sarah but decided to
send the message anyway; S33 used the misspelling to help confirm the decision not to trust a
yellow message.

KCM Against the Unsigned Message Attack
KCM was more successful against the unsigned message attack, conveying statistically significant
(p = 0.046) immunity from spoofing to those in the Color and Color+Briefing cohorts. Many users
readily understood that there was no way to verify the sender of a message that wasn’t signed. For
example, Color subject S33 wrote to Attacker Maria:

”You didn’t sign this email so I can’t verify that it is from you. Is it actually from
you? If so, please sign the response!” (S33) [Thu Jan 27 13:26:12 2005]

7.5. RESULTS AND DISCUSSION 275

After S33 hit the “Send” button, she said “So now I need to find out if she actually sent it.” S33 was
not content to use answerback authentication (see Section 7.5.5). A moment later, S33 laughed
and realized that she hadn’t signed her message, either.

We were surprised that the unsigned message attack wasn’t more successful against users in the
NoColor group. During the follow-up interview, we were told that what frequently protected sub-
jects from following Attacker Maria’s instructions was not the fact that message #6 was not signed:
the indications in Outlook Express 6 that messages are signed are very subtle, and as a result not
a single user in the NoColor group realized that message #6 was not signed while the other mes-
sages were signed. Instead, what seemed to protect users in the NoColor cohort from responding
to message #6 was that Attacker Maria was asking them to send the secret campaign schedule to
a Hotmail address: many subjects said that they simply did not trust Hotmail’s security because
Hotmail accounts can be obtained under any name that is available.

7.5.3 Evaluating the CoPilot interface
CoPilot’s HTML-based interface was designed to look like the program had been tightly integrated
with Outlook Express. As it turns out, the integration was a little too transparent. Although in the
debriefing interview every subject in the Color and Color+Briefing group said that they saw the
colored borders, we observed that users in the Color group frequently did not read the text that
CoPilot displayed underneath the “To:” header (for example, in Figure 7-12). CoPilot integrated so
well that users were ignoring it!

The “Trust this ID” button was never explained to the subjects. Only a few subjects experimented
with the button to see what it did. Two subjects (S31 and S39) misunderstood: when they saw the
green-bordered message with the button labeled “stop trusting this ID,” these users thought that
the legend on the button was an instruction from CoPilot to them, telling them that they should
stop trusting this ID! Both users clicked the button, the CoPilot border changed from green to red,
and the users were pleased that they had complied with the computer’s instructions and apparently
gotten the correct result.

Even though we excluded subjects who had used PGP or could distinguish between a symmetric
and asymmetric cryptography, invariably some of our subjects had a working knowledge of cryp-
tography. These subjects reacted very positively to the CoPilot interface: they liked the way that
the interface made it so easy to know which messages were signed and which were not. It is not
clear if subjects would feel this way if every message had such bold and colorful notifications, but
this result indicates that companies like Microsoft and Apple might wish to raise the importance of
S/MIME signatures in their interfaces.

7.5.4 “Encrypt”
Unprompted by the instructions but given the option by the Outlook Express interface, roughly
a third of the users in our study clicked the “encrypt” button to seal the candidate’s confidential
schedule before it was sent by email.

The OE6 “encrypt” button is a toggle switch. Pressing the button once causes a little blue icon to
appear next to the To: field in the message composition window. No encryption happens, though,

276 CHAPTER 7. Key Continuity Management

until the user tries to send the message. At this point OE6 scans the Outlook Express Address Book
to see if there is an S/MIME certificate on file that matches each To: address. If all of the addresses
match, the message is encrypted and sent. If one or more of the addresses do not match, a warning
appears (Figure 5-6).

Users who did not have the CoPilot Key Continuity Management interface were significantly (p =
0.097) more likely to use encryption than those who had the interface. Interviews with users
revealed that many were using the intended recipient’s ability to unseal a message as a proxy for
recipient authentication. That is, subjects believed that only members of the campaign would be
able to unseal messages that had been properly sealed. In follow-up interviews, several subjects
said the campaign IT coordinator should have configured Outlook Express so that it would only
send sealed messages if sealing messages was a campaign priority.

However, subjects were mistaken: OE6 was very happy to seal the message for Attacker Sarah,
as Attacker Sarah’s “yellow” message had been digitally signed and, as a result, her certificate had
been automatically incorporated into the OE6 address book. Users didn’t understand that a message
could be encrypted for an attacker: those who were asked said that they thought that something
about the CoPilot system would prevent encrypted messages being sent to someone who was not
affiliated with the campaign.

Every user who discovered the “Encrypt” button and tried to send a message to Attacker Paul was
confused when they could not send a sealed message to the Hotmail address (Figure 5-6). They
couldn’t do this, because Attacker Paul’s message was digitally signed with a certificate that had
the address butler@campaign.ex.com , and not paul_butler@hotmail.com . (It is appro-
priate that Attacker Paul was able to obtain such a certificate because the Campaign is using Key
Continuity Management, and not third-party certification.) A handful referred to the online help or
did web searches with Google to try to diagnose the problem: all of these individuals determined
that the problem was that they did not have a Digital ID on file for Attacker Paul’s Hotmail address.
Several users attempted to change the email address on Paul’s campaign Digital ID to his Hotmail
address so that they could send sealed mail to his Hotmail account; others tried in vain to figure
out how to “make” a Digital ID for the Hotmail Account. Two of the users sent mail to Attacker
Paul telling him that they could not send him the schedule until he got a Digital ID and sent him
instructions for obtaining one.

7.5.5 Use of email answerback as an authenticator
Many subjects attempted to use some form of email answerback as an authenticator. That is, when
subjects received the message from attackers Paul, Sarah and Maria, they sent mail to the campaign
email accounts belonging to Paul, Sarah and Maria asking for verification of the message.

A good example of this was Subject S11, a 28-year-old PhD candidate in education with 11 years’
experience using computers. S11 engaged with the experiment and sent chatty, in-scenario emails
to the fictional characters. Her first email to Maria said “Hi, Maria. I’m ready to assist when you
need help.” She followed the instructions of email #2 and sent the schedule to Paul and Dana, then
followed the instructions of email #3 and sent the message to Ben.

When S11 received the first attack email, her reaction was to send an email not to Attacker Paul’s

butler@campaign.ex.com
paul_butler@hotmail.com

7.5. RESULTS AND DISCUSSION 277

Hotmail account, but to worker-Paul’s campaign account, stating:

Hi, Paul.

I rec’d this message but would prefer to send you the dates to your campaign email
address.

Please reply when you have a moment.

thank you,

CC

Even though Attacker Paul said that Paul’s campaign email account was not working, S11 decided
that the only way she had to authenticate the message was to send it to Paul’s campaign email and
wait for sensible confirmation.

There is a problem with S11’s attempts at answerback authentication: because the message sent to
Paul (and a later message sent to Maria) did not contain a nonce, a password, or some other kind
of secret, there is no obvious way for S11 to evaluate a message that appears to be sent in response.
That is, S11 constructed a situation in which the response method had to be self-authenticating,
and there was no way for this to take place.

Indeed, when S11 received message #6 from Attacker Maria, S11 believed that the message was
sent in response to one of her challenges. Even though the message was not signed, S11 decided
to ignore CoPilot’s warning and sent out the schedule to the attackers. She said:

“This one is not sent using a digital ID. That’s neat that it knows that. That the
sender usually uses digital IDs, but it is coming from her ex address. So now I am
terribly confused and I don’t understand how the digital ID works. If it is something
that someone logs on with . . . I thought it was with something special about the ex
address, but apparently I was very wrong—and very näıve.

Now at this point, she is my boss. She is the big wig. So I will do what she tells
me.”[Fri Jan 7 15:19:04 2005]

Even in the face of an unsigned email message telling her to do something that she knows is wrong,
S11’s resolve crumbled in the face of a determined social engineering attack. After receiving attack
message #6, she sends the secret to Attacker Paul and Attacker Sarah’s Hotmail addresses. But S11
cc’s Maria’s campaign address on the email—both as proof to Maria that she did it, and as a way of
alerting Maria that something might be wrong.

Next, S11 receives legitimately signed message #7. The fact that message #7 is signed makes S11
all the more suspicious of unsigned attack message #6. S11 now realizes that message #6 was an
attack and sends the following letter to Campaign Manager Maria Page:

Maria!

278 CHAPTER 7. Key Continuity Management

% Asking
Cohort for phone Subjects
NoColor (6/14) S1 S9 S15 S24 S38 S43
Color (6/14) S4 S6 S7 S11 S23 S33
Color+Briefing (10/15) S16 S18 S20 S22 S27 S32 S34 S36 S39 S44

Table 7.9: Subjects asking for the phone. A logistic regression comparing these three groups found a p = 0.19,
indicating that there is no significant difference between the groups.

I received an email from you, although it was not signed w/ a digital ID. I sent the
schedule to Paul and Sarah, w/ a cc to you.

Apparently, by the looks of this email, you did not just send the previous one (that I
copied you on).

Please assist ASAP.

Apologies, CC

S11 then goes to send a copy of the schedule to Ben and Sara (S11 is so flustered that she actually
forgets to send the schedule to Sara). Following the “think out loud” protocol, she says:

“So I might as well send it to Ben and Sarah, although they are probably going to change
it because I messed up.”[S11, Fri Jan 7 15:26:04 2005]

The message to Ben says:

Ben,

Per Maria’s request. Please be careful as there seems to be sketchy email communi-
cations occurring.

Sincerely,

CC

In the debriefing, S11 said that if she had been working at a real campaign, she expects that she
would have been briefed as to what a Digital ID was and what it means to sign and encrypt a
message. Indeed, such a briefing could have been done in less than two or three minutes.

7.5.6 Use out of band authentication
Many of our subjects attempted to use out-of-band channels to authenticate the sender of the
messages. The most obvious out-of-band channel was the provided phone: 22 out of the 43 subjects
asked to use the phone, as shown in Table 7.9.

S36 wondered aloud why the campaign phone should be secure, when the campaign’s email might
not be.

7.5. RESULTS AND DISCUSSION 279

S40 sent email to Maria, asking for Paul’s phone number. When S40 then got message #6 from
Attacker Maria saying that the phone was out of order, S40 thought that Attacker Maria’s message
was a direct answer to S40’s message asking for the phone, and took Attacker Maria’s response as
confirmation that the schedule should be sent to the Hotmail addresses.

Although subjects were specifically told that they could ask the experimenter for a phone during
the initial briefing, many subjects nevertheless chose not to make use of the apparent opportunity.
S14 wrote on the debriefing questionnaire “I regret that I didn’t use the phone.” S41 had a similar
response, saying “I definitely would have used the telephone to verify a Hotmail address” if the
scenario had been real. S21 read attacker Maria’s message that she had gotten off the phone with
Sarah, but never thought to use the phone to call either of them.

The conclusion is that some but not all of the subjects thought that they could and should use the
telephone in an attempt to verify the sender of the email message: although they were guided to
this decision by the scenario, it was not preordained. Given that even unsophisticated computer
users are generally familiar with telephone systems, designers should look for ways to leverage
out-of-band authentication systems when practical. As noted in Section 6.3.4, Groove already has
provisions for such authentication.

7.5.7 Other observations
In addition to the reported data above, there were several behaviors that were common among a
noticeable minority of subjects. These behaviors included:

• Some subjects decided to embellish the copy of the schedule that they sent with messages
for the recipient imploring them to maintain operational security. Ironically, many of these
messages were sent to the Attacker personas!

• Some subjects cc’ed Maria Page on copies of the calendar that were sent to both the campaign
and the attacker personas. Although it seemed that subjects were more likely to cc Maria Page
when they were not sure if they were making a mistake, no statistical analysis was performed
of cc behavior.

• Although the phrase “Digital ID” appeared in the “Initial Task Description” document, only
one subject (S17) actually asked “what’s a Digital ID?” during the briefing. Subjects who
were asked “do you know what a Digital ID is?” or “can you give me a definition of a Digital
ID?” during the debriefing could give only a very poor and largely inaccurate definition of
the phrase—even though they had been using Digital IDs for 30-45 minutes. An interesting
follow-up study would be to re-run the Johnny 2 protocol and ask subjects in a formal manner
to define the term “Digital ID” and explore its perceived uses.

• We found that many Webmail users had fundamental problems understanding the Windows-
style button-based interface. Two users exemplified this problem by not understanding the
CoPilot button labeled “Stop trusting this Digital ID.” Yes, that button could have been labeled
“click here to stop trusting this Digital ID.” But many other behaviors were seen, such as users
who clicked on the Inbox folder to get their mail (a common idiom with webmail systems),
users who were confused by the Outlook Express “New Message” window which appeared
and then got lost underneath the main Outlook Express window, and by the modal panels
associated with the Outlook Express address book itself. Watching these users made the

280 CHAPTER 7. Key Continuity Management

experimenter wonder how successful a desktop mail client would be that cloned the easy-to-
use properties of todays webmail systems.

• The attackers always say that there are phone problems, but the legitimate campaign personas
don’t. When the experimental subjects asked for the “phone” and discovered that, yes indeed,
there really are phone problems, this tended to legitimize the attacker personas.

• Some subjects used the Outlook Express tools for viewing certificate properties. However
none of the subjects were able to make any sense of the information that Outlook Express
provided. (Usability difficulties with current certificate viewers are discussed in Chapter 6.)

• Many subjects were confused by the effect of the Reply-to: field in Attacker Paul’s message:
even though the message appeared to come from the Paul’s campaign address, hitting “reply”
created a new message that would go to Attacker Paul’s Hotmail address. This confusion could
have been avoided through the use of a Reply-to: attack, as explained in Section 11.1.3.

7.5.8 Johnny 2 problems and possible improvements
Finally, in the course of conducting this user test, many ways became readily apparent by which
the scenario and experimental machinery could be improved. These possible improvement appear
below.

Scenario Improvements:

• In general, the number of members on the campaign team should be increased from 4 to
6 or 10. This would make the scenario more realistic. It would also avoid such confusing-
producing events as when Maria asks the subject to send the schedule to Ben Donnely when
the subject has already sent the schedule to Ben.

• Many subjects were confused that the Campaign Coordinator was asked to forward the email
message, rather than having Maria send the message herself. Maria said that there was
something wrong with her email system. As a result, the claims from Attackers Paul and
Sarah that there were problems with the campaign’s email system requiring that email be
sent to Hotmail were that much more believable.

One way to avoid this problem would be to change the nature of the “secret” that the Cam-
paign Coordinator needs to protect. Furthermore, different secrets could be used for different
attackers. Attacker Paul could want the password to the campaign’s bank account. Attacker
Sarah could want a copy of the briefing book for an upcoming debate. These and other poten-
tial “secrets” could be made available to the subject as icons on the test computer’s desktop.

• It was also confusing that both Ben and the attackers said that they had recently been in
telephone contact with Maria. The attacker was a little too good.

• At least one of the subjects seemed to be fundamentally disinterested in maintaining cam-
paign security. One way to make this requirement more personal for the subjects would be to
base their payment on whether or not campaign security was maintained—for example, by
paying the subjects $10 for participating and another $10 if they didn’t leak the secret.

• Instead of telling the campaign coordinator that their cell phone didn’t work, it might have
been more realistic to say that they forgot to charge their cell phone and the battery is dead.

7.6. CONCLUSION 281

• The debriefing interview should have included questions asking the subjects to define terms
such as Digital ID, Encryption, Security, and Sign.

• The test should have included a legitimate request to send the campaign secret to a non-
campaign address. Otherwise, subjects can adopt a simple rule that campaign.ex.com is good
while hotmail.com is bad.

• Instead of using the same campaign worker names as Alma Whitten, different names should
have been used. Several subjects tried in vain to find other contact information for the cam-
paign works; if they had used Google, they would have discovered not their worker’s phone
numbers, but Whitten’s 1998 CMU technical report![WT98] Reading the report would have
revealed so much about the study as to have invalidated the subject’s run.

• Giving different attacks to different subjects, or varying the attack order, would have reduced
the impact of subjects that discussed the details of the test with others. As it turns out, this
was not a problem, but it could have been.

• It might be desirable to directly test people on their ability to use Outlook Express and dis-
qualify those who cannot pass a minimal functional requirement.

Technology improvements:

• All mail sent from experimental subject should have clearly indicated the Subject number
in the email header. One way that this could have been done would be by changing the
Outlook Express “Real Name” from “Campaign Coordinator” to “Campaign Coordinator S6”
(for example). This would have simplified data analysis.

7.6 Conclusion
Using a modified version of the Johnny study developed by Whitten and Tygar, we tested the Key
Continuity Management (KCM) proposal using three different user interfaces. We found that sig-
nificant increases in security can be with relatively minor enhancements to the way that programs
like Outlook Express handle digitally signed mail.

We found that people who had less than a minute of training seemed to be immediately comfortable
with the concept of digital signatures and cryptographic protections. Although we did not test
the depth of their knowledge of these facts, our subjects felt that the signature authenticated the
sender of a message and that “encryption” (sealing) prevented someone who was unauthorized
from viewing its contents. Subjects had a much harder time understanding that you needed to get
a correspondent’s Digital ID in order to send them a sealed message.

We found that KCM made it possible for all but one of our experimental subjects to send and receive
secure messages, a 98% success rate. This compares favorably with Whitten’s safe staging approach,
which also achieved a significantly lower success rate. Because of methodological flaws in the Lime
study, only a qualitative comparison is justified. We also found that KCM allows users to defend
themselves, with a high probability of success, against some of the attacks that are thought to be
prevented by traditional certification approaches. We note that there is a lack of user testing of
these traditional approaches that would allow us to determine if traditional approaches actually
provide the security that they are thought to provide.

282 CHAPTER 7. Key Continuity Management

We have shown that even though the deployment of KCM could improve security, it is not the
panacea to the mail security problem for which we are looking. In particular, KCM provides users
with no readily apparent tools for deciding whether or not to trust new identities that show up
with new keys. But this isn’t a problem that is created by KCM. With today’s PKI-based systems, for
example, an attacker can create a new Hotmail address and then get the key certified by VeriSign
or Thawte. And this problem is no different from similar problems in the offline world. You receive
a letter from an old friend asking a favor: is it really from the same person?

In all likelihood, different kinds of email need and can employ different kinds of certification.
Within some organizations a centralized PKI might be appropriate; other organizations that do not
have the wherewithal to manage such a deployment might choose to employ KCM—perhaps with
some form of additional out-of-band certification, as was suggested by several of our subjects. It
isn’t hard to see that the current CoPilot interface could be modified to support different kinds of
“green” messages: those that simply reflect trust from continued use of a key, those that have been
explicitly certified by a close third party (such as a co-worker), and those that had been certified by
a commercial certification authority.

CHAPTER 8

Regulatory Approaches

Engineers in general and computer scientists in particular don’t frequently view regulation as an
appropriate way to solve technical problems.

There are many reasons that technologists are predisposed to avoiding regulatory solutions. Most
have to do with how the regulatory process works in practice:

1. Because laws are passed in a democratic process, actors opposed to the law have a seat at the
table when the law is drafted. As a result, many laws are watered down.

2. After a law or regulation is passed, it needs to be enforced. One of the frequent criticisms of
the CAN-SPAM law outlawing junk email [CAN03] is that the amount of spam on the Internet
significantly increased after the law was passed.[Car04]

3. Laws and regulations are open to misinterpretation. Many engineers and others feel that
lawyers can distort a good law beyond recognition in the courts.

4. Policy solutions do not work across legislative boundaries. The CAN-SPAM law, for instance, is
not effective against unwanted email that originates outside the United States and advertises
foreign goods or services.

Policy solutions can never be 100% effective. Horrible activities like murder and genocide have not
been eliminated through the use of policy, even though these activities are illegal.

The hesitancy with which many engineers approach policy solutions may have more to do with the
engineers themselves. Few engineers have training in law and policy, for example, making these
solutions seem more ad-hoc and less likely to work. Indeed, many of the criticisms of regulatory
solutions can be easily applied to technical solutions as well:

1. Because of the need to preserve backwards compatibility, many new engineering solutions
are incomplete.

283

284 CHAPTER 8. Regulatory Approaches

2. After a technology is designed and deployed, the environment continues to change. Thus,
solutions that work today may suffer “bit rot” and cease to work in the future.

3. Because it is difficult to anticipate all possibilities in advance, pathological “corner cases” exist
in most engineering systems which break the intended solution.

4. Technological solutions are frequently wed to a particular problem domain. For example,
an anti-spam solution that runs on Unix may not work properly on the Windows operating
system. An anti-spam system that works for spam written in English may not work properly
with spam written in Japanese.

Engineering solutions are rarely if ever 100% effective. Horrible security vulnerabilities like buffer
overflows and privilege escalation attacks have not been eliminated in production software, even
though these techniques for addressing these problems (e.g., type-safe languages and formal privi-
lege specifications) are well understood.

8.1 Patterns for Regulation
Two patterns are proposed for increasing the alignment of usability and security:

• CREATE A SECURITY LEXICON (page 340)
The security lexicon is a standard vocabulary that is used to discuss security issues. to de-
crease the potential for confusion, the same lexicon should be used among both users and
security practitioners.

• DISCLOSE SIGNIFICANT DEVIATIONS (page 341)
When an object (software or physical) is likely to behave in a manner that is significantly
different from that which user expects, those differences should be disclosed. Ideally, those
differences should both be disclosed before the object is acquired and during the object’s use.

Evidence for the appeal of these patterns can be found both in the century-long history of regulating
food and drugs in the United States, and in the recent history of regulating disclosing privacy
practices of Internet web sites. In both cases, it has been the intent of rules, regulations and
standards to first establish a common vocabulary, and second to disclose ingredients, effects, or
practices that the user would not otherwise be able to infer.

There is a strong parallel between 19th Century adulterated food products discussed earlier in
Chapter 2 and 21st Century adulterated software. Just as some tonics claimed to do one thing (like
sooth a disruptive child) but had a significant hidden function (making the child intoxicated and
chemically dependent on an addictive drug), today we have software that claims to do one thing
(set the time of your PC) and has a significant but hidden function (displays ads when the computer
user visits particular web sites).

There is also a strong parallel between disclosing the web sites practices of web sites, which are not
obvious to visitors but which may have profound impacts at a later time, to the presence of radio
tracking devices and readers in consumer goods and the environment—which, once again, are not
obvious but which may have profound impacts.

8.2. THE SECURITY LEXICON 285

8.2 The Security Lexicon
In an interview at RSA Security, Stolper stated that the origin of many usability problems RSA is dif-
ferent are used inconsistently within the company’s products to represent similar concepts.[Sto04]
The obvious solution for this problem was for RSA to agree upon a security lexicon for use within
a family of products. At the time of the interview, use of that lexicon was being expanded to other
product families within the company.

The need for consistent language and a unified lexicon has been noted by many in the usability
field. (e.g., [Joh00, p.206]) But vocabulary rarely receives a treatment that is deep or systematic:
usability professionals simply note that it is important that a single set of terms be used for concepts
within the system that is being analyzed.

This section holds that there are deep, understandable and systematic reasons why computer sys-
tems tend to employ inconsistent language. By specifically focusing on the need to use clean and
standardized language,

8.2.1 Confusing security terminology
The idea that verbal ambiguity might lead to usability problems in the field of security is a frequent
topic in the hallways of security conferences. Nevertheless, there appears to be no previously
published scholarly work exploring this topic.

It is easy to toss stones at the lack of lexical purity within the computing field. Information tech-
nology practitioners frequently respond to the ambiguity of human language by coining new words
or acronyms for new concepts. Because IT creates so many different artifacts and the underlying
technology changes so fast, a proliferation of terms appears inevitable.

Many factors, including the lack of standardization, flexibility of implementation, and user cus-
tomization, result in both the same underlying concept being described by different terms, and in
the same term being used to describe different concepts. For example, Douglas Engelbart coined
the term mouse in 1964 to describe a particular kind of X/Y pointing device [Eng67], but today the
term is used somewhat generically (if incorrectly) to describe trackballs and touch pads as well.
Such misuse is not merely colloquialism: the MacOS 10.3 System Preferences Panel uses the label
“Keyboard & Mouse” as the entry point for the control panel that controls the system trackpad
(Figure 8-1).

Security has been especially susceptible to vocabulary creep because of the rapid innovation rate.
In a fast-moving field, one way to stake a claim is create a terminology and try to get people to
use it. It is also appropriate to change terminology to denote the lack of compatibility. Today
Internet Explorer version 6 (SP2) has support for SSL 2.0, SSL 3.0, and TLS 1.0. It’s good that the
distinctions are clear to security professionals and developers, but they probably don’t need to be
made visible to the user.1

1Nor does it make sense for Internet Explorer 6 to give the user the ability to individually enable or disable each
of these protocols: all should be enabled, for if a serious security vulnerability is found with any of them, Microsoft
would almost certainly distribute a patch using Windows update. The tendency of Microsoft and other companies to
expose such policy decisions to the end users—who are generally not equipped with the necessary knowledge to make a
decision—rather than making the correct decision on behalf of the user is discussed in Section 9.4.

286 CHAPTER 8. Regulatory Approaches

Figure 8-1: The Apple MacOS 10.3 System Preferences panel incorrectly uses the term “mouse” to describe the
trackpad when the operating system is running on a PowerBook G4.

New terminology is also sometimes introduced in an attempt to make old work look new. The
terminology problem is further complicated by the fact that it is easy to re-invent computer tech-
niques, making it quite possible that two terms will be independently adopted to describe what is
more-or-less the same underlying technology.

Keys, Certificates and Digital IDs
Sasse has argued that, more than other specialties, security practitioners are guilty of taking terms
that have “real-world meaning” to describe security concepts that are similar but significantly dif-
ferent. Her two primary examples are the words “key” and “signature” which are used to describe
strings of bytes with particular properties, rather than a metal object used for opening doors (in
the first case) and a sample of handwriting on a piece of paper (in the second case).

“This is a fundamentally broken model,” Sasse argues. “It would be much better to change your
terms and build new models from scratch.”[Sas04a]

Equally broken is the inability to standardize on a lexicon for even the most basic computer security
concepts.

For example, what is the proper term for the mathematical complement of a “public key:” a “secret
key” or a “private key?” Both terms have been used, although the community seems to be settling
on the notion that “private key” is the complement while “secret key” is a term to be used only with
symmetric cryptography. But these conventions are neither standardized nor rigorously followed.

For example:

• Cormen, Leiserson and Rivest use the term “secret key:”

8.2. THE SECURITY LEXICON 287

“In a public-key cryptosystem, each participant has both a public key and a secret
key.” [CLR90, p.831], [CLRS01, p.881]

• Schneier uses term “private key:”

“In these systems, the encryption key is often called the public key, and the de-
cryption key is often called the private key.”2 [Sch96, p.5], [FS03]

• Stallings uses the term “private key:” [Sta03, p.260]

• Whitten’s dissertation uses the phrase “private key” both to describe symmetric key cryptog-
raphy and to describe the complement to one’s public key. She also uses the phrase “secret
key” to describe the complement of the public key:

“The user test was run with twelve different participants, all of whom were expe-
rienced users of email, and none of whom could describe the difference between
public and private key cryptography prior to the test session.” [Whi04a, p.18]
“In order to complete this task, a participant had to generate a key pair, get the team
members’ public keys, make their own public key available to the team members,
type the (short) secret message into an email, sign the email using their private
key, encrypt the email using the five team members’ public keys, and send the
result.” [Whi04a, p.16]
“Objects: Key pairs, each consisting of a secret key and a public key.” [Whi04a,
p.42]

• Salomaa largely avoids the questions of “private” vs. “secret” in his introduction to the RSA al-
gorithm [Sal96, pp.125–128] by referring to combination of the RSA modulus and encryption
exponent as the public encryption key, and referring to p, q, φ(n) and d as the secret trapdoor.
Although this colorful language parallels both Salomaa’s previous chapters and the original
New Directions paper [DH76], it is likely that users of desktop software would be confused if
the term “secret trapdoor” were used to describe the complement of the user’s public key.

The purpose of this survey is not to put the question of private vs. secret up to a popular vote
(perhaps weighting each author by their publication count), or to embarrass authors who have used
the terminology inconsistently, but instead to show that the vocabulary of public key cryptography
is both confusing and ultimately dangerous.

Indeed, the lack of linguistic consistency in our security tools can have real-world security conse-
quences. In Lessons Learned in Implementing and Deploying Crypto Software,[Gut02a] Gutmann is
particularly critical of both the PKCS #12 standard[RSA99] and the use of the word Certificate or
Digital ID to describe a PKCS#12 file.

Originally Introduced by Microsoft in 1996 as the PFX (Personal Information Exchange) file type,
the PKCS #12 file can contain a public key, a certificate, a password-protected private key, or any
combination of those three elements. Because the file can contain private key material, Gutmann
asserts that it is improper and even dangerous to refer to a PKCS#12 file as a “certificate” or “Digital
ID.” To make matters worse, the Windows “Certificate Export Wizard” actually creates PKCS #12
files as output, and by default will export both the certificate and its corresponding private key.

2Schneier notes “The private key is sometimes also called the secret key, but to avoid confusion with symmetric
algorithms, that tag won’t be used here.”

288 CHAPTER 8. Regulatory Approaches

“The situation is further confused by some of the accompanying documentation,
which refers to the PKCS #12 data as a ‘Digital ID’ (rather than ‘certificate’ or ‘private
key’), with the implementation that it’s just a certificate which happens to require a
password when exported.

“The practice of mixing public and private keys in this manner, and referring to the
process of and making the behavior of the result identical to the behavior of a plain
certificate, are akin to pouring weed killer into a fruit juice bottle and storing it on an
easily accessible shelf in the kitchen cupboard.[Gut02a, p.4]

To prove his point, Gutmann relates specific cases in which this use of incorrect terminology com-
promised private keys. In one case, Gutmann was sent the private key and matching certificate
necessary to authorize access to third-party financial records in a European country. In another
case, a CA distributed a PKCS #12 file containing the CA’s root key and certificate to relying par-
ties.

8.2.2 “Trusted” and “non-repudiation”
Similar problems can be found in two other words that litter computer security: “trusted” and
“non-repudiation.”

In Ten Risks of PKI: What You’re not Being Told about Public Key Infrastructure, Ellison and Schneier
argue that individuals and corporations promoting PKI took several specific words from the jargon
of academic cryptography and interjected those words into marketing literature and—eventually—
into legislation. The purpose of this linguistic transfer was to improve acceptance of PKI technology
by making PKI-based systems appear to be more secure than they actually are.[ES00]

Ellison and Schneier are particularly critical of the words Trusted and Non-Repudiation:

• Trusted, they note, is used in marketing literature to imply that certificates issued by the CA
can be relied upon for a particular purpose, while the academic literature uses the term to
mean “that [the CA] handles its own private keys well.”

• Non-repudiation is used in marketing literature to mean “if your signing key has been certified
by an approved CA, then you are responsible for whatever that private key does. It does not
matter who was at the computer keyboard or what virus did the signing: you are responsible.”
But the technical meaning of non-repudiation, they argue, is “the digital-signature algorithm
is not breakable, so a third party cannot forge your signature.”

There is anecdotal evidence that the heavy emphasis on “non-repudiation” by promoters of digital
signatures in the 1990s may be responsible for the unwillingness of many organizations to embark
on aggressive campaigns to promote the use of digital signatures: these organizations did not want
every email message to carry the weight and authority of a signed contract.

This aggressive promotion appears to have backfired.[Bid96] For example, although Utah passed
legislation to promote the use of digital signatures[Uta95] and VeriSign initially registered as a CA
under that law,[Las97] VeriSign did not renew its registration when it expired. Reportedly, there
was no market for such legally binding high-assurance digital signatures.

8.2. THE SECURITY LEXICON 289

Ultimately, the use of digital signature technology in e-commerce is going to depend on easily
understood and broadly accepted definitions of the terminology present in the interface, the stan-
dards, and the legislation. If those definitions go too far, or if there is a disconnect between the
legal assurances that are offered and those that the users actually need, progress will not be made.

8.2.3 “Delete,” “erase,” “purge,” “clear,” and “wipe”
Today many different words are used for the act of expunging information from a computer system.
“Delete” and “erase” are two common words that are commonly used as synonyms. But “purge” is
another word that’s commonly used—is it different? Sometimes the term “clear” is used to indicate
that media has been overwritten with a single pass ASCII NUL characters; in other cases, “clear” is
used to indicate that the data has been overwritten with several passes according to DoD 5220.22-
M[DoD95], but that the standards necessary for sanitizing media of classified information have not
been followed.

The confusion over verbs for the act of expunging information mirrors very closely the confusion
over what actually happens when a user asks for information to be expunged. When standards are
adopted for the removal of information, those standards should similarly specify which words are
used to describe the process.

8.2.4 “Digital signatures” vs. “ signatures”
The Microsoft Outlook Express 6 program studied for the Johnny 2 experiment confusingly uses the
phrase “digital signature” to describe a cryptographic operation, while it uses the phrase “signature”
to indicate the text that is automatically appended to the bottom of every outgoing message. As a
result, the program has a check-box that reads “Digitally sign all outgoing messages” (see Figure 8-
2) and a second check-box that reads “Add signature to all outgoing messages” (see Figure 8-3).
These two commands have very different effects.

8.2.5 Recommendations
This isn’t an area that needs more research so much as it needs decisive action. Some organizations
organizations have in-house “style books” that are lexicons of which words to use in which situa-
tions. Unfortunately, even organizations that have adopted standard terms are inconsistent in their
uses.

For example,the term ‘Digital ID” has become a standardized term to describe an X.509 certificate
used to identify an individual. The term is used by Microsoft consistently in its products and on
its web sites. “Digital ID” is a good term that most users in the Johnny 2 user test understood
immediately. Unfortunately, VeriSign uses the term term intermittently on its web site to describe
both certificates used for code signing and servers. In other places the phrase is not used at all.

Such a security style book should be subject to user testing before it is adopted. The style book
could also include images and icons for standard concepts as well, taking into account Whitten’s
“metaphor tailoring.”

The security style book has got to be a joint project of the major software and security vendors so
that the same concepts are represented by the same terms in all user-facing programs. Such a style

290 CHAPTER 8. Regulatory Approaches

Figure 8-2: The OE6 “Security” options panel controls virus protection, downloaded images, and the S/MIME function-
ality of the program.

Figure 8-3: The OE6 “Signatures” options panel is not for digital signatures, but for textual signatures which OE6 can
be instructed to place at the bottom of every email message.

8.3. SPYWARE AND THE “PURE SOFTWARE” PROPOSAL 291

book could even be created by a standards committee. Once the style book is adopted, companies
need to be willing to transition their existing programs to the new nomenclature.

Standardizing on a common security terminology is not a theoretically interesting problem, but it
is an important part of making security usable.

8.3 Spyware and the “Pure Software” Proposal
Spyware is the scourge of desktop computing. Yes, computer worms and viruses cause billions
of dollars in damage every year. But spyware-programs that monitor covertly monitor the user’s
actions and report them to a another party are deceptive in ways that most computer users find
morally repugnant.

8.3.1 Evidence of the spyware problem
Evidence of the spyware problem is widespread:

• The Internet service provider Earthlink offers a free “Webroot” scan service to its customers.
During the first four months of 2004, the company scanned 1.5 million systems and found
some kind of remote system monitor or Trojan horse on roughly a third of those systems.[Gra04]

Reports of surveys such as this are frequently suspect because the most popular spyware
detector programs, Ad-Aware and Spybot Search and Destroy, report cookies from web site
such as Doubleclick as instances of “spyware” which they then offer to remove. There is a
perverse incentive for makers of defense programs to report dangers when none exist, and to
over-emphasize the danger of the dangers that they actually find. But the Earthlink survey
didn’t fall into this trap: the company separately reported the different types of spyware
found on the systems. Of those 1.5 million, the company found 257,761 Trojans installed,
245,432 remote system monitoring tools, 7,642,556 adware installations, and 32,700,340
“adware cookies.”

• A survey of 329 home computers conducted by technical experts on behalf of the Internet
service provider AOL in September and October 2004 found various forms of spyware and
adware on 80% of the computers. “About 90% of those whose computers were infected with
spyware didn’t know about the infections and didn’t know what spyware programs are, the
survey showed.”[Rob04b]

• In August 2003 spyware accounted for 1% of tech support calls to Dell. This number jumped
to 12% in early 2004 and 20% in October 2004. Dell concluded that “more than 90 percent
of computers in the United States contain some form of spyware,” and decided to include an
anti-spyware program on all new computers sold.[Ger04]

• Jeffrey Friedberg, Microsoft’s director of Windows privacy, told Congress in Spring 2004:
“We have evidence that [spyware] is at least partially responsible for approximately half of
the application crashes our customers report to us.... It has become a multimillion-dollar
support issue.”[Sca04]

According to an article in the November 2004 issue of CSO Magazine, computer security profession-
als are now viewing spyware as one of their primary security concerns. [Sca04] Consumers seem

292 CHAPTER 8. Regulatory Approaches

Sharman’s No Spyware Commitment
• Kazaa does NOT install or delete software from your computer without your permission.

• Kazaa does NOT contain software that gathers personally identifiable information about you.

• Kazaa and its partners securely process any credit card or transaction information you may
give.

• Kazaa does NOT contain software that monitors keyboard strokes.

• Kazaa does NOT deceptively install software that centrally records your personally identifi-
able Internet usage.

• Kazaa does NOT prevent your efforts to remove Kazaa.

The official, certified versions of Kazaa software - Kazaa and Kazaa Plus - are accessible from
Sharman Networks and its authorized publishers through www.kazaa.com.

Kazaa, which is supported by advertising, and Kazaa Plus, which is not advertising supported, do
not deliver software – which we refer to as “spyware” – that is installed without your prior consent
or that gathers any personally identifiable information without your consent.

Unofficial, fake or hacked versions of the software might include spyware. These are not products
of Sharman Networks or its authorized publishers and always infringe the Kazaa copyright. Use
caution before downloading and/or installing all software.

Figure 8-4: The “No Spyware Commitment” from Sharman Networks does an excellent job saying what Kazaa does not
do, but it says little about what functions are performed by the advertising developing software including with the free
version of the product.[Sha04]

to be more sanguine; according to Dell, the primary consumer complaints about spyware isn’t the
fact that personal information is potentially compromised, but the argument that spyware makes
computers run slower. [Del04b]

One unfortunate problem with these surveys and statistics is that there is no concrete definition for
what “spyware” actually is. Programs that record keystrokes and screen contents certainly seem to
fit the definition, but what about programs that simply monitor visited web sites and display adver-
tisements from competitors? These programs might seem like “spyware” to people who are running
them without their knowledge, but the companies that are distributing the programs—companies
like Sharman Networks, makers of Kazaa—insist that these programs are really “adware” and that
they generate the revenue that pays for the development of software that is made available for free
download. In fact, Sharman actually distributes two versions of Kazaa—one version that is free but
“ad supported” and features adware from GAIN Network, and another version that costs $29.95
and includes “No Ads.” (See Figures 8-4 and 8-5.)

The computer industry has focused on technical means to control the plague of spyware. Pro-
grams such as Ad-Aware[Lav04] will scan a computer for known spyware, tracking cookies, and
other items that might compromise the user’s privacy. Once identified, the offending items can be
quarantined or removed. Firewall programs like ZoneAlarm[Zon04] takes a different approach:
they don’t stop the spyware from collecting data, but they prevent the programs from transmitting
personal information over the Internet.

8.3. SPYWARE AND THE “PURE SOFTWARE” PROPOSAL 293

Figure 8-5: The advertisement for Kazaa v3.0 makes it very clear that the free version of the program comes with
adware and the $29.95 version does not. Yet many people who download and run the free version are surprised to
discover that their computers run adware as a result.

But why are these programs installed in the first place? Perhaps because many people simply do not
read information about software before they download and run it—an observation in line with the
findings of the European Heart Network[EHN03] regarding consumers failure to read and process
information on food labels discussed in Section 2.6.2.

8.3.2 The “Pure Software” proposal
Part of the spyware solution may be a software labeling standard that discloses specific functional-
ity within software that people find objectionable. As was the case with soothing syrups, the mere
requirement of labeling may cause some of the most objectionable software practices to be discon-
tinued. And once there is a simple and well-defined set of functionality that has been identified,
consumers could be educated to at least look at these labels and perhaps use the information. Such
a labeling requirement could work because most organizations authoring and distributing spyware
are not criminals or pirates, but legitimate organizations trying to earn money within the legal
economy.

Congress could pass legislation requiring that software distributed in the United States come with
product labels that would reveal to consumers specific functions built into the programs. Such
legislation would likely have the same kind of pro-consumer results as the Pure Food and Drug Act
of 1906—the legislation that is responsible for today’s labels on food and drugs.

294 CHAPTER 8. Regulatory Approaches

((((((((((((((((((((((((((((((((((((((

((((((((((((((((((((((((((((

````````````````````````````

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Figure 8-6: Spyware has become so pervasive in popular downloaded software that the makers of Skype need to
explicitly state that their software contains “No Spyware, Adware [or] Malware.” Sadly, these terms are not defined.

Mandatory software labeling is a good idea because the fundamental problem with spyware is not
the data collection itself, but the act of deception. Many of the things that spyware does are done
also by non-spyware programs as well. Google’s Toolbar for Internet Explorer, for example, has two
versions. One version reports back to Google which web site the user is visiting so that the toolbar
can display the site’s “page rank;” the other version does not report which web site is being viewed,
but likewise does not display the site’s rank. Google discloses this feature when the user installs the
program—forcing the user to decide which version of the toolbar is to be installed. “Please read
this carefully,” says the Toolbar’s license agreement, “it’s not the usual yada yada.”[Goo04]

Most spyware, on the other hand, goes out of its way to hide its true purpose. The program
Precision Time[GAI04] has a heavily publicized function that automatically sets a computer’s clock
from the atomic clock operated by the U.S. Naval Observatory. But the program also displays
pop-up advertisements that are part of the GAIN Network.



8.3. SPYWARE AND THE “PURE SOFTWARE” PROPOSAL 295

What’s more, there is increasing evidence that makers of spyware have deliberately designed their
programs to be difficult to detect and difficult to remove. [OH04, Lub04]

8.3.3 Crafting the policy
Building on the experience that the US has had with regulating adulterated foods, the first step
towards solving the spyware problem would be to enact legislation that would directly address
the issue of deceptive software features. There is broad agreement throughout human society that
deception is morally impermissible.

There are many ways that software can engage in deception. For example, Luber notes that “small
print in the terms and conditions” of a particular application “reveals that [the software] will change
the user’s home page, install bookmarks leading to adult and/or sexual content, and deactivate
browser toolbars.”[Lub04] Clearly, it is not sufficient to mandate that information such as this be
disclosed: it must be disclosed prominently.

The basis of any “Pure Software” regulation would thus need to consist of several elements:

• The regulation should require that all programs running on a computer reveal themselves
though the standard means used by the host operating system. On Windows, this would be
implemented by forcing running programs to appear in the task bar or in the icon tray.

• The regulations would require that all programs have an “uninstall” feature that actually
uninstalls all traces of the program.

• The regulations would specify specific kinds of functions that would have to be explicitly
revealed when programs are distributed and run. Programs that implemented these kinds
of functions would need to make that functionality clear to users at download, when the
software was installed, and when it was run.

• Instead of allowing companies to hide the identified functions in obscurely written legalese
buried in click-through license agreements, the regulations would require that the disclosure
be made in the form that is easy to understand. Based on the experience with other label-
ing efforts in Information Technology, it seems that the easiest labels would be simple and
distinctive icons that could be clicked on for additional information.

• These icons would be displayed in specific, uniform places. For example, in the Windows
operating system such places would include the Task Manager and the Add/Remove control
panel could both display the mandated behavior icons alongside the program’s application
icon.

• Clicking on the icon would bring up further explanatory text—perhaps from a web site main-
tained by the Federal Trade Commission.

It is important that the number of identified functions be limited: if there are too many, then
software installations will consist of a sea of icons and no usability objective will be accomplished.
The Principle of Least Surprise is an excellent guidepost in deciding upon these functions: they
should be functions that surprise the user by their existence or when they run.

For example:



296 CHAPTER 8. Regulatory Approaches

• On a computer with a desktop metaphor, for instance, each application’s window can be
seen as a form of containment: programs that violate this containment behave in a surprising
fashion. When a program’s window is active, it is expected that this program will be receiving
keystrokes; when a program is not active, it is expected that it will not.

• Users are frequently surprised when they discovered that one program—say, a word processor—
can read the files created by another program—say, a spreadsheet. If a game that is down-
loaded from the Internet starts scanning through the user’s hard disk searching for text files
that contain credit card numbers, this is surprising behavior.

• As Yee discusses, software on a computer has considerable more powers and capabilities than
most users suspect.[Yee05b] If a program that is downloaded for the purpose of viewing
pornography has the effect of disconnecting the user’s computer from one ISP and placing
a long-distance telephone call to another ISP—perhaps one that requires an expensive long-
distance telephone call—this is surprising behavior.[Fed97]

Below a sample list of eight possible surprising behaviors are proposed in detail, each item accom-
panied by an illustrative icon.[Gar04a] These icons are intended for illustrative purposes only: the
actual government-mandated icons would need to be developed by a team of professionals with
expertise in human computer interface, user tested, and put up for public comment. But these icons
are useful to convey the general idea and to start a discussion:

Dial: Places a Phone Call
One common spyware scam involves programs that cause a computer to call phone
numbers that cost more money than a normal phone call. For example, in 1997 some
pornographic web sites distributed a program called david.exe that caused the vic-
tim’s computer to make a long-distance phone call to an Internet service provider in
Eastern Europe; the porn company got to keep half of the (exorbitantly high) long
distance revenues.[Fed97] Programs that dial the phone are a significant problem in
Germany and in other European countries with “caller pays” billing plans. Document-
ing that the software has code that intended to dial the phone—either autonomously
or in response to a user’s command—would be a good way to address this problem.

Hook: Runs at Boot
Some programs hook themselves in to the computer’s operating system so that they
automatically run whenever the computer is rebooted or a user logs in. Other pro-
grams don’t. Today there is no way to tell except by performing a detailed analysis of
the computer’s configuration files before and after the program is installed and noting
the changes. Any program that installs itself so that it automatically runs would have
to display this Hook icon.



8.3. SPYWARE AND THE “PURE SOFTWARE” PROPOSAL 297

Modify: Alters The Computer’s Operating System
Some programs do more than simply install themselves to run at boot-they alter the
computer’s operating system. (Operating systems are large collections of programs,
text files, shared libraries and other information that do not have a strict technical def-
inition, but it is well within the capabilities of companies such as Microsoft and Apple
to provide a list as to the names of the files that are in each release their operating
systems.) Seeing this icon would give users a reason to ask questions. More likely,
forcing this kind of disclosure would simply end the practice on the part of developers.

Monitor: Keeps Track of What The User is Doing
Most programs mind their own business. But some software watches the user’s
keystrokes, spies on the screen, or monitors the Web pages as they are downloaded—
even when another program is running in the foreground of the user interface and
has the keyboard focus. Other kinds of monitoring include watching activity in the
file system, making copies of documents as they are printed, or simply noting when
the computer is idle and when it’s in use. (Screensavers are prime examples of such
programs, and the APIs created for screensavers have been used in the past to write
keyboard sniffers and other kinds of Trojan programs.) The key here is that personal
information is being captured by a program when the user thinks that the program is
not listening. Many AOL Instant Message users, for example, appear to be surprised
when they find out that whether or not their computer is “idle” is transmitted to all
of their AIM “buddies.” Google Desktop Search monitors the computer’s file system
and scans through all of the user’s files. Clicking on the icon would reveal how the
monitoring took place, the purpose of the monitoring, and relate to what uses the in-
formation would be put. Finally, instructions would be provided for turning off the
monitoring.

Pop: Displays Pop-Ups When Running In Background
Many computer users are annoyed by pop-up windows containing advertisements.
Users are annoyed by both the content of the windows and by the fact that they inter-
rupt other activities. On the other hand, programs like Microsoft Word display pop-up
dialogues in response to commands like “File Open.” What distinguishes these two
classes of pop-up windows is whether or not the program displays the pop-up when it
is active, or when it is running in the background. To be sure, not all pop-ups are bad.
Some calendar programs will display pop-up windows when an alarm goes off, even if
they are not the active program. By rights, those programs would also need to carry
this icon.

Remote Control: Lets Remote Users Take Over The Computer
In theory, any program that’s running on a computer can take it over and execute com-
mands on behalf of others. In practice, only very few programs explicitly incorporate
remote control functionality. Programs that have this capability should be labeled.



298 CHAPTER 8. Regulatory Approaches

Self-Updates: This Program May Change Its Behavior Unexpectedly
One of the most important techniques for software vendors to deal with persistent
computer security problems is to have their programs automatically update themselves
with code downloaded from the Internet. But the ability to self-update can also be
a boon to makers of spyware: it allows them to add new, nefarious capabilities to
programs that have previously been examined and found to be benign. This is an
example of an icon that is neither good nor bad, per se, but that merely documents
behavior that can otherwise be very difficult to detect. The icon tells users that the
behavior of the program can radically change without any input from the user.

Stuck: Cannot be Uninstalled
Some programs are truly impossible to dislodge. These programs are typically oper-
ating system updates, but it is easy for a clever programmer to make uninstallable
spyware as well. Consumers should be informed that there are some programs for
which there is no going back.

With the icons would need to come rules for their use. For example, some of today’s click-through
license agreements say that the user implicitly agrees to any changes in the license agreement
unless those changes are “substantive.” But what is substantive? Once a labeling regime was in
place, a substantive change could be legally defined as a change that results in a change of icons.
An example of such a substantiative change would be for a self-updating program to download
and install a remote-control feature. The law could then require that this sort of change would
require new consent on the part of the user. Figure 8-7 shows how the icons might be added to
the Windows Add/Remove panel, while Figure 8-8 shows how they could be added to the Google
Toolbar license.

8.4 RFID on Consumer Items: The “RFID Bill of Rights”
The Electronic Product Code (EPC) is a system that applies Radio Frequency Identification (RFID)
technology to the task of supply chain tracking and supermarket check-out. Proponents of RFID
describe a world where small EPC tags will be built into the packaging of consumer goods much in
the way that barcodes are placed on packages today. These tags, combined with readers strategi-
cally placed throughout the supply chain and high-availability networked database, would permit
the tracking of consumer goods from the point of their manufacturer to their disposal. EPC could
allow manufacturers to automatically detect pilferage at the factory, diversion from one market to
another, and supermarkets that are running low on inventory. If the EPC is embedded in the con-
sumer good itself, rather than the packaging, EPC could allow for the easy identification of items by
the blind and the automatic segregation of goods containing hazardous materials at trash disposal
facilities.

Unlike optical barcodes, EPC codes can be read at a distance and through materials. More over,
whereas UPC barcodes only identify the type of consumer item purchased, EPC codes can be used
to identify the actual item—revealing that one razor was bought at a Safeway at 11:15am on July
12, 2005, and another was bought at a Store24 at 7:15pm on July 13. By combining checkout
information with credit-card payment records or biometric identification systems (for example,



8.4. RFID ON CONSUMER ITEMS: THE “RFID BILL OF RIGHTS” 299

Figure 8-7: The Windows Add/Remove panel, modified to show software icons. The Gaim, GSview, and GTK+ pro-
grams do not have icons because they do not engage in any icon-worthy behavior. Simulated screen shot.

Figure 8-8: The Google Toolbar license, annotated with software icons proposed in this chapter. Simulated screen shot.



300 CHAPTER 8. Regulatory Approaches

“Users of RFID systems and purchasers of products containing RFID tags have:

1. The right to know if a product contains an RFID tag.
2. The right to have embedded RFID tags removed, deactivated, or destroyed when

a product is purchased.
3. The right to first class RFID alternatives: consumers should not lose other rights

(e.g. the right to return a product or to travel on a particular road) if they decide
to opt-out of RFID or exercise an RFID tag’s “kill” feature.

4. The right to know what information is stored inside their RFID tags. If this infor-
mation is incorrect, there must be a means to correct or amend it.

5. The right to know when, where and why an RFID tag is being read.”

Figure 8-9: The RFID Bill of Rights.[Gar02]

video surveillance data), EPC codes can be matched up with individual human beings.

RFID privacy issues are difficult to solve with cryptography because on-tag computation is ex-
tremely limited as the result of low silicon and power budgets. Usability poses other constraints:
although Weis [Wei03] proposes a “hash lock” for preventing the unauthorized reading of tags, it
is unclear how untrained consumers would be able to effectively manage such locks. Jules, Rivest
and Szydlo propose the use of an RFID “blocker tag” that would give consumers who carry it a zone
of privacy to prevent the reading of other RFID tags.[JRS03] However, many find it unpalatable to
suggest that consumers will only be free of covert RFID monitoring if they choose to purchase and
carry such a device.[Pri03]

Two different strategies for linking RFID chips to databases further complicates the privacy anal-
ysis. Although simple RFID chips contain only a serial number, so-called second-generation RFID
chips can contain rewritable persistent memory. Thus, a chip may contain a substantial amount of
personally identifiable information—information that may not be as easy to audit or correct as in-
formation stored in a conventional database. Indeed, this amount of rewritable storage could even
constitute the kind of “secret database” that the Fair Information Practice is designed to prohibit.

One approach to addressing RFID privacy issues is to increase the visibility of tags, readers, and
their purpose through the application of the Code of Fair Information Practice to RFID technology.
This approach is called the “RFID Bill of Rights” and consists of five principles, shown in Figure 8-9.

These rules could be the basis for future regulatory measures to address the use of UPC-enabled
products in the future. Regulation is a good complement to technical measures: since neither
regulation nor technical measures can be 100% effective, the combination of the two has a greater
chance of protecting privacy than either one by itself.

RFID Legislation
Although there has been some interest in legislation that would curb the use of RFID in consumer
products, most of this legislation appears to have stalled.

For example, in February 2004 California state Senator Debra Bowen introduced Senate Bill 1834
that would require businesses and agencies to notify people that an RFID system was in use,



8.5. CONCLUSION 301

and require that retailers detach or destroy RFID tags on merchandise before it leaves the store’s
premises.[Gil04]

However, the California RFID privacy bill failed to pass committee when it was heard in June 2004.
Opponents of the bill, including Hewlett Packard, the American Electronic Association, the Califor-
nia Chamber of Commerce, the California Grocers Association, the California Retailers Association,
and Grocery Manufacturers of America, argued that the legislation was premature “and that the
bill should not precede the actual installation of RFID in businesses and libraries.” [Swe04]

Other US states are exploring RFID. For example, the Virginia Joint Commission on Technol-
ogy & Science included an examination of RFID issues in the Commission’s 2004-2005 “Work
Plan.” [Vir04]

Roberti has argued that legislation isn’t the answer to the RFID privacy problem until a privacy
problem has been shown to exist through poor corporate practices.

“One of the best things governments could do is to help educate consumers about what
RFID is, what it can and can’t do and what information could be collected. If consumers
understand the technology, they will let retailers know what they are—and are not—
willing to accept by deciding where to shop. Some might say that retailers will use the
technology secretly to spy on their customers. It’s possible, but when that company is
exposed—and it will be exposed—it will damage its credibility and lose customers, and
that will be a lesson to other retailers.”[Rob04a]

Roberti asserts that consumer advocates really fear “that people will passively accept whatever
retailers choose to do. What they are saying is they know more about what’s good for the consumer
than the consumer does. I give people more credit than that.”

Unfortunately, the evidence from the food labeling studies cited in Section 2.6.2 indicates that
experts do in fact know more about what’s good for consumers than consumers do. Rather than allow
the tools for covert surveillance to be created and deployed, it makes more sense to pause and
examine what problems could be averted wit a simple disclosure regime.

8.5 Conclusion
This chapter reviews two policy proposals and shows how both are based on a two general patterns
of US technology regulation. The first of these patterns is the use of standardized terminology.
The second is that significant deviations between what the technology actually does, and likely
mental models of what the technology does, must be disclosed to users and potential users of the
technology.



302 CHAPTER 8. Regulatory Approaches



CHAPTER 9

Additional Techniques for Aligning
Security and Usability

The previous four chapters looked in detail at a variety of design techniques for aligning security
and usability. This chapter briefly considers some other approaches that appear promising.

9.1 Additional Patterns for Enhancing Secure Operations
In addition to the patterns that have been previously discussed, these five additional patterns were
identified during the research involved in this dissertation:

• WARN WHEN UNSAFE (page 345)
Occasionally it is necessary for users to enter unsafe configurations so that they can accom-
plish extraordinary operations. The system should periodically warn the user if the system is
in an unsafe configuration or engaged in unsafe actions, because users frequently forget to
restore the safer configuration.

• DISTINGUISH SECURITY LEVELS (page 346)
Because computer systems typically have multiple security levels at which they can operate,
it is important to distinguish those levels to users. Such distinguishing needs to be done in a
manner that is consistent both between and within applications (an application of the CON-
SISTENT CONTROLS AND PLACEMENT and CONSISTENT MEANINGFUL VOCABULARY principles.)

• DISTINGUISH BETWEEN RUN AND OPEN (page 343)
Today’s computers use the same interaction gestures to open a document and run a program.
Yee discusses that this pun has been responsible for the propagation of worms and viruses
in the past.[Yee05a] An approach for minimizing this problem is to distinguish the two com-
mands so that they are no longer identical. Other approaches are discussed in Section 9.3.2.

303



304 CHAPTER 9. Additional Techniques for Aligning Security and Usability

• INSTALL BEFORE EXECUTE (page 342)
Another technique that can be used to mitigate the threat of hostile programs is to require
that all programs be installed before they can be executed. Several approaches for performing
this are discussed in Section 9.3.1.

• DISABLE BY DEFAULT (page 344)
Today’s computers have an incredible amount of functionality that is never discovered nor
needed by most users. Because it is not cost effective to test thousands of different configu-
rations, the functionality needs to be provided so that the few users who need it will be able
to use it. However, this functionality can be disabled by default, and only enabled when it is
needed.

The remainder of this chapter will discuss the support for these patterns.

9.2 Other Applications of User Auditing
Chapters 3 and 4 of this thesis establish the importance of user auditing for preventing the ac-
cidental release of confidential information. According to that principle, information contained
within a computer system should be directly auditable by the user: just as the Fair Information
Practices [UDoHoAPDS73] prohibit secret record-keeping systems, there should be no secret data
contained in our personal computers.

The USER AUDIT pattern can also be applied to data collection and to security states, as shown
below.

9.2.1 Auditing physical objects: Apple iSight
An example of User Audit applied to physical data collection in computer peripherals is the shutter
of the Apple iSight video camera.

Many low-cost USB and Firewire cameras sold to the consumer market do not have a physical shut-
ter, but are instead turned on and off through software running on the host computer. The problem
with this design is that it isn’t possible to know if the video camera and its built-in microphone are
actually recording or not. Indeed, the W32/Rbot-GR computer virus[Sop04, Ley04a] is a computer
worm that specifically turns on the victim’s web cam and microphones after it has been installed
and sets up a video server—quite the thing for the prurient computer hacker.

Apple’s iSight Firewire camera has a user-controllable physical shutter. Turning the front of the
iSight’s housing causes both the shutter to close and the switch to open. Whereas the inside of the
iSight’s lens is normally a dark grey or black color, the shutter is bright white, making it easy to
see—even from across the room. The bright color makes it easier for the user to verify that the
shutter has in fact closed.

Apple advertises this pro-privacy feature on the company’s web site:



9.2. OTHER APPLICATIONS OF USER AUDITING 305

Figure 9-1: Apple’s iSight camera is designed to sit atop a computer screen and point directly at the user. The camera
includes a built-in microphone.

Figure 9-2: The Apple iSight video camera has a shutter that can be opened or closed by turning the front of the
camera’s aluminum housing. Closing the shutter turns off the camera’s video and audio feeds.

“Video muting, too
Need a moment offscreen to touch up your hairdo or prepare a surprise? Closing the
lens cover mutes the video but doesn’t disconnect you from your conversation. To
resume visual contact, just reopen the lens.”[Com04c]

Other devices can support user auditing when microphones are enabled, but not all do. For exam-
ple, the AT&T ISDN 7506 telephone instruments that are common at MIT, have a speaker phone
capability; when the speaker phone is engaged, the little green light next to the “Speaker” button
is lit. As a result, it is possible to look at the phone and visually determine if someone is using the
phone to listen to the room or not.

On the other hand, the Apple Macintosh PowerBook G4 has a small, high-quality microphone built
into the keyboard, but there is no small light or other indication to tell the user if the microphone
is listening or not. In fact, the microphone can be turned on programmatically, without the user’s
knowledge or any visible indication on the computer’s screen. Like most notebook computers, the
PowerBook is really a marvelous tool for wiretapping a room.

Tang discusses the decision of a major workstation vendor (most likely his employer, Sun Mi-



306 CHAPTER 9. Additional Techniques for Aligning Security and Usability

crosystems), to remove a hardware switch from the company’s multimedia microphone in the early
1990s.[Tan97]. The workstation’s original microphones contained a small battery and a switch to
turn the battery (and the microphone) on or off. Users were forever leaving their microphones
turned on and running down the battery, so a revised design had the microphones powered from
the workstation itself. At the same time the hardware group decided to remove the switch, for
a cost savings of 25 cents per microphone. Tang and other designers were furious, as now users
of the workstation would have no obvious way to know if they were being audibly monitored or
not. He launched a series of online discussions within the company, but ultimately failed to have
the decision reversed. Several years later, however, when the company introduced a video camera
for its workstation, the camera came with a physical shutter—in the interest of giving workstation
users a physical means by which they could determine whether the camera was watching or not.

9.2.2 User auditing on local systems can promote remote user auditing
In the case of web browser cookies, user auditing on the local system may demonstrate the need for
user auditing on remote systems. For example, web cookies can contain information that is difficult
or impossible for the browser user to decipher, as shown in Figure 9-3. In fact, the 2o7.net domain
is registered to Omniture, Inc., makers of the SuperStats “Web Site Intelligence” web reporting
system. No privacy policy on the Omniture web site indicates what is done with these cookies. A
call to the company’s headquarters on April 13, 2005, revealed that Omniture does not have a chief
privacy officer or any person responsible for privacy issues.

9.2.3 Visually distinguish more-secure from less-secure operations: the SSL lock
The graphic of a lock that is displayed in a web browser is also an example of user auditing—but a
troubling example. It is an example that shows how difficult user auditing is to do properly.

In an effort to promote the proprietary encryption technology built into its web browsers and
servers, Netscape Communications designed its web browsers to display the icon of a key in the
browser’s status bar when pages were delivered to the browser using the SSL encryption protocol.
A key with one tooth indicated that the page had been delivered with a cipher that used a 40-bit
key, while a key with two teeth indicated that the page had been delivered with a cipher that used
a 128-bit key. Microsoft copied the idea of using an icon to encrypt security in its Internet Explorer
3.0 browser, but used an icon of a lock instead of a key. As Microsoft’s browser achieved market
dominance, Netscape was forced to adopt Microsoft’s symbology to decrease customer confusion.

The Open Source Mozilla browser also uses the icon of a lock, but adds the icon of an open lock
for pages that are not encrypted. Mozilla Firefox shows a blank region instead of an open lock, but
keeps the closed lock, displaying it in both the status bar and in the browser’s address bar.

Many problems with the lock icon have been identified:

• The lock doesn’t really address the secure transmittal of potentially confidential information.
The lock tells users that the contents of the web page was delivered securely. But the lock
doesn’t tell user if clicking a button on the web page will cause the contents of a form on
that page to be sent with encryption. Early browsers didn’t warn if a form that was delivered
securely would send back its information without encryption—that is, if a form delivered via
an https: URL had an HTTP FORM ACTIONwith an embedded http: URL.

2o7.net


9.2. OTHER APPLICATIONS OF USER AUDITING 307

Figure 9-3: The Firefox web browser allows the user to audit cookies stored on the local computer and selectively
remove them. Unfortunately, some cookies encode information in a way that is not readily discernible, as is the case
with these cookies from the web site 2o7.net . Ideally these cookies would somehow point to the web site’s privacy
policy that governs their use. In practice, the web site 207.net did not even have a privacy policy.

• The lock is not properly integrated with browser prompts for username/password combina-
tions that result from Basic Authentication. By design these prompts are displayed on modal
pop-up windows (or, in the case of Safari, on pull-down “sheets”), but these windows do not
have provisions for displaying the lock icon. As a result, users of browsers such as Internet
Explorer and Mozilla have no easy way of knowing if a typed username/password combina-
tion will be sent with or without encryption. This is especially relevant because many web
sites implement multiples layers of redirection when switching part of the web site that does
not require authentication to a part of the web site that does require authentication.

The only web browser that appears to indicate whether or not a username/password will be
sent with encryption is Apple’s Safari web browser. Safari warns the user “your password will
be sent in the clear” if the Basic Authentication challenge will be sent without encryption.
Unfortunately, it is very doubtful that most users understand what this warning means. (MIT
Information Services asserts that the message from Safari is, in fact, erroneous when Safari is
used with MIT’s TechTime personal Calendar.[MIT03])

Usability could be improved through the showing of the SSL lock on the Safari username/password
panel.

• Although users were instructed to look for a lock before trusting their credit cards to a web

2o7.net
207.net


308 CHAPTER 9. Additional Techniques for Aligning Security and Usability

% whois 2o7.net
...

Registrant:
Omniture, Inc.

550 East Timpanogos Cir
Building G
Orem, UT 84097
US

Domain Name: 2O7.NET

Administrative Contact:
MyComputer.com dnsadmin@MYCOMPUTER.COM
1358 W BUSINESS PARK DR
OREM, UT 84058-2203
US
801-722-7000 fax: 801-722-7001

Technical Contact:
Network Solutions, LLC. customerservice@networksolutions.com
13200 Woodland Park Drive
Herndon, VA 20171-3025
US
1-888-642-9675 fax: 571-434-4620

Record expires on 29-Sep-2005.
Record created on 29-Sep-2000.
Database last updated on 13-Apr-2005 14:37:57 EDT.

Domain servers in listed order:

NS1.OMNITURE.COM 216.52.17.51
NS2.OMNITURE.COM 216.52.17.52

%

Figure 9-4: The 2o7.net web site is registered to Omniture, makers of the SuperStats Web Site Intelligence product.

site, they weren’t told where to look. In recent years a growing number of web sites have been
copying the SSL lock and placing it in the body of their web pages. Gutmann suggests that
the lock is a kind of talisman that the web designers now display in the graphics of the page
itself to engender customer confidence. [Gut04b]

• The protection offered by SSL can be circumvented by browser plug-ins or (in the case of
Internet Explorer) browser helper objects, which have access to form data before the infor-
mation is encrypted by the SSL layer. Thus, SSL does not protect against spyware

• Finally, whether or not a page of information will be sent or received with encryption has no
bearing on the security of the web server on which the information resides. In more than
10 years of online commerce there is not a single recorded instance of a credit card being
captured while being transmitted from a web browser to a web server. On the other hand,



9.2. OTHER APPLICATIONS OF USER AUDITING 309

Figure 9-5: This figure shows the transition from a
page that is not using SSL encryption to one that is
using SSL encryption and for which the password is
going to be sent using the SSL encryption protocol.
This image was created on Microsoft Windows with
Internet Explorer 6

Figure 9-6: The transition from an unencrypted page
to an SSL-encryption page that requires authorization
using Internet Explorer 5.2 on the Macintosh

Figure 9-7: The third screen shot of the transition se-
ries. This screen shot created on a Macintosh using
Firefox 0.9.1

Figure 9-8: The final screen shot of the series. This
one is created on a Macintosh using Apple Safari 1.1.
Although the panel indicates that the password will be
sent “in the clear,” it is unlikely that many of Apple’s
users understand precisely what “in the clear” actually
means.

SSL offers “no protection for cards once they’re at the merchant’s server.” Theft of credit card
numbers from unsecured servers is rampant; as a result, the black-market price for a million
stolen credit cards has dropped from $100 a few years ago to less than $1 today.[Gut04b]

These problems loosely group into two categories. First, the lock icon can give a false sense of
security. Second, the visual indication isn’t present where it is needed.

Because browsers have two fundamentally different ways of sending and receiving data over the
Internet—one with encryption, one without— it is good that browsers can give users a visual
indication of the two states. Alas, one of the persistent problems with the SSL “lock” icon is that



310 CHAPTER 9. Additional Techniques for Aligning Security and Usability

it shows if a page was received with SSL; the lock does not indicate whether or not forms that are
submitted will be sent using SSL. In some cases browsers give a warning when there is a transition
between the SSL and non-SSL states; in other cases they do not.

9.3 Operating System Improvements
This section explores two operating system improvements that would likely increase secure opera-
tions with minimal impact on security.

9.3.1 Install before execute
Kirovski, Drinic and Potkonjak[KDP02] observed in 2002 that users rarely if ever need to run
programs that have not been properly installed. Reid made a similar same observation in 1987
when he wrote “Nobody, no matter how important, should have write permission into any directory
on the system search path. Ever. One should not be able to install a new program without typing
a password.”[Rei87] Garfinkel and Spafford recommend against placing the current directory (“.”)
in the Unix search path, insisting that the only programs that should be runable without typing a
full pathname are those that have been properly installed.[GS91, p.152]

The system proposed by Kirovski et al. uses a Trusted mode in which software cannot be run unless
the software has been properly installed. In the scheme that the trio present, every processor is
equipped with an unchangeable and highly protected unique identifier. This identifier is used to
perform a series of transformations on each block of instructions when the application is installed.
These transformations are similar to using steganographic techniques to store information in an
instruction stream. When a program is run, the processor verifies each block as it is loaded into
the instruction cache to verify that the stored number matches the processor’s unique identifier.
Thus, this technique is robust against techniques such as stack and heap attacks that can inject
untrusted instructions into the memory space of formerly trustworthy programs: once instructions
are injected, the instruction blocks will no longer verify and thus no longer run.

Although not as powerful as the approach that Kirovski et al. present, there are other ways to
implement the INSTALL BEFORE EXECUTE pattern on conventional desktop operating systems and
microprocessors:

• The operating system could refuse to run programs that are not located in explicitly speci-
fied directories. For example, most Windows applications are installed inside the \Windows
or \Program Files directories. The operating system could refuse to run executables un-
less they were contained within these directories, and prohibit writing into these directories
except as part of an explicit installation process.

• Protection could be accomplished with the use of execute permissions similar to the Unix file
permission. Such a system would only allow these permissions to be set as part of a trusted
installation process.

• The system could refuse to run programs that were not digitally signed with a host-specific
key. Code would be signed as part of the installation process.

One problem with these approaches is that they do not protect the computer against executables



9.4. ELIMINATING THE SECURITY POLICY “CONSTRUCTION KIT” 311

that include interpreters. For example, a properly installed and verified copy of Microsoft Word
would nevertheless be able to run a Word Macro Virus. Nevertheless, eliminating the ability to run
native code that had not been properly installed would be a big step forward on desktop operating
systems. Such mechanisms could also help further the goals of the “Pure Software” proposal made
in Section 8.3.

9.3.2 Distinguish between running programs and opening files
Yee observed that typical icon-based interfaces do not distinguish between viewing and executing:
both actions are initiated with a double-click. Double-clicking on an executable runs that exe-
cutable; double-clicking on a non-executable instructs the operating system to determine the ap-
propriate application for that executable, run it (if it is not running), and send the non-executable’s
file name to the executable in a message.[Yee02, Yee04] This is another example of Neumann’s
dangerous computer “puns.” [Neu90]

It is an open question as to whether or not users’ mental models distinguish between viewing and
executing. It is likely that frequent users of programs like Microsoft Word distinguish between
executing the Word application and viewing or editing a document that they are working on. On
the other hand, users may not distinguish between running a web browser and viewing a remote
web site; the distinction may even break down in the case of a web site that contains Java applets
or other active content.

Yee suggests that a consequence of this confusion between running and opening is that users
occasionally run programs without intending to do so. For example, the “Love Letter” worm
released in May 2000 was named LOVE-LETTER-FOR-YOU.TXT.VBS.[CER00] Microsoft Win-
dows frequently displays files without showing their extension, causing this hypothetical program
to display as LOVE-LETTER-FOR-YOU.TXT. Thus, many users thought that “opening” the file
LOVE-LETTER-FOR-YOU.TXT.VBS would actually run the Windows Notepad and show the con-
tents of the file LOVE-LETTER-FOR-YOU.TXT; instead, the program LOVE-LETTER-FOR-YOU.
TXT.VBS launched, which then proceeded to do its mischief.

9.4 Eliminating the Security Policy “Construction Kit”
A current trend in security interfaces is to give users the ability to fine-tune security policy for their
own particular needs. This trend has resulted in interfaces that exhibit the problem of hyperconfig-
urability: the interfaces have dozens of controls for manipulating minutiae of policy enforcement.
The security interfaces become, in essence, security policy “construction kits,” rather than tools for
selecting between a small number of well-thought-out and tested policies.

For example, the Microsoft Internet Explorer 6 Service Pack 2 “Security Options” panel has 38
different controls for manipulating security policy. Some of these controls have binary choices,
such as “Open files based on content, not file extension” which can be set to “Disable” or “Enable.”
Others have three values, such as “Submit nonencrypted form data,” which can be set to “Disable,”
“Enable” or “Prompt.” Given the large number of controls, the single dialogue presented in Figure 9-
9 represents a configuration space of 210 × 321 × 42 × 51 = 856, 912, 134, 389, 760, or roughly 250

possible configurations.

LOVE-LETTER-FOR-YOU.TXT.VBS
LOVE-LETTER-FOR-YOU.TXT
LOVE-LETTER-FOR-YOU.TXT.VBS
LOVE-LETTER-FOR-YOU.TXT
LOVE-LETTER-FOR-YOU.TXT.VBS
LOVE-LETTER-FOR-YOU.TXT.VBS


312 CHAPTER 9. Additional Techniques for Aligning Security and Usability

The 250 number may be a significant underestimate, however, as many of the choices in the Fig-
ure 9-9 dialogue actually refer to additional constellations of security policy choices configured on
other panels.

Hyperconfigurability is not in the interest of Microsoft nor its customers. It complicates developing,
testing, documentation, validation, and maintenance. Furthermore, because many of the choices
that are presented to the user are not orthogonal, it is likely that choices could be simplified or
removed without a loss of expressiveness.

Many of the configuration options on this panel could be collapsed. For example, it would seem
that there is little reason to distinguish running unsigned .NET Framework-related components
from running unsigned ActiveX controls.1 A single control could allow or disallow the running of
both unsigned controls and components.

Hyperconfigurabilty is present in many different security systems. For example, Farmer has sug-
gested that “system security degrades in direct proportion to use.”[Ros05] Farmer says that this
is true with firewalls, for example, because users of firewalls steadily change policies by opening
holes whenever they need to get a new application or protocol to work, but they never go back and
close the hole when it is no longer needed. Users also find it easier to make policy changes that
lower security, rather than to find work-arounds to accomplish their goals within the established
security framework.[Far96] Such policy adulteration is made possible by hyperconfigurability.

9.4.1 Explaining hyperconfigurability
A series of interviews were conducted at Microsoft’s Redmond Campus in January 2004 to under-
stand why the Windows operating system includes such pervasive support for hyperconfigurability.
Discussions about hyperconfigurability were held with several Microsoft employees who were at
the time directly involved in security and application design. Among these employees was the
manager of Microsoft’s Windows XP Service Pack 2 project. Some of the explanations for hyper-
configurability include:

• Defensive Product Development. Because Microsoft’s security practices are frequently crit-
icized by those outside Microsoft, when the company introduces a new technology into Win-
dows or Internet Explorer, it needs to create an accessible control that can be used to explicitly
turn the technology off.

Simply allowing the technology to be disabled through the use of a registry setting is generally
not sufficient: doing so would leave Microsoft vulnerable to criticism. Even a master control
that would turn off all new and potentially dangerous technologies would leave Microsoft
open to criticism by pundits who didn’t realize that the master “off” control also turned off
the new technology.

• Vestigial Controls. As Microsoft develops new technology, it is faced with the question of
1Indeed, the wisdom of ever allowing unsigned ActiveX or .NET components should be questioned. Although it is

tempting to think that developers require the ability to run unsigned components while the components are under devel-
opment, it would be easy for the Microsoft development environment to create a self-signed certificate upon installation
and then for the linker to automatically sign components as part of the linking process. Even without third-party attes-
tation of identity, such certificates would allow users to determine if a new component came from a developer who had
provided a previous version of the same component.



9.4. ELIMINATING THE SECURITY POLICY “CONSTRUCTION KIT” 313

what to do with its old security controls. Although it might be more elegant to update its old
controls with new functionality, doing so may break backwards-compatibility with existing
applications (including in-house applications written by major customers), documentation,
training materials, and third-party web sites. To take the example introduced above, if Mi-
crosoft had relabeled the radio-buttons that control the running of unsigned ActiveX controls
with a new radio-button that handled all unsigned components, existing web sites with in-
structions on how to configure Internet Explorer for “higher security” would suddenly be
incorrect. Customers reading these web sites might become confused.

Microsoft’s employees owe much of their company’s success over the past 20 years to the
company’s long-term insistence on maintaining backwards compatibility. Many DOS and
Windows 3.1 programs will still run on Windows XP, for example, as XP has support for
many DOS interrupt vectors and the Windows 3.1 16-bit APIs. (For example, a copy of the
DOS game rogue.exe from 1983 will run in the cmd.exe command box of a Windows XP
Professional system in March 2004.) It is not at all surprising that this concern for providing
backwards compatibility would extend to preserving human interfaces wherever possible.

• Customer Security Needs. Many of Microsoft’s enterprise customers have security groups
that want to manage specific aspects of the security policy of their desktop and server oper-
ating systems. Some of the fine-grained security policy controls in Windows are the result of
customers seeing beta releases of new Microsoft operating systems and telling Microsoft that
the security group would not allow that new version of Windows to be deployed unless the
ability to disable a new feature was specifically added.

Based on interviews, it was not clear if Microsoft had a means for formally tracking which
customers required which features, or for contacting those customers at a later point in time
to see if the control could later be removed. Indeed, the Vestigial Controls Problem discussed
above implies that such controls, once they are incorporated into the operating system, cannot
ever be removed.

Hyperconfigurability present in the Windows operating system is not the result of a specific Mi-
crosoft policy, but is instead an emergent phenomena based on Microsoft’s market position and its
development practices.

Hyperconfigurability is not just a problem for Microsoft: it is endemic to the computer industry.
Just as Windows has become more complicated with each successive release, so too has grown
the complexity of the Macintosh OS X operating system. In fact, the Macintosh has become so
complicated that MacOS 10.4 has a search facility to help users to find settings and controls within
the computer’s extensive set of control panels.

Perhaps the most flagrant example of hyperconfigurabilty is Security-Enhanced Linux from the
US National Security Agency.[Nat05] A security policy for an SELinux system consists of more
than 10,000 lines of code spread out among 200 different definition files. This policy provides
extraordinarily fine-grained control over what the Linux kernel may and may not do. NSA delivered
this system without a tool to modify the definition files. Instead, it was expected that system
administrators would modify them manually. (Hitachi Software Engineering released a beta version
of its SELinux Policy Editor in 2003, but has not updated the system since. The current version of
the tool does not support the Linux 2.6 kernel.[Co.03]



314 CHAPTER 9. Additional Techniques for Aligning Security and Usability

Figure 9-9: Internet Explorer 6 SP2 has a wide variety of security options. The total configuration space is approximately
250 distinct states, although some of these states are degenerate.



9.4. ELIMINATING THE SECURITY POLICY “CONSTRUCTION KIT” 315

Hyperconfigurability increases the appearance of security, but does not increase actual security.
Instead, it is more likely that security will be increased by having a small number of well-understood
configurations. If a specific organization refuse to adopt new technology without the ability to
tweak security configurations, it may be appropriate to provide those organizations with their own
security tweaking tools, such as the Microsoft “PowerToys for Windows XP” collection.[Cor05d]



316 CHAPTER 9. Additional Techniques for Aligning Security and Usability



CHAPTER 10

Design Principles and Patterns for
Aligning Security and Usability

Chapter 1 states: “It is widely believed that security and usability are two antagonistic goals in
system design. This thesis argues that there are many instances in which security and usability
can be synenergistically improved by revising the way that specific functionality is implemented in
many of today’s operating systems and applications.”[Gar05, p.13]

Indeed, it can be difficult to build systems that are both secure and usable. But the good news is
that there is no inherent conflict between these two properties. Certainly it takes more work to
build systems that are both secure and usable, but in many cases it only takes more work—it does
not require a miracle.

By systematically studying the release of confidential information through remnant data, by analyz-
ing the difficulties of secure messaging and PKI, and through an extensive review of the literature
and today’s consumer operating systems, this dissertation has shown that usability and security
can often be aligned by making changes to the underlying architecture or trust models on which
modern systems are based. To this end, the philosophy of this thesis has been to identify patterns
that can make systems that are actually secure, rather than the traditional goal of creating systems
that are theoretically securable.[Tog05] Frequently these changes required by these patterns are
relatively minor. Nevertheless, they can result in significant security improvements.

Chapter 1 introduced six principles for aligning security and usability. Other patterns have been
introduced throughout the remainder of this dissertation, each time in conjunction with supporting
research.

This chapter formally presents the “design principles and patterns” for aligning security and usa-
bility that are promised in the thesis title. The principles are presented first, followed by the

317



318 CHAPTER 10. Design Principles and Patterns for Aligning Security and Usability

patterns. Each pattern is presented is presented in a stylized format that consists of the following
elements:

Pattern name The pattern’s name
Intent What the pattern is designed to accomplish
Motivation Why this pattern is important
Image An image that shows a use of the pattern
Applicability The circumstances where the pattern is relevant
Participants If presented in italics, this lists the names of other patterns that this pattern

depends upon. Otherwise, “participants” indicates the individuals within an
organization that should be responsible for carrying applying the pattern

Implementation A rough sketch of how this pattern can be implemented
Results What happens when the pattern is implemented
Known Uses Examples of this pattern in use today

Many of the patterns are further accompanied by References either from inside this thesis or the
work of other researchers.



319

—General Principles—

Least Surprise / Least Astonishment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 320

Good Security Now (Don’t Wait for Perfect) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 320

Provide Standardized Security Policies (No Policy Kit) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .p. 320

Consistent Meaningful Vocabulary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 321

Consistent Controls and Placement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 321

No External Burden . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 322

—User Visibility and Sanitization Patterns—

Explicit User Audit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 324

Explicit Item Delete . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 326

Reset to Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 326

Complete Delete . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 327

Delayed Unrecoverable Action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 328

—Identification and Key Management Patterns—

Leverage Existing Identification. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .p. 330

Email-Based Identification and Authentication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 331

Send S/MIME-Signed Email . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 332

Create Keys When Needed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .p. 333

Key Continuity Management. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .p. 334

Track Received Keys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 335

Track Recipients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 336

Migrate and Backup Keys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 337

Distinguish Internal Senders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 338

—Patterns for Promoting Overall Secure Operation—

Create a Security Lexicon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .p. 340

Disclose Significant Deviations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .p. 341

Install Before Execute . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 342

Distinguish Between Run and Open. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .p. 343

Disable by Default . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 344

Warn When Unsafe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 345

Distinguish Security Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 346



320 CHAPTER 10. Design Principles and Patterns for Aligning Security and Usability

Principle

Least Surprise / Least Astonishment

Intent

Ensure that the system acts in accordance with the user’s expectations.

Motivation

Saltzer and Schroeder introduced the principle of “psychological acceptability” in 1975. [SS75] Since then
the principle has generally been recast as a Principle (or rule) of “Least Surprise” or “Least Astonishment.”

The Principle of Least Surprise asserts that the system should match the user’s experience, expecta-
tions, and mental models.

In the context of computer security, this principle means that the computer should not perform an
action in a manner that is not secure when the user expects the computer to be behaving in a secure
manner. For example, if the user fills out a form on a web page that was fetched with SSL (and therefore
has a lock in the browser’s status bar), the browser should warn if the form’s POST operation causes the
data to be sent without encryption to another web server. (Ideally, the browser would even warn the
user of this possibility before the user had invested time in filling out the web form.) Likewise, if the user
instructs the computer to delete a file and the file disappears from the computer’s list of files, then the
file should actually be deleted.

References: A version of this principle appears in the Portland Pattern Repository as the “Principle of Least Aston-

ishment.” [AB04] Raymond explains this as the “Rule of Least Surprise.” [Ray03]. Saltzer and Kaashoek have recently

adopted the term “Principle of Least Astonishment” in [SK05] to replace the term “Psychological Acceptability” in [SS75].

Principle

Good Security Now (Don’t Wait for Perfect)

Intent

Ensure that systems offering some security features are deployed now, rather than leaving these systems
sitting on the shelf while researchers try to develop “perfect” security systems for deployment later.

Motivation

All too often, security practitioners argue that security solutions that are good but not perfect should not
be deployed because people will come to rely on them, and then be misled when the systems fail. The
practitioners argue that it is better to deploy nothing. Deploying solutions with no security does not stop
these would-be users: instead, they assume that security is provided, they try to cobble together their
own solution, or else they choose to accept the risk and operate with no security solution at all.

References: Chapters 5 and 6 argue that the decision to hold off on the use of public key cryptography until keys could

be certified resulted in a delay of many years. In practice, the system that was ultimately deployed offered privacy and

security guarantees that are very similar to a system that could have deployed without keys certified by third parties.



321

Principle

Provide Standardized Security Policies (No Policy Kit)

Intent

Provide a few standardized security configurations that can be audited, documented, and taught to users.

Motivation

Today’s computer systems provide security policy “construction kits” that allow organizations and even
end-users to custom-tailor the security policy of their computers to meet their own exacting needs. But
most organizations and end-users are simply not qualified to make these decisions. The result is a prolif-
eration of policies and configurations which have fundamentally unknown (and frequently unknowable)
security properties. It is better to provide a few standardized policies that generally do not need to be
customized.

References: Section 9.4 explains why security construction kits have evolved and why they adversely impact both

security and usability.

Principle

Consistent Meaningful Vocabulary

Intent

Prevent confusion by using words consistently to convey the same idea or concept in different programs
and contexts. Likewise, prevent confusion by assigning consistent meanings to the same word in different
applications or contexts.

Motivation

Technologists in general and computer security practitioners in particular are generally loose with the
words used to represent terms and ideas. Different words used for the same idea confuse users, who
look for meaning in the differences and frequently create incorrect explanations for the sloppiness. The
sloppiness can negatively affect implementations when programmers become confused.

References: Section 8.2 gives examples of current vocabulary problems; Barry devotes an entire book to documenting

the problem of Technobabble. [Bar91]



322 CHAPTER 10. Design Principles and Patterns for Aligning Security and Usability

Principle

Consistent Controls and Placement

Intent

Structure applications so that similar functionality is location in similar positions on different
applications—especially if those applications are manufactured by competitors.

Motivation

Many people use different applications and systems on a regular basis. Functions that are located in
different places in different systems may be missed and, as a result, not used.

Over the past decade there has been a slow convergence of the GUI widgets used by many desktop and
handheld platforms. Given this experience, it seems reasonable that progress can be made on security
metaphors and controls as well.

The hardest part of following this principle is the task of reconciling conflicting implementations that
are already in the marketplace. Does one give presidence to the “first movers” and innovators who
developed a new interface, to the placement that is deployed to the largest number of people, to the
implementation that is actually used by the largest number of people, or to the design that user testing
implies is the best? Who conducts the user testing?

Although these are hard decisions with strong business implications, they are fundamentally no differ-
ent than similar decisions that have been made about protocols and message formats.

The single danger with the standardization process is that it tends to complicate the thing being stan-
dardized, rather than simplify it. If that happens with interface placement, the project is lost.

With a consistent set of controls and consistent placement in the user interface, training costs should
drop as information learned in context becomes useful in others. There will be more opportunities for
passive learning, and it will be easier for people to help each other in the workplace.

Principle

No External Burden

Intent

Design security systems to have minimal or no negative impact on the friends, associates and co-workers
of those using the technology, so that they do not push back on the users of the tools and ask that the use
be curtailed.

Motivation

Frequently the use of a security technology causes a negative usability impact not just on the user, but
also on those around the user. For example, when an OpenPGP user sends a digitally signed message,
that message is displayed in Microsoft Outlook and Outlook Express not as a message with an attached
signature, but as a blank message with two attachments. When the user’s friends and associates receive
this message, they ask the user to stop using PGP.

This principle holds that security technology—like all technology—exists in a social context. It is im-
portant to be concerned about the technology’s impact on its users, but it is also important to understand
the impact on the social group and the society in which the user exists. Social support can be an important
factor in having a new technology deployed, and push-back from the social group can cause otherwise
promising technologies to be discarded.



323



324 CHAPTER 10. Design Principles and Patterns for Aligning Security and Usability

10.1 User Visibility and Sanitization Patterns
Users cannot know if a computer contains personal or confidential information unless that infor-
mation is visible. Systems that give the appearance of removing information when it is deleted but
do not actually erase that information inherently compromise secure operation. Fortunately the
techniques for addressing these problems are widely known. The design patterns described in this
section dissect the sanitization problem, addressing its causes and presenting a unified solution.

Although aspects of these patterns are implemented in some systems today, there is no single system
that implements them in a consistent fashion. While many systems today implement EXPLICIT ITEM

DELETE and RESET TO INSTALLATION, the failure to link these patterns to COMPLETE DELETE means
that information that the user attempts to delete from the system is not actually deleted from the
system: the information is simply made invisible.

In other cases, systems do not even implement the RESET TO INSTALLATION—giving users of multi-
user computer systems the difficult choice of either painstakingly deleting items one at a time, or
else leaving personal information on these shared systems with the hope that no future user will
retrieve and exploit the information.

The five sanitization patterns are presented on the following pages; Figure 10-1 shows how they
interrelate.

User
Audit

Visibility


Users

  

Sanitization

  
Document Files, Applications, and Media


Users

Complete 
Delete

Delayed 
Unrecoverable 

Action

Reset to 
Installation

Explicit Item 
Delete

Figure 10-1: A graphical representation of the five patterns involved in visibility and sanitization, showing how they
relate to each other and to the user



10.1. USER VISIBILITY AND SANITIZATION PATTERNS 325

Explicit User Audit

Intent

Allow the user to inspect all user-generated information
stored in the system to see if information is present and
verify that it is accurate. There should be no hidden data.

Motivation

This is an application of the first and second Fair Infor-
mation Practice principles to computer systems:

1. There must be no personal data record-keeping
systems whose very existence is secret.

2. There must be a way for a person to find out what
information about him- or herself is in a record
and how it is used.[UDoHoAPDS73]

Without EXPLICIT USER AUDIT, there is no way for the
user to determine if the system contains confidential in-
formation.

Applicability

Can be applied to a data file (e.g., a word processor document), an application (e.g., a web browser),
or an entire computer system. Should display both information directly entered by the user as well as
information derived from user actions, such as log files.

Participants

EXPLICIT ITEM DELETE; RESET TO INSTALLATION; COMPLETE DELETE.

Implementation

Ensure that all content can be readily reached using the navigational tools provided by the system. All
information on the disk should reside in the file system, not in the free list. All information in documents
should be visible when the document is displayed. Ideally, information should be tagged to indicate when
the information was acquired; this tag should also be displayed.

If the amount of information in the system is large, a search facility should be provided.
This pattern can be implemented either by never throwing out any information, or else by making sure

that information deleted by the user is actually removed from the system using COMPLETE DELETE.

Results

The user can determine if confidential information is present inside the system. In the case of cookies,
EXPLICIT USER AUDIT on the local computer may reveal the need for EXPLICIT USER AUDIT at remote web
sites, as discussed in Section 9.2.2.

Known Uses

The “View Saved Passwords” button in Firefox allows the user to see both the saved Username and the
password, although showing passwords requires that the user click a second button and enter the Firefox
“master password” (if one has been set).

References: Section 4.1, Section 9.2.



326 CHAPTER 10. Design Principles and Patterns for Aligning Security and Usability

Explicit Item Delete

Intent

Give the user a way to delete what is shown, where it is
shown.

Motivation

This is a combination of the fourth Fair Information Prac-
tice principle [UDoHoAPDS73] and the concept of “di-
rect manipulation”[Shn82] to personal information in
computer systems.

Applicability

Web history; search history; log files; revision tracking within documents.

Participants

COMPLETE DELETE; DELAYED UNRECOVERABLE ACTION.

Implementation

Where the user is shown personal information in the computer interface, the user should be given a con-
trol for removing that information. For example, the last item in the menu should read “clear history.” If
the user is not authorized to delete a log file, the system should provide contact information for a respon-
sible party that can perform the action (an application of the OECD “Accountability Principle.”[Org80]

Results

Once a user sees information that they want removed, they don’t have to hunt around and try to figure
out how to do it.

Known Uses

Safari has a “Clear History” menu item in “History” and a “Clear Search History” menu item in the “Recent
Searches” menu. Apple’s NSSearchFieldCell automatically implements this functionality for recent
searches. Internet Explorer allows the user to right-click on a history item and select “Delete,” although
this functionality is not obvious.

References: Section 4.1 discusses sanitization in the browser.



10.1. USER VISIBILITY AND SANITIZATION PATTERNS 327

Reset to Installation

Intent

Provide a means for removing all personal or private in-
formation associated with an application or operating
system in a single, confirmed, and ideally delayed op-
eration.
Motivation

There should be a simple way to remove personal infor-
mation from a computer before ownership is transferred.
Computers set up for use by the public (e.g., in libraries)
should have a simple way to be sanitized on a regular
basis.

Sadly, many computer systems do not provide com-
plete reset. For example, the GPS systems and cell
phones rented with many cars do not, making it possi-
ble for later renters to learn personal information about
previous renters.[Nor97]

Applicability

Web history, cache & cookies; document files; application preferences; log files; email history; contact
lists; cell phones; in-car GPS navigation systems.

Participants

DELAYED UNRECOVERABLE ACTION; COMPLETE DELETE

Implementation

The system needs to distinguish between user-created data and operating system information. When
RESET TO INSTALLATION is invoked, information that is not user-created is deleted.

Systems may offer different kinds of RESET TO INSTALLATION: user reset within an application; user
reset for all applications; and user reset of the system, which removes both user-data and application
programs that are not part of the base system.

Results

This pattern vastly simplifies the process of removing personal information from a computer system when
a person is finished using it—either in a kiosk situation, or because a piece of equipment is being sold.
This pattern also makes it easy to comply with copyright law and software license restrictions.

Known Uses

Apple Safari has a “Reset Safari” feature, although Safari does not perform COMPLETE DELETE when the
files are deleted.

References: Section 4.1 discusses sanitization in the browser.



328 CHAPTER 10. Design Principles and Patterns for Aligning Security and Usability

Complete Delete

Intent

Ensure that when the user deletes the visible repre-
sentation of something, the hidden representations are
deleted as well.

Motivation

Frequently deleting information does not erase all of
the copies in the computer: hidden data remains from
which the user’s desire to erase information can be sub-
verted. COMPLETE DELETE ensures that information that
is deleted cannot be recovered.

Delete 
History

Delete 
www.ebay.com 

in history

Delete 
Cache

Delete 
Cookies

Overwrite 
History
Files

Overwrite 
Cache
Files

Overwrite 
Cookie
FIles

Applicability

• Removal of text from within documents

• Removal of records from databases

• File deletion

• Erasure of passwords and cryptographic keys in memory

Participants

DELAYED UNRECOVERABLE ACTION

Implementation

COMPLETE DELETE is implemented by determining what information stored in the computer system cor-
responds to the user’s notion of the object being deleted, then overwriting the storage media that holds
that information so that the data cannot be recovered. While COMPLETE DELETE cannot be implemented
for information that is stored offline, the results of COMPLETE DELETE can be achieved by encrypting
offline information and then using COMPLETE DELETE to erase the encryption key.

Results

Prevents forensic analysis from being able to recover information that has been intentionally deleted.
Forces designers and organizations to clearly articulate their strategy for maintaining backups and who
has access to that information.

Known Uses

Apple implements COMPLETE DELETE, albeit poorly, in the MacOS 10.3 “Secure Empty Trash” command.
Microsoft’s Cipher.exe command can be used to overwrite slack space. Both of these implementations
have profound implementation flaws and usability problems (see Chapter 3).

References: Chapter 3 discusses how the failure of COMPLETE DELETE at the file level has frequently exposed

confidential information; Section 4.2 on page 155 shows how problems in Microsoft Word and Adobe Acrobat have

resulted in similar disclosures.



10.1. USER VISIBILITY AND SANITIZATION PATTERNS 329

Delayed Unrecoverable Action

Intent

Give users a chance to change their minds after executing
an unrecoverable action.

Motivation

Although confirmation boxes allow users to recover from
typos or accidentally-clicked buttons, they are signifi-
cantly less effective in protecting against errors that are
the result of intentional but mistaken actions.

Applicability

Any procedure that is designed to be irreversable: e.g., destruction of documents and key material;
removal of licensed applications; transmission of sensitive information to archive facilities; printing on
remote printers; sending email.

Participants

COMPLETE DELETE

Implementation

When the user chooses an unrecoverable action, the action is scheduled to take place at some point in the
future—for example, in 5 minutes, or at 5pm. The action can be terminated before the execution time
arrives. Another control allows a scheduled action to be executed immediately.

Results

The user has a chance to change his or her mind after committing an error.

Known Uses

Putting physical trash in the kitchen trash can, and taking the trash can out to the curb the following day.
Some operating systems institute a “countdown” after reboot is triggered, during which time the reboot
can be aborted.

References: As discussed in Section 3.6.1 on page 134, proposals for this pattern that where previously made by

Norman[Nor83] and Cooper.[Coo99, p.167]



330 CHAPTER 10. Design Principles and Patterns for Aligning Security and Usability

10.2 Identification and Key Management Patterns
The patterns that are introduced in this section are based on the analysis presented in Chapters 5
through 7, as well as those in the article Email-Based Identification and Authentication: An Alter-
native to PKI?[Gar03a], which provides guidelines and recommended best practices to using the
ability to receive email as an authentication strategy.

Fundamentally, the principles and patterns in this section are designed to advance the goal of
secure messaging for all users. One approach for achieving this goal is by laying the groundwork
for increased use of PKI and simultaneously expanding the use of other identification regimes.
The underlying belief motivating this section is that stronger authentication systems than those
currently in use can be developed through the conglomeration of independent weak solutions.

Leverage 
Existing 

Authentication

Email Based 
Identification 

& 
Authorization

Send
Signed

Key 
Continuity 

Management

Track 
Keys

Track
Recipients

Distinguish 
Internal 
Senders

Create 
Keys When 

Needed

  
Web-based Services


Users

Migrate and 
Backup Keys


Mail correspondents

Figure 10-2: A graphical representation of the five patterns proposed for assisting with key management



10.2. IDENTIFICATION AND KEY MANAGEMENT PATTERNS 331

Leverage Existing Identification

Intent

Use existing identification schemes, rather than trying to
create new ones.

Motivation

Digital identification systems based on biometrics and
public key infrastructure (PKI) are easier to deploy when
the technology affirms a pre-existing relationship, rather
than having a relationship created for the purpose of us-
ing the identification system.

Applicability

Deployment of strong authentication systems such as client-side PKI, tokens, or biometrics—especially
when these systems are used to verify authorization for information or services within an organization.

Participants

EMAIL-BASED IDENTIFICATION AND AUTHENTICATION; Certificate Authorities.

Implementation

Organizations issue certificates to their own employees. Banks in Europe send Transaction Authorisation
Numbers (TANs—essentially one-time passwords) to many customers with their monthly statements,
leveraging the existing authentication provided by the postal system.

Results

It is easier to deploy the strong systems because all users understand what kinds of security guarantees are
provided. Inevitable errors can be corrected using the tools already present in the existing identification
systems.

Known Uses

Zurko reports that there are 100 million Lotus Notes client licenses currently deployed; [Zur05b] the US
Department of Defense has successfully deployed its PKI to more than 2 million employees, contractors,
and active duty personnel. In both of these cases, PKI technology was used to certify identities that had
been established through other channels; that is, it extended a pre-existing local identity determination
into the digital domain. MIT’s certificate authority issues personal certificates to individuals who know
their Kerberos username, Kerberos password, and MIT ID number (see graphic).

References: Chapter 5 discusses the difficulty of deploying certificate infrastructures designed to convey identity to

third parties in the absence of pre-existing relationships.



332 CHAPTER 10. Design Principles and Patterns for Aligning Security and Usability

Email-Based Identification and Authentication

Intent

Use the ability to receive mail at a pre-determined email
address to establish one’s identity or authorization to
modify account parameters.

Motivation

Provide a simple, self-service means for people to reset
or recover credentials on systems that are less frequently
used by leveraging authentication from systems that are
more frequently used.

Applicability

Web sites that allow users to create accounts protected by username/password combinations.

Participants

LEVERAGE EXISTING IDENTIFICATION; web site authentication systems; user database; email subsystem.

Implementation

The web site should email a URL with an embedded token to the registered account; clicking on the URL
takes the user to a web page that allows the password to be changed. The URL should expire after a
short period of time and should not be usable more than once. Cookies can be used to require that the
password be reset on the same browser that asked for the URL be sent. SEND S/MIME-SIGNED EMAIL

should be used to decrease vulnerability to phishing attacks.
EMAIL-BASED IDENTIFICATION AND AUTHENTICATION can even be used with desktop applications that

use password to unlock encrypted data. When the encryption key is created, the user’s password is split
and a share with a registered email address are stored with a trusted third party. If the user loses his or
her local password, the second split can be sent to the web site, which can send a link to the registered
email address that, when clicked, will cause the password to be reassembled and displayed.

Results

In addition to allowing for easy password reset, EMAIL-BASED IDENTIFICATION AND AUTHENTICATION

systems make it easy for those who have acceess to email systems to compromise additional accounts.
This risk can be mitigated through the use of challenge questions.[Jus05]

Known Uses

Amazon.com; expedia.com; ual.com; gmail.com; many other web sites.

References: Email-Based Identification and Authorization is discussed in detail in [Gar03a].



10.2. IDENTIFICATION AND KEY MANAGEMENT PATTERNS 333

Send S/MIME-Signed Email

Intent

Send email signed with S/MIME signatures to increase
confidence in email, allow recipients to detect mail with
forged From: headers, increase familarity with secure
email through causal exposure and the resulting“passive
learning,” and give web-mail providers incentive to sup-
port S/MIME.

Motivation

S/MIME signatures provide sender authentication which
can be useful protection against spam and “phishing”
attacks. Today’s most widely used mail clients sup-
port S/MIME signatures; programs that do not support
S/MIME do not have significant usability problems when
they receive signed mail.

Applicability

Automatically generated email from e-commerce systems (order confirmations; order status; invoices; re-
ceipts). Press releases. Official messages from professors or administration. Any program or organization
that sends mail.

Participants

TRACK RECIPIENTS; KEY CONTINUITY MANAGEMENT; CREATE KEYS WHEN NEEDED

Implementation

Start with messages that are automatically-generated and sent with “do-not-reply” return addresses. Ob-
tain a Digital ID from VeriSign or Thawte; use it with OpenSSL to write S/MIME signatures on all mes-
sages that are sent out automatically. Renew the key every year.

Additional usability can be obtained by maintaining a database of the email client used by each user
and only sending S/MIME-signed mail to those users who have support for S/MIME. Companies that
receive email from customers can determine mail clients by examining the headers of incoming customer
e-mail.

Mail programs such as Outlook Express should not offer to send signed mail unless they can deliver on
the promise—that is, unless the user has obtained and installed a Digital ID.

Results

S/MIME Digital ID’s for organizations sending signed mail will be distributed, allowing them to receive
mail that is sealed with cryptography from their customers.

Some mail systems damage signed messages; these systems will only be fixed if they are exercised and
the bugs are found.

Known Uses

Amazon.com sends digitally signed VAT invoices to its merchants in Europe.

References: Chapter 6 discusses Amazon.com’s success in sending S/MIME-signed mail.



334 CHAPTER 10. Design Principles and Patterns for Aligning Security and Usability

Create Keys When Needed

Intent

Ensure that cryptographic protocols that can use keys
will have access to keys, even if those keys were not
signed by the private key of a well-known Certificate Au-
thority.

Motivation

The use of encryption between unauthenticated end-
points protects the data from passive eavesdropping.
These attacks are easier than active man-in-the-middle
attacks, so it makes sense to defend against them by de-
fault.

Generating public/private 
   rsa1 key pair...

Your identification has been 
   saved in /etc/ssh/ssh_host_key.

Your public key has been saved 
   in /etc/ssh/ssh_host_key.pub.

The key fingerprint is:
  3c:c5:95:47:00:22:3b:29:66:45:05:
  4c:39:d5:9b:3f root@r3.nitroba.com

Applicability

All TCP servers, including servers for HTTP, POP, IMAP, and SMTP protocols. SSL client-side certificates.
Do not deploy for S/MIME until mainstream mail clients support KEY CONTINUITY MANAGEMENT.

Participants

Application programs; network servers; KEY CONTINUITY MANAGEMENT.

Implementation

When a program that can use an X.509 certificate for authentication discovers that it does not have an
X.509 certificate, a self-signed certificate should be made for default use.

Results

Systems that require cryptographic keys can be immediately used without the need to obtain certification
from third-parties. This allows for both confidentiality and integrity protection without authentication
control, which is better than no cryptographic protection at all.

Known Uses

Most SSH distributions are configured to automatically create host keys when the server starts if no keys
are found.

References: Chapter 6 and Appendix D discuss systems that automatically create keys when needed. Ylonen

discusses the SSH approach to key generation and management.[Ylo96]



10.2. IDENTIFICATION AND KEY MANAGEMENT PATTERNS 335

Key Continuity Management

Intent

Use digital certificates that are self-signed or signed by
unknown CAs for some purpose that furthers secure usa-
bility, rather than ignoring them entirely. This, in turns,
makes possible the use of automatically created self-
signed certificates created by individuals or organiza-
tions that are unable or unwilling to obtain certificates
from well-known Certification Authorities.
Motivation

Many SSL and S/MIME certificates in use today are not
signed by well-known Certificate Authorities. As a result,
SSL clients such as Internet Explorer and S/MIME clients
such as Outlook Express display errors.

Applicability

S/MIME mail clients; web browsers; other programs that accept X.509 certificates.

Participants

Developers of email clients; web mail providers; TRACK RECEIVED KEYS.

Implementation

When certificates are received in the course of authentication and the certificates are not signed by a
recognized CA, the system verifies the signature, then consults a local database of identities. If the identity
is not present, the identity and the certificate are added. If the identity is present and the certificate on
file for that identity is different, a warning is issued.

When an identity is received that is not digitally certified and the identity is on file with a matching
certificate, a warning is issued.

Results

Allows certificates that are self-signed or signed by unknown Certificate Authority to be used in a way
that proves continuity of identity.

Known Uses

Tracking of server keys in SSH clients.

References: Chapter 7.



336 CHAPTER 10. Design Principles and Patterns for Aligning Security and Usability

Track Received Keys

Intent

Make it possible for the user to know if this is the first
time that a key has been received, if the key has been
used just a few times, or if it is used frequently.

Motivation

Tracking the use of keys is one of the techniques that
security professionals use to determine how much cred-
ibility to put in a key—the theory being that a key that
has been seen a lot for a long time is more likely to be
legitimate than a key that has been seen just once before.
It makes sense to automate this process.

KeyID First Seen Times Seen

0x1123 2004-01-02 32
0x3344 2004-03-10 3432
0x9933 2004-03-11 1

Applicability

All programs that accept keys or certificates—e.g., web browsers, email clients, SSH servers and clients.

Participants

Application software and servers.

Implementation

Maintain a key or certificate database that tracks the number of uses or frequency of use, in addition to
tracking whether or not keys have been seen in the past. TRACK RECEIVED KEYS could be implemented
in a cryptographic toolkit or certificate store to provide the functionality in a uniform manner.

Results

Users can readily distinguish between keys that they have seen many times in the past and those that are
new or relatively green.

Known Uses

The CoPilot system described in Chapter 7 simulated a key tracking database; users found the tracking
to be helpful.

References: See Appendices C and D for a discussion of how two databases for tracking received keys were designed.



10.2. IDENTIFICATION AND KEY MANAGEMENT PATTERNS 337

Track Recipients

Intent

Ensure that cryptographically protected email can be ap-
propriately processed by the intended recipient.

Motivation

Although most Internet users can receive and properly
decode S/MIME-signed mail, not all of them can.

@
AOL.COM?

Send 
Signed with 

S/MIME

Don't send 
signed

NO

YES

Applicability

All e-mail, but especially do-not-reply email sent in conjunction with e-commerce activities.

Participants

SEND S/MIME-SIGNED EMAIL.

Implementation

Keep a database of each mail recipient and the cryptographic capabilities of their mail clients. This
database should include what was observed about each recipient, rather than the conclusions drawn from
those observations. (i.e., retain the mail header that established the user had Outlook Express, rather than
a database entry that says “Outlook Express.”) Give mail recipients the ability override these settings with
per-user mail preferences.

Results

Using rules and a database of exceptions, it is possible to dramatically reduce the chance of sending
signed mail to an individual who cannot decode it.

Known Uses

Many organizations already keep a database of “mail preferences” stating whether customers wish to
receive no mail, ASCII email, or HTML email. These databases can be extended to include other security
properties.



338 CHAPTER 10. Design Principles and Patterns for Aligning Security and Usability

Migrate and Backup Keys

Intent

Prevent users from losing their valuable secret keys.

Motivation

Today it is extremely difficult to move secret keys and
other authentication tokens from one device to another.
As a result, some users do not use the security features
that these systems provide for fear of losing control of
their assets. Other users are not aware of the danger and
live with the risk without realization. If keys are going
to be automatically created, they must be automatically
migrated to all of a user’s relevant devices and backed up
in a systematic fashion.

Applicability

S/MIME private keys; username/password databases; authentication tokens used in digital rights man-
agement systems.

Participants

CREATE KEYS WHEN NEEDED.

Implementation

One way to migrate keys is by storing them inside the mail repository itself—for example, they can be
stored in a hidden directory on the IMAP server. Alternatively, keys created on a POP/SMTP client can
be sent to the user’s own email address, so that they will automatically be made available to other POP
clients that share the same inbox. Such keys can be protected by a password to achive security from the
administrators of the mail system.

Results

Important information is distributed to where it is needed and backed up so that it will not be lost.

Known Uses

Apple’s iSync 2.0 in MacOS 10.4 automatically synchronizes KeyChain databases between mulitple Mac-
intosh computers.



10.2. IDENTIFICATION AND KEY MANAGEMENT PATTERNS 339

Distinguish Internal Senders

Intent

Allow users to readily distinguish between mail that was
generated from within an email system and mail that was
injected from the outside but which claims to have an
internal address.
Motivation

In many cases the system has used some kind of authenti-
cation procedure to ascertain the identity of the service’s
user—for example, requiring a username and password.
It makes sense to distinguishes messages sent from these
authenticated users from messages that originated from
outside the system for which no authentication was per-
formed.

Applicability

Email “walled gardens;” web-mail systems; instant messaging; Short Message Service (SMS) messages.

Participants

Web mail designers; system architects; authentication subsystems.

Implementation

Messages that originate from within the system need to be specially tagged in a manner that cannot be
forged by outsiders.

Results

Users can distinguish email that was sent after the user was authenticated, versus email that was delivered
over the Internet.

Known Uses

AOL distinguishes between mail that is sent from within AOL and mail that was sent from outside AOL
but with an @aol.com domain name. In the first case, the From: address is displayed accompanied by

the AOL logo ( ), while in the second case the AOL logo is not displayed. AOL also distinguishes official
AOL mail from mail that is sent by users.

References: Section 5.5.2.



340 CHAPTER 10. Design Principles and Patterns for Aligning Security and Usability

10.3 Patterns for Promoting Overall Secure Operation
These patterns are designed to enhance secure operation while simultaneously providing for in-
creased usability. Some of them are based on the work of Yee.[Yee02]

Create a 
Security 
Lexicon

Distinguish 
Between Run 

and Open

Install Before 
Execute

Disable by 
Default

Warn When 
Unsafe

Distinguish 
Security 
Levels

Disclose 
Significant 
Deviations 

Figure 10-3: A graphical representation of the seven patterns proposed for enhancing secure operations.



10.3. PATTERNS FOR PROMOTING OVERALL SECURE OPERATION 341

Create a Security Lexicon

Intent

Provide a single location where security-releated words
are defined, allowing the use of these words to be stan-
dardized within and between systems. The single lexicon
should be consistent across vendors as well.
Motivation

Without a readily accessible lexicon, it is difficult to
implement the CONSISTENT MEANINGFUL VOCABULARY

principle.

Applicability

Words used in user interfaces and documentation need to be screened for consistency. Inside programs,
words used in source code need to be consistent as well, since semantic drift on the part of programmers
is frequently responsible for the proliferation of new and conflicting terminology.

Participants

Programmers; user interface designers; technical writers; project managers.

Implementation

Use a lexicon that is consistent and meaningful. The industry as a whole needs to adopt a freely available
“style book” that will present a standardized terminology. Words and terms that specifically need to be
addressed are key, public key, private key, secret key, certificate (with no private key), certificate file (that
includes a private key), Digital ID, delete, erase, purge, clear and wipe.

Results

A single lexicon makes it possible for less sophisticated users to learn security concepts because the
concept that underlies the word is constant.

Known Uses

The Mozilla Organization has created a “Jargon File”[The04] that includes the definitions of many terms.

References: Section 8.2 discusses the need to standardize the security lexicon.



342 CHAPTER 10. Design Principles and Patterns for Aligning Security and Usability

Disclose Significant Deviations

Intent

Inform the user when an object (software or physical) is
likely to behave in a manner that is significantly different
than expected. Ideally the disclosure should be made by
the object’s creator.

Motivation

Many programs have features that are both non-obvious
and that are fundamentally different than the mental
model of the person using the object. For example,
the program Precision Time by Gain Publishing is avail-
able in two versions: a version that is “free,” but which
shows advertisements from the Gain Network, and a ver-
sion that costs $30 but which does not display advertise-
ments. Although these differences are made clear on the
program’s home page, they are not made clear in the
program’s interface once it is installed.

Applicability

Software; physical objects.

Participants

Regulators or industry groups to define what functionality must be disclosed and institute sanctions for
those who do not. Designers, developers and manufacturers to perform the actual disclosures.

Implementation

An agreed-upon list of specific functionality that needs to be disclosed. Ideally, the functionality should
be functions that make a program or object act in a manner that would be surprising. Standardized
disclosures need to be developed. Ideally, such disclosures would include both standardized images and
text.

Results

Users are alerted that there may be hidden functionality included within a program or physical object,
helping to bring their mental models into alignment with reality and thereby allowing them to make
decisions that are better informed. Researchers can use disclosure to gather information in the event that
further regulation needs to be enacted.

Known Uses

EPCglobal has created an EPC Seal for display on products that contain certain kinds of RFID tags.

References: Design for traditional safety and warning labels is discussed in Section 2.6.3. The specific proposals for

software and RFID disclosures are discussed in Section 8.3 and Section 8.4.



10.3. PATTERNS FOR PROMOTING OVERALL SECURE OPERATION 343

Install Before Execute

Intent

Ensure that programs cannot run unless they have been
properly installed.

Motivation

Many worms, viruses and other programs are inadver-
tently run by users who are trying to open them. Oth-
ers take advantage of operating system bugs and run au-
tonomously. Some kinds of “malware” attacks use fea-
tures in browsers to download executables to the user’s
desktop; these executables are sometimes inadvertently
run by a user who is trying to “open” them.

Applicability

Operating systems.

Participants

Installers; operating systems.

Implementation

A permission-based system simply prohibits code from running that is not located in the correct directory
or without having the correct permission bits set; such directories and bits could only be written through
the installation process. Other approaches are possible.

Results

Viruses and worms delivered by email cannot be run unless they can trick the user into installing them.
Some implementations of INSTALL BEFORE EXECUTE will foil binary exploits.

Known Uses

PalmOS will not run an application unless it is installed, but the installation process is trivial.

References: Restrictions on operating systems that may improve usability and security are discussed in Section 9.3.1.

Reid discusses the need to properly install applications before allowing them to run.[Rei87] Kirovski et al. discuss

techniques for achieving INSTALL BEFORE EXECUTE.[KDP02]



344 CHAPTER 10. Design Principles and Patterns for Aligning Security and Usability

Distinguish Between Run and Open

Intent

Distinguish the act of running a program from the open-
ing of a data file.

Motivation

Many worms pose as application documents; victims try
to “open” the document to see what it says, and instead
end up running the hostile program. Distinguishing be-
tween these two acts with different gestures prevents the
attack.

% emacs myletter.tex

prompt command
(run)

filename argument
(open)

Applicability

Windows, MacOS and Linux desktop interfaces.

Participants

EXPLICIT INSTALL.

Implementation

On operating systems with a desktop metaphor, the double-click on an icon gesture can be changed so
that double-clicking on an installed application runs the program, while double-clicking on an application
that has not been installed causes the display of a warning message or suitable dialogue.

Results

Worms like the Love Letter[CER00] and Melissa[CER99] should be less likely to propagate. Spyware that
is downloaded to the user’s desktop that masquerades as a document will be less likely to be installed.

Known Uses

DOS and the Unix command-line shells distinguish between running a program and opening a docu-
ment by explicitly requiring that the name of the application be provided when a document is opened:
e.g., % emacs myletter.tex . Although this pattern does not recommend returning to the days of
command-line interfaces, the fact that such interfaces were widely used and continue to be used indi-
cates that such interfaces are in fact workable.

References: Section 9.3.2. [Yee02]; [Yee04]



10.3. PATTERNS FOR PROMOTING OVERALL SECURE OPERATION 345

Disable by Default

Intent

Ensure that systems does not enable services, servers,
and other significant but potentially surprising and
security-relevant functionality unless there is a need to
do so.
Motivation

Today’s operating systems are incredibly rich in the fea-
tures and services that they offer. Without DISABLE SER-
VICES BY DEFAULT, these services are enabled and present
a security risk. The risk is magnified when new services
are added as a result of installing new software or up-
grading an operating system. In these cases, the new
services should be disabled by default so that an upgrade
does not create a new security vulnerability.

Applicability

Operating system upgrades; application upgrades; new application installs.

Participants

Operating system startup scripts; firewall configurations.

Implementation

Defaults need to be specified so that servers are off by default, rather than on.

Results

Systems have a smaller “attack surface,” since servers are only enabled if they are needed.[How04] Users
are more likely to be aware of the servers that are running.

Known Uses

Windows Advanced Server 2003 implements DISABLE SERVICES BY DEFAULT with a role-based system
which disables network servers by default that are not needed for the particular role specified when the
operating system is installed. MacOS implements DISABLE SERVICES BY DEFAULT and provides the user
with a control panel that both verifies if the server is running or not, and allows the server to be started.

References: LEAST SURPRISE; Microsoft discusses the Windows 2003 role-based approach in [Mic03c]. Apple boasts

that “All the communication ports are closed and all native services ... are turned off by default” on MacOS X.[App05]



346 CHAPTER 10. Design Principles and Patterns for Aligning Security and Usability

Warn When Unsafe

Intent

Periodically warn of unsafe configurations or actions.

Motivation

Some systems arrive in an unsafe configuration and must
be made safe. Sometimes a configuration is made inten-
tionally unsafe in order to perform a specific operation.
WARN WHEN UNSAFE periodically reminds the user to
restore the safe configuration.

Applicability

Operating systems; application programs.

Participants

STANDARDIZED SECURITY POLICIES determine what is “safe” and “unsafe.”

Implementation

Systems that currently implement WARN WHEN UNSAFE appear to have each unsafe condition specially
coded and monitored. A more systematic approach would allow each subsystem to register unsafe con-
ditions with a system-wide monitor that notifies the user in a systematic fashion.

It is important to limit the frequency of warnings so that the user does not become habituated to them.

Results

Users who forget about unsafe conditions are reminded to correct them.

Known Uses

The Windows XP SP2 Security Center reminds users when antivirus has been disabled. Clicking on the
reminder brings up the antivirus control panel. Intuit’s Quicken warns users when the database has not
been backed in several days and provides a button which, if clicked, will perform the backup.

References: See the discussion of activation errors in Section 2.2.1.



10.3. PATTERNS FOR PROMOTING OVERALL SECURE OPERATION 347

Distinguish Security Levels

Intent

Give the user a simple way to distinguish between simi-
lar operations that are more-secure and less-secure. The
visual indications should be consistent across products,
packages and vendors.

Motivation

Users can only make informed decisions about security if
they are in fact informed.

Applicability

Any situation in which there is more than one mode of operation which can accomplish similar if not iden-
tical results. For example, file deletion (sanitizing vs. simple unlinking; wireless access (WEP vs. without
WEP); Web browsing (with SSL vs. without SSL);

Participants

Applications; web browsers; operating systems.

Implementation

Web browsers display a “lock” icon when a web page is received over SSL. (They should also indicate if
data sent back to the server will be sent over an encrypted channel.) Email clients can indicate whether
or not mail is downloaded using SSL.

Results

The user can readily determine whether or not security features are enabled.

Known Uses

The SSL “lock” icon; the icons to indicate if email is “signed” or “encrypted.” The Windows Security
Center indicates if anti-virus protection is enabled or not.



348 CHAPTER 10. Design Principles and Patterns for Aligning Security and Usability



CHAPTER 11

Future Work:
an HCI-SEC Research Agenda

It is widely acknowledged that one of the most important research areas for computer security today
is the development of techniques that will make security systems easier to use—and correspond-
ingly make easy-to-use systems more secure. For example, the February 2005 report of the Presi-
dent’s Information Technology Advisory Committee stated that work on “holistic system security”
including “interfaces that promote security and user awareness of its importance” should be one of
the President’s top 10 “priority areas for increased emphasis” in computer security research.[Pre05]

This chapter maps out an agenda for work in the field of HCI-SEC, with goals for both the short
and long terms.

11.1 Short Term
Zurko and Simon famously argued that many usability problems in today’s security systems can be
addressed through the use of user-centered design techniques such as task analysis, user interviews,
usability testing, and iterative design, a process that they termed “user-centered security” design
techniques. [ZS96] Adams and Sasse have made have made similar claims. [AS99]

Unfortunately, most discussions of how to move forward on user-centered security rarely move
beyond the problem of authenticating computer users. Substantial work has been done on a broad
range of authentication technologies including passwords, tokens, PKI, and biometrics. But while
authentication is certainly both a challenging and important problem, it’s important that other
problems not be ignored—especially when there are other HCI-SEC areas where significant progress
can be readily made. This is low-hanging fruit that the HCI-SEC community should be aggressively
harvesting.

349



350 CHAPTER 11. Future Work: an HCI-SEC Research Agenda

11.1.1 Aggressively promote a culture of usability among developers
One of the reasons there is so much low-hanging fruit available is that user-centered design strate-
gies are rarely employed in the design of today’s security systems. This is not a reflection on the
nature of security systems, but on the nature of programmers in general.

Most programmers do not create software that is very usable. That’s because most programmers
create software for themselves, and programmers approach computers very differently than main-
stream computer users. This is not meant to be a rebuke of programmers, but a statement of
fact: a programmer who uses his or her own application program will invariably use that program
differently than everyone else, because that person has a unique relationship with their creation.

Thus, it may be possible to make great strides in HCI-SEC simply by promoting the values of usa-
bility within academia and the commercial computer industry much in the way that other qualities
such as efficiency, modularity and correctness have been traditionally promoted.

11.1.2 Design for security goals, not tasks
Today most security-related interfaces provide low-level control over specific functions that the
operating system or application program might accomplish; they do not provide controls for higher
level desires of the computer’s user.

To use the example from Chapter 4, both Internet Explorer and Mozilla Firefox have individual
controls for clearing the browser’s page history, it’s cookie repository, and its page cache. If a user
wishes to erase evidence of browsing history, it is necessary to clear all three of these databases—
and then figure out some way to sanitize the deleted disk files! This is an attention to security tasks,
not goals.

Cooper argues that programmers inherently employ this “Task-Directed Design” because that is the
way that software is created. [Coo99, p.151]. This is especially true of security software features
in programs of the Whitten/Tygar “Abstraction property” [WT99]: security properties are abstract
and hard to understand, and as a result it is frequently easier for programmers to provide tools for
controlling specific security tasks, rather than helping users to achieve broader security goals.

This thesis has shown that tasks can be brought into alignment with goals simply be re-evaluating
the underlying behaviors and assumptions that today’s systems are based upon—for example, hav-
ing the Windows FORMAT.EXEcommand automatically overwrite all of the blocks on a hard drive
would have prevented many of the data leakage problems observed in the “Remembrance of Data
Passed” study. Many of the design patterns presented in the previous chapter were derived by trying
to understand what those goals are, and then creating patterns to accomplish them.

11.1.3 Provide information in context
It’s well known that humans find it easier to understand and act upon information when it is shown
in context. Frequently the “context” is provided simply by interpreting information for the user’s
particular situation.

For example, in his user trial of a home-banking system, Nielsen discovered that error rates for
fund transfers significantly decreased when the confirmation dialogue replaced the current date



11.1. SHORT TERM 351

with the word “today” if the transfer happened to be scheduled for the day the request was being
made.[Nie93a, p.38]

In Nielsen’s case, the “context” used to display the information was the same day on that the
program was running. By presenting the user’s day of transfer in context, it eliminated a step that
the user otherwise had to go through—i.e., asking oneself, “Now let’s see, is that today’s date?”

Presenting information in context does not require solving the AI problem: today’s computers have
a tremendous amount of information that they can use to provide historical context to the user for
his or her current tasks.

For example, it’s frequently the case that our computer systems know significantly more information
about the task at hand than they display. Today’s mail programs visually distinguish between mail
that is new and mail that has been seen, but they don’t distinguish between senders that are in the
user’s address book and senders that aren’t. Likewise, they don’t distinguish between senders that
are using their normal SMTP server and those that are using unusual SMTP servers. Mail readers
that made such distinctions might have provided users with more defenses against “phishing” than
the mail readers that people use today.

During the course of the Johnny 2 experiment, an effective attack was discovered on users of
Microsoft’s Outlook and Outlook Express products. If Alice and Bob are both account managers at
IBM, and Eve is an attacker, Eve craft an email message such that Bob thinks that his reply goes to
Alice, when in fact it goes to Eve. An example of such a message appears in Figure 11-1.

This attack works because Outlook and Outlook Express do not display RFC822 mailbox names
(i.e., email addresses) when they are presented with full names. In this case the user is tricked
because the “full name” of the Reply-To: field is in fact an email address. To make matters
worse, the Reply-To: field is not displayed, as shown in Figure 11-2. Apple Mail prior to version
10.3.9 was also susceptible to this attack, although version 10.3.9 and above displays both the full
name and the email address, as shown in Figure 11-3. (Another way to circumvent this attack is
through the use of persistent digital signatures, such that Bob realizes that the email from Alice is
not digitally signed with her customary key.)

What’s needed, then, is for interfaces to make judicious use of the information that the computer
has. They (or their programmers) need to be able to determine when information should be dis-
played, when it should not, and they need to provide easy-to-use controls that let the user find out
more.

11.1.4 Using time as a proxy for trust; incorporate practical limits
The sensible use of elapsed time may be one of the areas in which great strides in usability can be
made. This is because different security policies may be appropriate after short delays than after
long ones.

An example of an application that interprets short time delays differently from long ones is the
Windows XP screen saver system. By default, the XP screen saver displays when the keyboard
and mouse have been idle for 5 minutes; when the mouse or keyboard are used again, the user’s
session is automatically suspended using the Windows “Switch User” facility and the user must



352 CHAPTER 11. Future Work: an HCI-SEC Research Agenda

To: bob@ibm.com <bob@ibm.com>
From: alice@ibm.com <alice@ibm.com>
Subject: Need the annual report draft
Date: Tue, 19 Apr 2005 10:52:40 -0400
Reply-to: alice@ibm.com <attacker_eve@hotmail.com>

Bob, can you please send me a draft of the annual report? Thanks.

-Alice

Figure 11-1: An email message that, when delivered to bob@ibm.com , will appear in Microsoft Outlook Express has
having come from alice@ibm.com . A reply to this message will actually be delivered to attacker_eve@hotmail.
com.

Figure 11-2: The message constructed in Figure 11-1, shown in Outlook Express (left), and the “reply” message that
Outlook Express generates (right). Even though the email address alice@ibm.com is shown, the reply will go to
attacker_eve@hotmail.com .

attacker_eve@hotmail.com
attacker_eve@hotmail.com
alice@ibm.com
attacker_eve@hotmail.com


11.1. SHORT TERM 353

Figure 11-3: The same message constructed in Figure 11-1, this time displayed in Apple Mail version 10.3.9. Notice
that both the “full name” and the RFC822 mailbox names are displayed, making spoofing considerably harder.

log in again. It would seem at first blush that this functionality forces users to choose between
convenience and security: if the idle timeout period is set too low, the user will be inadvertently
logged out whenever they take too much time to read a web page. But if the delay is set too high,
then there will be a substantial window of vulnerability between the time that a user walks away
from their computer and the time when the screen saver automatically locks. Indeed, the penalty
for having the screen saver turn on may be perceived as being so high that users may disable the
automatic logout feature entirely so that they do not need to be constantly typing a password.

This conundrum was certainly a problem with the Windows 2000 screen saver. However, the
Windows XP screen saver has a grace period between the time that the screen saver appears and
the time that the user is forced to enter a password to log back in to their computer. If you are
sitting at a Windows XP computer and notice that the screen saver has appeared, you can quickly
tap the mouse or the keyboard and have the screen saver disengage without the need to type a
password. Only after the screen saver has been engaged for more than a five seconds does the
automatic logout take place. By eliminating the need to type a password in this common case—a
case for which typing the password would not increase security—Windows XP makes it more likely
that users will not disable the requirement to type a password in all cases. (Figure 11-5)

(As it turns out, the screen saver grace period can be modified with the Windows XP program
“Tweak UI” from the Microsoft PowerToys web page. [Cor05d] However, Microsoft correctly chose
not to expose this functionality to the average user, a good application of STANDARDIZED SECURITY

POLICIES pattern.)

There are few other examples of using timeouts to gracefully migrate to higher security configu-
rations. One current example is the “remember me” box on the Google GMail service. Whereas



354 CHAPTER 11. Future Work: an HCI-SEC Research Agenda

many web applications have a “remember me” check-box that allows the computer to remember
the user’s name or even the name and password forever, the Google’s GMail interface only “remem-
bers” the user for two weeks (Figure 11-4). Two weeks is long enough so that the user won’t be
annoyed by continually re-entering the password, but short enough so that the user is unlikely to
forget the password from disuse. (Renaud reports that 30 days is considered a threshold period
after which non-meaningful items cannot be reasonably remembered unless there is some kind of
memory “hook.”[Ren05])

There are many other places in modern operating systems where sensible limitations can be built
using elapsed time as a proxy for trust:

• A laptop could require that a password be provided when it wakes up after being asleep for
longer than 5 minutes and when it is then reboot, but not otherwise. This would allow the
user to close the laptop, carry it to another room and open it again without having to type a
password.

• A PDA could require a password for accessing items in the calendar that are more than a few
days in the past, but not otherwise. This would eliminate the hassle of using a password with
the device most of the time, but would still prevent others who have temporary access to the
device from snooping into the owner’s past.

• A cell phone could only require a password when the total amount of money spent in one day
exceeds a preset threshold—for example, a dollar.

In each of these cases, by eliminating the need of passwords for casual, frequent use, the cost
to convenience of using the password is greatly reduced. As a result, the password can still pro-
vide protection against significant attacks—a stolen laptop, a snoop who goes through one’s older
calendar entries, or an individual who attempts to place many expensive international phone calls.

Figure 11-4: Google’s GMail allows the password to
be remembered for two weeks.

Figure 11-5: Microsoft’s Windows XP “Power Toys”
package allows the Windows XP screen saver grace
period to be set by advanced users. This functionality
is only exposed to users who download the add-on
package from Microsoft’s web site.



11.1. SHORT TERM 355

11.1.5 User perception surveys
The survey of Amazon.com merchants presented in this thesis just scratches the surface of the
useful information that can be obtained using survey techniques. To date the results of user surveys
have not been widely reported in the computer security literature. One reason may be the lack of
training: Although survey work is not intrinsically difficult, neither the design of survey instruments
nor the analysis of survey data is part of most computer science curriculums.

Instead of teaching computer science students to become survey practitioners, this could be viewed
as an opportunity for cross-disciplinary work with between computer scientists and social scientists.
As more bridges are built between these two communities, it is clear that there are many questions
of security perception that could be profitably addressed through the use of survey instruments.

Some questions to investigate include:

• SSL Lock. What do typical web users think the “lock” icon means? Do they understand that
it means that the web page was delivered using encryption, or do they think that it means
that the web site will protect personal information once it is received? Can users distinguish
between a “lock” icon that appears in the web browser’s status bar and one that appears in
the body of a web page that was delivered without the use of encryption?

• Invalid Certificates. The E-Soft survey found that roughly half of the SSL-enabled web site
on the Internet have invalid certificates—for example, certificates that are expired, certificates
that have name/site mismatch, or that are signed by an unknown CA. What do users think
when they are alerted to these error conditions by their web browsers? If these messages are
universally ignored, why have them at all?

• How secure is email? Weisband and Reinig wrote in 1995 “Employees must learn that pass-
words do not prevent others from accessing computer accounts and that backing up electronic
files is standard practice. Employees should also understand the legal implications of email
privacy so they are not surprised when messages they send or receive are used to document
some undesirable behavior. Interface design issues could address this by reminding users that
deleted messages are not sent to a trash can but to a filing cabinet.” [WR95] Well, do employ-
ees know this? How about other computer users? How did they learn this information? How
does the knowledge of users match and mesh existing practices and capabilities?

11.1.6 Throttles and governors
A throttle is a device that controls the rate at which fuel is delivered to an engine. It has an indirect
control on the engine’s speed. A governor is a device that steadily generates increased resistance as
the speed of an engine increases; a governor directly controls an engine’s top speed.

Although throttles and engines were developed for use in steam and gasoline engines, there is
both an opportunity and a need for analogs of these devices in modern computer systems. Such
constructs can limit the damage that can be done by malicious code or even user error. Properly
designed and deployed, these benefits can be obtained without significant impact on usability.

Throttles and governors are different from user quotas and process limits, such as those found in
the Unix operating system. While quotas and process limits restrict the total amount of disk space,



356 CHAPTER 11. Future Work: an HCI-SEC Research Agenda

memory or CPU time that a single user or process can consume, throttles and governors control the
rate at which a system resource can be consumed.

For example, a typical desktop computer is capable of initiating dozens to hundreds of outgoing
network connections every second. Under most circumstances, this capacity is simply not needed.
A typical web browser initiates a maximum of 4 connections per second, although frequently it
initiates far fewer. In contrast, the Code Red worm initiated 200 connections per second, while the
SQL Slammer worm could generate up to 30,000 packets per second using a very tight loop.

HP Labs has studied the this approach in detail and found that limiting user programs to one or two
out-bound connections per second has no noticeable impact on users, other than dropping some
ads from web pages that are filled with ads from third-party sites.[Wil03, TW03]

Microsoft rate-limiting technology was introduced in Windows XP SP2. Most users did not notice
the technology, as the limits were set fairly high. But the technology did affect some programs that
were initiating a high number of connections each second due to implementation errors—that is,
the programs were buggy. But as the bugs had not previously been exposed, the user experience was
that SP2 broke their software. One such program was eMule, a peer-to-peer file trading program.
A user who was very disturbed by the throttling technology posted a binary patch to turn it off
in an eMule support forum, concluding: “YOU ARE NOW FREE FROM MICROSOFT RULE AND
OPPRESSION!”[Mxx04]

The posting demonstrates a point that Microsoft employees have been making for years: in fixing
security holes or adding new pro-security technology, it is possible that existing programs may be
damaged. for proper operation, and fixing these holes breaks those programs. On the other hand,
the folks at eMule seem to have recovered.

There are other opportunities for throttles and governors, including:

• File open rate or count. Most programs rarely need to open new files. By limiting all but
specially designated programs to a low file-open rate, or by triggering a warning if more than
a certain number of discrete files are opened, programs that scavenge the hard drive for files
that have particular contents could be identified.

• File delete rate. Likewise, programs rarely need to delete many files at once. Trapping and
requiring additional confirmation for high file delete rates would catch not only some classes
of hostile code but also occasional user mistakes (although a better approach would be to
rework the computer’s file system along the lines discussed in Chapter 3.)

11.2 Long Term
This section explores HCI-SEC issues that will probably take somewhat longer to address than those
in the previous section.

11.2.1 Extended Key Continuity Management (EKCM)
A variant of Key Continuity Management that is not explored in this dissertation is to apply KCM to
certifying keys—that is, keys belonging to Certification Authorities—rather than to keys themselves.



11.2. LONG TERM 357

In the case of self-signed keys, EKCM degenerates to standard KCM.

Implementation of EKCM should be straightforward: When an unknown root key is seen for the sec-
ond time, the user should have the option of giving it a unique name and accepting it into a database
of EKCM certifiers. Identities that are certified by this root will be displayed as name@ROOTwhere
name is the name on the certificate and ROOTis the user-provided name for the root. This is similar
to the structure provided by Lotus Notes, except it would be performed automatically.

EKCM could further be designed to that the EKCM certifiers would only work for identities in
the domain for which they were first encountered. That is, if a certifying key was found for the
@amazon.com domain, it would not automatically be trusted for identities found in the @ex.com
domain.

The advantage of EKCM is that it gracefully handles the case in which an organization has created
its own certification authority for internal use. For example, if one routinely communicates with
three employees from Amazon, and if Amazon has adopted a CA and issued all of its employees
certificates, then one will only be warned about the new certificate once.

EKCM would allow users to slowly build trust in unknown CAs by watching the use of their signa-
tures, rather than relying on out-of-channel means. It would make use of the independent PKIs that
are being deployed by many businesses and universities without the need to formerly cross-certify
or be certified by third-parties such as the VeriSign Certificate Interoperability Service.[Ver05a]

EKCM looks like a promising technique and it seems to build naturally on both the work of Lotus
and the KCM work presented in Chapter 7. But EKCM needs to be validated with software and user
studies to see if the model is superior to both KCM and today’s CA model.

11.2.2 Risk communication
Although there has been significant research devoted to the subject of risk communication over the
past two decades, including an excellent volume by the National Research Council in 1989[Nat89],
there is little if any published research on the subject of risk communication applied to computer
security risks.

Bostrom and Löfstedt suggest that although practical approaches to risk communication programs
vary, the best follow a simple set of steps: “Know your audience—do formative research. Know the
risk—know what it is and what can be done about it. Test your messages empirically. Iterate.”[BL03,
p.245] Although iterative user interface development is now accepted as the bedrock of usability
development (see page 43 of this dissertation), there has been little attention to applying these
techniques to the communication of computer risks. This represents an opportunity for future
research.

Research has shown that the manner in which risks are communicated makes a significant differ-
ence to the way that both the general public and professionals judge risks. We may think that we
base our opinions on a cold evaluation of the numbers, but even professionals frequently base their
judgments on affect, feelings, and the way that statistics are framed. [SFPM04] In one study, Slovic
found that 21% of clinicians would not discharge a patient from a hospital if they were told that
“patients similar to Mr. Jones are estimated to have a 20% chance of committing an act of vio-



358 CHAPTER 11. Future Work: an HCI-SEC Research Agenda

lence.” But when the statistics were phrased “20 out of every 100 patients similar to Mr. Jones are
estimated to commit an act of violence,” the number of clinicians who refused to discharge the same
patient rose to 41%! [SMM00] Slovic et al. report on a similar study by Yamagishi [Yam97] that
found people judged a disease that “kills 1,286 people out of every 10,000” to be “more dangerous
than one that kills 24.14% of the population.”[SFPM04]

“Follow-up studies showed that representations of risk in the form of individual proba-
bilities of 10% or 20% led to relatively benign images of one person, unlikely to harm
anyone, whereas the “equivalent” frequentistic representations created frightening im-
ages of violent patents (e.g., “some guy going crazy and killing someone”). These
affect-laden images likely induced greater perceptions of risk in response to the relative-
frequency frames.” [SFPM04]

Risk communication is incredibly important for the future of computer security. Today’s computer
users continually make security-related decisions without much thought about their impact on
security. Frequently it is because users simply do not understand the consequences and implications
of their decisions—something that Cooper calls “uninformed consent.” [Coo99, p.140] Deleting
cookies is an example of uninformed consent: there’s no practical way for today’s users to tell
the difference between a third-party tracking cookie and a cookie that’s used to give access to a
previously purchased electronic document.

In a thought-provoking master’s thesis Avoiding the Cyber Pandemic: A Public Health Approach
to Preventing Malware Propagation,[Zel04] Zelonis argues that the computer security community
could come up with novel approaches for fighting self-reproducing computer programs through a
careful consideration of the successes that some public health programs have had in fighting the
AIDS virus. Although the terms like “worm” and “virus” are commonly used as linguistic analogies
to describe malware, Zelonis argues that the analogies go much deeper:

“Although monogamy decreases the risk of HIV/AIDS, a monogamous person whose
partner is promiscuous is put at greater risk by connecting them indirectly with nu-
merous partners. This is true, too, of malware, but the risk is difficult to avoid. The
Internet is an inherently promiscuous partner. By placing a computer on-line, other
computers can infect it even if no user action is taken to connect with those other
machines.”[Zel04, p.49]

Continuing the analogy, Zelonis argues that malware and HIV/AIDS have similar epidemic en-
ablers, infection conduits, prophylactic measures, and even survivability characteristics. For exam-
ple, there is a foolproof technique for avoiding infection through either AIDS or malware: absti-
nence. In the case of HIV/AIDS, this requires abstaining from sex, intravenous drugs, and blood
transfusions. In the case of malware, one must abstain from networking and using third-party soft-
ware. But neither prevention strategy seems particularly appealing. Zelonis’ Figure 3 (reprinted in
this thesis as Figure 11-6) lists other analogous attributes between HIV/AIDS and malware.

By examining the analogy in detail, Zelonis suggests a variety of mitigation strategies that have
been successful in fighting HIV/AIDS which have not been applied to the problem of malware.
These include:



11.2. LONG TERM 359

Figure 3 

Summary of Analogous Attributes 

 HIV/AIDS Malware 
Geographic Scope World Wide World Wide 
Epidemic Enabler Sexual Revolution Commercialization of the Internet 
Infection Conduit Bodily Fluids Computer Code 
Spread Contact Connection 
Accelerant Frequency of Contact Frequency of Connection 
Impact of behaviors Certain behaviors increase risk Certain behaviors increase risk 
Basic Risk Behavior Having sex (vaginal, anal, oral) Connecting a computer to a network, 

particularly the Internet 
Prophylactic Measures Condom 

Topical Micobicide 
Virus scanner 
Personal firewall 
Software patches 
Secure configurations 

Promiscuity Having many sexual partners 
(simultaneously or via serial 
monogamy) 

Having an “always on” high speed 
Internet connection, opening 
unexpected email attachments, 
browsing unfamiliar web sites, using 
numerous protocols and software 

Indirect Promiscuity Sex with a promiscuous partner The Internet is inherently promiscuous 
Extreme Promiscuity Having multiple or anonymous 

sexual partners 
Peer-to-Peer (P2P) filesharing 

Selection of partners Almost exclusively by choice A mixture of choice, randomness, and 
discrimination 

Survivability Slow destruction of host Slow or minimal destruction of host 
Network Generally scale-free Generally scale-free 
Genealogy Virus strains traceable Code snippets traceable 

Figure 11-6: Analogous Attributes between HIV/AIDS and Malware, from [Zel04, p.41]

• Comprehensive information distribution. In June 1988, a publication called “Understand
AIDS” was sent to all US households. “It became the most widely read publication in the US
at that time.”

• Infuse with popular culture. Zelonis notes that there is no malware equivalent to the AIDS
“red ribbon.”

• Testing for infection status. HIV transmission goes down when people who are infected
learn of their status; telling computer users the infection status of their computers should
have a similar result. ISPs are in an ideal position to tell their customers if and when they
become infected.

• Use of real-life examples and true stories. “Rather than teaching about malware risk
through general descriptions and statistics, telling stories to which the audience can relate
will allow them to better understand the potential impact of malware in their lives. This is
similar to the idea of focusing on personal/group risk. An individual may not be able to relate



360 CHAPTER 11. Future Work: an HCI-SEC Research Agenda

to news stories about major ecommerce sites being brought down by an attack, but he may
respond to hearing how his neighbor’s bank records were compromised.”

• Use of games and entertainment. Noting on the success of a radio soap opera in Tanza-
nia to teach the science and risks associated with HIV/AIDS, Zelonis suggests that there is
an opportunity to use popular entertainment to convey important messages about cybersecu-
rity. “Computers are already a popular platform for game-playing. Malware awareness could
be incorporated into educational video games, particularly when targeting younger demo-
graphics. Computer security issues are periodically showing up in the plotlines of television
programs and movies, but an educational value seems incidental. It would be interesting
to see the impact of an entire program ... designed specifically to convey computer security
messages... The key, as noted by Singhal and Rogers, is to use a high quality creative team
so that the resultant feel is that of entertainment rather than education, while still delivering
the necessary message.[SR03]”

Trying to solve the plague of malware through social, public health means rather than technical
means is a novel approach which might yield surprising results.

11.2.3 Standardize the Vocabulary of Computer Security
Although standardization is clearly not leading-edge computer science research, this thesis has
argued that standardizing the vocabulary of security terms and the placement of security controls
could have significant benefits in terms of secure operation. Since Microsoft, Apple, and the Open
Source community are unlikely to be able to settle their squabbles without outside mediation, there
is an opportunity here for some neutral body to establish basic standards and then for the federal
government to adopt those standards in its procurement regulations. A standardized vocabulary
and the use of design patterns discussed in this thesis would be an excellent place to start.

Alas, right now there is a lack of organizations where interface standards can even be discussed. As
others have noted, [HB05] the Internet Engineering Task Force has done little work in the field of
user interfaces. (RFC768 used the term “user interface” to describe a programmer’s API and not a
lot has changed in the intervening 25 years.[Pos80a])

The World Wide Web Consortium (W3C) might be an appropriate forum. For example, the W3C’s
so-called “Interaction Domain”[Hos04] specifically addresses issue of web browsers interfaces, al-
though to date the group has been concerned with presentation technologies such as CSS, MathML,
and SMIL, rather than with the actual interface of the web browser. Clearly, for W3C to expand
its mission to encompass user interfaces for security would be a considerable and almost certainly
controversial undertaking.

11.2.4 Rethinking patch management
Patch management is a long-term issue because—in the short term, at least—the need to patch
operating systems isn’t going to go away. What’s more, it seems likely that the industry will adopt
standards regarding which systems are automatically patched and which are not. Specifically,
end-user and client systems that are in more-or-less standardized configurations will automatically
receive and install patches, while servers and other systems that are running custom configurations
will not automatically be patched because of the higher cost of downtime on these systems.



11.2. LONG TERM 361

In the coming years it will become increasingly difficult for end users to make reasonable choices
regarding the administration of their computers. How could a 14-year-old decide whether or not
to download the patch for her six-month-old cellphone? How could a 68-year-old retiree? Indeed,
how could a 28-year-old with a Ph.D. in computer security make an informed decision without
possession of proprietary information belonging to the cell phone manufacturer?

Not surprisingly, many security practitioners have argued that automated installation of patches
is necessary to remove the “human factor” from today’s practice of “patch-and-pray.” But as Vi-
cente rightfully points out, automation of this sort doesn’t eliminate the human factor: it only
concentrates the potential human factor impact among a small number of administrators.[Vic01]
For example, in April 2005 the anti-virus company Trend Micro, Inc., released an update to its
anti-virus system. The update was automatically downloaded and installed on many computers,
including those belonging to East Japan Railway Co and several prominent media organizations in
Japan. Unfortunately, the update wasn’t properly tested, and those computers all became unusable
after they were reboot with the update installed.[CK05, The05b] Humans run automated systems,
and such systems frequently magnifies the impact of human error.

Patching is simply not an acceptable solution for the long term. One reason is that increasingly
there will be systems deployed that simply cannot be patched: the systems may not have access
to the Internet, or that may run applications that will break if the underlying operating system is
upgraded, or the systems may simply not have sufficient memory to handle the upgrade. Already,
Microsoft is not offering security updates for Windows 95 or Windows 98. Although it is tempting
to refuse updates to these systems with the hope that they will become infected, die, and have to
be replaced, this does not seem like a socially responsible approach for long-term security.

In the long term, we will need new approach. Perhaps this approach will be computers that are
delivered with a set of applications that can never be upgraded or updated—hopefully protecting
the computer against malware in the process.

Another possibility is the so-called “computer immune system.”[KSS+97, SHF97] Substantial work
is currently being done in this area. (e.g., [DG02, Som02, FSA97].) See [dCZ00] and [For05] for a
survey of current work.

11.2.5 Backup, rollback, restoration and recovery
With the exception of unauthorized disclosure and its consequences, most security woes can be
undone with good systems in place for backup, restoration and recovery. Today’s computer systems
have ample storage capacities. Yet storage invariably goes unused while important information is
insufficiently backed up.

Consider these examples:

• A person who types 100 words per minute, 8 hours each day, types roughly a quarter of a
megabyte every day, or 90 megabytes a year. Even one of today’s low-end computers could
trivially devote one or two gigabytes of hard disk to capture every stroke and mouse click.
Although such a simple-minded approach would no doubt have privacy problems, it would
provide a new kind of backup with strengths and weaknesses very different from current



362 CHAPTER 11. Future Work: an HCI-SEC Research Agenda

approaches.

• Likewise, a computer system with even a moderately sized hard drive could store dozens—
or even hundreds—of versions of each document that the user edits. If storage becomes
tight, old versions could be thrown away stochastically, rather than on a first-in, first-out
basis. Pieces of such a system may now be appearing. For example, Spinellis has created
an open source tool called fileprune that performs such housekeeping [Spi03]; Strunk et
al. have presented S4 which uses a log-structured file system, journals, and an audit log to
detect tampering and prevent data loss from accidental deletes. [SGS+00] Nevertheless, such
technology is rarely present on systems belonging to the users who could benefit the most
from massive backup: consumer PCs that are not centrally managed.

• Rekimoto has proposed an approach for backups called “Time Machine Computing:” [Rek99b]

“Imagine that your computer has a dial for time-traveling. With such a computer,
when you create a document you can simply leave it on the desktop. You can also
remove documents at any time. If you later need to refer the previously created in-
formation, you can time-travel to the day when that document was on the desktop.
You might also see other related information that were simultaneously placed on
the computer screen, and these items would help you to recall the activity context
at that time.”[Rek99a]

These are all innovative approaches to the backup problem, but these ideas that are not mak-
ing it into mainstream operating systems. Indeed, many organizations are moving in the other
direction—trying to come up with new clever techniques for throwing away information so that it
cannot be used in court battles.

Much of the research in Chapters 3 and 4 of this thesis were based on the premise that systems
should provide facilities for COMPLETE DELETE. But while those chapters were being written, the
author suffered from two hard drive crashes and several system wipeouts. Without exceedingly
good backups and data replication, much of the work in this thesis would have been lost. Thus,
there is a need not just for COMPLETE DELETE and for good backup systems—there is also a need
for all of these systems to interoperate together.

One of the most interesting recovery systems built into Windows XP is its ability to take snapshots
of configurations and revert if problems arise. More work needs to be done in this area—work
not just on operating systems, but on application data as well. And we need to come up with
both technical and legal frameworks so that people are not afraid to use the technology once it is
created.

11.2.6 Logfiles with “undo”
One approach for extending recovery would be an approach called “logfiles with undo.” This
approach could be implemented with a new logging subsystem that records not just actions that
happened on the computer, but also the necessary steps that would be required to undo the action.
Ideally these log entries would be stored with some kind of dependency information, allowing them
to be executed out-of-order. But Logfiles with undo cannot be implemented with today’s logfiles as
they simply do not record enough information.



11.2. LONG TERM 363

Indeed, the whole question of what information belongs in logfiles needs to be seriously considered
in any HCI-SEC agenda. Today’s logfiles are not merely not designed for usability: they are often
not even designed for use. Instead, they are typically created as a debugging tool by the original
application programmers. One of the few exceptions to this general state of logfile malaise is
change log that Lotus Notes maintains for Access Control Lists (Figure 11-8). Exposing logs directly
within application interfaces, as Lotus has done, may push programmers to put more meaningful
information into the logs and to add “undo” capabilities.

Finally, an operating system undo framework should provide “undo/undo-undo” support through
the use of transactions (similar to the GNU Emacs undo facility), rather than the more simplistic
“undo/redo” rollback facility built into Microsoft Word and the Apple Cocoa application framework.
A common problem with the Microsoft/Apple approach is that some actions are undone, a character
is typed, and then all of the “redo” information is lost. The Emacs approach avoids this usability
problem, since the “undo” actions are themselves stored as transactions that can be “undone.”

11.2.7 Virtualization
A growing number of researchers and practitioners think that the way to solve the malware problem
is through the use of virtualization or other forms of system partitioning. This is a line of thinking
that goes back to the IBM virtual machine operating systems of the 1960s, [Cre81] and has recently
gained interest thanks to the success of the Virtual PC and VMWare [Wal02] virtual environments.

Today a common suggestion is that the computer system of the future will use virtualization to
create multiple protection zones. One might be a “green” or safe zone for important operations
such as banking and commerce, while there might be a “yellow” or cautious zone for operations
like email, and a “red” or “crash and burn” zone for surfing the Internet and playing downloaded
games.

One natural problem with this approach is the tendency for code to escalate into the regions of
higher privilege. For example, screen savers should probably run in the “crash and burn” zone:
after all, hostile code posing as screen savers are a common problem on the Internet today. [Ile04]
Placing screensavers in the crash and burn zone prevents them from doing damage to other pro-
grams or data on the PC. On the other hand, a very popular Microsoft screensaver is the one that
goes through all of the files on the computer, finds the photographs, and displays them in semi-
random order. This screensaver, then, would have to be run in the “green” zone. Likewise, a web
banking application would almost certainly want to communicate with a web browser running in
the “green” zone—but if the “green” zone can run a web browser, then it will almost certainly be a
target for phishing attacks.

In this context, Microsoft’s Next-Generation Secure Computing Base (NGSCB, [Mic05] previously
known as “Palladium”) can be thought of as a kind of lightweight virtualization system that uses
cryptography to provide isolation between applications.

Other potential problems with the isolation approach is whether or not the separations between
protection domains can be presented to users in a manner such that the isolation capability and
rules are understandable. Alternatively, is it possible to make the isolation automatic and invisible?
These are long-term problems requiring considerable research, and unlikely to be resolved through



364 CHAPTER 11. Future Work: an HCI-SEC Research Agenda

the application of a near-term fix.

11.2.8 Adaptive computing
There are many different kinds of people in the world, and increasingly they all use computer
systems. Some people speak English; many don’t. Some people have sight, others don’t. Some
people can read, while others cannot. And of course, this range in physical and mental abilities is
matched by an equally broad wide range of computer skills.

Traditionally computer professionals have used the shorthand of “novice,” “intermediate,” and “ex-
pert” or “power user” to describe different skill levels among computer users. Some programs
mimic these categories, with “novice menus” and “full menus.”

Computer skills are not measured on a single scale, either. Some people are very good with ap-
plication programs, but they have little or no knowledge of operating systems. Some people have
knowledge of one part of an application program but not of another part. Some people are wed to
a particular operating system and will use no other.

But as software becomes more complex and the security threat becomes even more pressing, soft-
ware will need to become increasingly adaptive to user needs. The system will need to do this
automatically—realizing when users need more help and offering it, while realizing when users
understand the implications of what they are doing and getting out of their way.

Unfortunately, the most widely deployed example of adaptive interface technology on the desktop
computer today is an utter failure—a failure realized by practically everyone other than the tech-
nology’s promoter. Microsoft introduced a kind of adaptive menu in its Windows 2000 operating
system; the technology was also incorporated in the company’s Office application suite.[Mic03b]
The Microsoft technology hides menu commands that are not generally used; once the command
is used, however, the menu reconfigures itself for a time during with the command is shown. After
a period of disuse the menu command hides itself again.

The problem with Microsoft’s approach is that it does precisely the wrong thing: commands that
are used infrequently are precisely the commands of which users need reminding! What Microsoft
should have done was come up with a better way to structure its menu system, not remove the
seldom-used commands from its application menus.

Raskin reports that users who experienced the Windows 2000 interface quickly found it disagree-
able. “A typical remark was, ‘Adaptive menus seemed like a cool idea, but the first time a menu
changed on me, I found it upsetting. I don’t like the idea any more.’ ” [Ras00]

Recently a study by Findlater and McGrener of static, adaptable, and adaptive menus found that
adaptive menus were slower for users to use and produced more frustration. Despite the fact that
a majority of the users in the study preferred the concept of adaptable menus, these menus did not
confer a performance advantage. [FM04]

Can systems automatically detect the user’s skill level and adapt? Can they provide help when
needed but get out of the way at other times? Would it be better to have a single interface that
everybody uses? Modern automobiles have certainly done well with standardized user interfaces.



11.3. A CALL FOR NEW PATTERNS 365

Standardized interfaces can be made more usable through the use of “agents” or “co-pilots” that
look over our shoulder and offer help when necessary. (Certainly the readiness of Microsoft’s
“Clippy” office assistant to offer help was a failure that ultimately resulted in Clippy’s banish-
ment [Mic01]; but as Xiao et al. show, properly constructed agents can both increase the accuracy
and enjoyment of computer users.[XSC04])

At the same time, consistency is not just at odds with adaptability; it’s at odds with innovation.
Witness the differences between Windows 95, Windows 98, Windows 2000, and Windows XP. On
the surface level, each of these interfaces appears to be consistent, but there are deep changes be-
tween each of these operating systems in the placement of control panels, the layout of “properties”
and “advanced” tabs, the underlying security models, and the like. A large number of the changes
between these systems is the result of attempts to make each successive version of windows more
secure. Few computer scientists would want to live in a world where interfaces did not change over
time.

It’s possible that the rate of change in interface design is going to slow down. The layout of controls
in Windows XP is far more similar to Windows 2000 than 2000 was to Windows 95. That’s a 10-
year span. But the previous 10 years took the industry from DOS to Windows 3.1 to Windows 95—
changes that are radical and extreme by any measure. Although systems are becoming smarter, the
rate at which genuinely new interfaces are deployed seems to have decreased significantly. Even
handheld devices today look more like Windows (or MacOS) running on a desktop than they look
like, say, the interface of the Xerox Star or the Symbolics Lisp Machine.

11.3 A Call for New Patterns
Finally, there are many areas where usability and security can be simultaneously improved through
the development and adoption of more HCI-SEC patterns. This section proposes several proto-
patterns for which the need seems evident, but which have not yet been refined.

Programmers spend considerable time writing code that displays information to the user. But
sometimes it seems that this code is designed for the programmer’s benefit and sensibilities, and
not for the end user. Consider the display of certificates in today’s operating systems: these displays
look as if they were designed for debugging the certificate management code! Similar problems
can be found in most logfiles.

The good news, then, is that significant usability strides can be made through the use of simple
tools for displaying or visualizing operating system data.

One of the reason that tools are so important is that some of the most basic concepts in the pro-
grammers’ toolbox are quite alien to non-programmers. Consider containment. Cooper notes that
many users have difficulty relying on the hierarchical file system used by Unix and Windows both
to locate data and to enforce permissions.[Coo99, p.52]. The reason appears that the concepts of
containment and recursion are simply not part of most people’s day-to-day experience. Indeed,
Good and Krekelberg observed that users of the Kazaa P2P file-sharing system were generally un-
aware that sharing a folder shared all of the sub-folders that the folder contained. Users were also
unaware that sharing a folder shared all of the files inside a directory, rather than simply the music



366 CHAPTER 11. Future Work: an HCI-SEC Research Agenda

files. One user in their study even exclaimed, “You mean it shares all files?”[GK03]

It’s an untested belief that better displays can convey these concepts to the majority of computer
users. Other alternatives are mandatory training (such as Whitten’s safe staging), and simply re-
moving the concepts from the underlying system. Of these three alternatives, better displays seems
the most likely to succeed.

11.3.1 Display numeric information meaningfully
Many programs display binary blobs as a long string of hex digits separated by colons; adding
spaces would make these strings much easier to understand. Numbers should be displayed in a
manner that is optimized for their human use, rather than for the programmer’s convenience.

Numbers that are displayed in hex by convention—for example, certificate fingerprints and Ether-
net MAC addresses—should group numbers in sets of four digits separated by a space or colon to
improve readable.

Consider these two alternative displays of a 128-bit binary value:

(1) 8ca3 b82d b8e2 720d ba64 aec9 f775 5964
(2) 8c:a3:b8:2d:b8:e2:72:0d:ba:64:ae:c9:f7:75:59:64

It is likely that humans can parse string (1) both faster and with with a lower error rate.[Nor05]
The error rate may be reduced further still by displaying shorter groupings in Base64. Yet string
(2) is the approach that is commonly used by today’s operating systems and applications.

In many cases small hexadecimal numbers can be more meaningfully displayed in decimal than
in hex. For example, instead of displaying a certificate number as 0d 04 d8 , display it as
853,208 . (This only works when certificates are assigned sequentially, as is the case with those

issued by Thawte; see Chapter 6. It is an open question if Thawte would have continued to issue
certificates with sequential numbers if the company’s senior management had been able to easily
convert the certificate serial numbers from hex to decimal.)

Where numbers have units, those units should be displayed if they are not obvious. For example,
use “Certificate Lifetime: 365 days” rather than “Certificate Lifetime: 365.”

This pattern was widely adopted prior to the coming of e-commerce. For example, credit card
numbers are displayed with spaces between groups of digits to ease in their reading and transcrip-
tion. Unfortunately, many web sites that require users to type credit card numbers do not allow the
numbers to be entered with spaces. Instead, web site advise users to type credit card numbers with
“no spaces or dashes.” This is a profound barrier to usability.

11.3.2 Analyze user’s “effective” access
Access control lists are hard to understand and made more complex by rules governing inheritance
and special cases. Since the computer system ultimately makes the decision whether or not user U
has access to object O, it makes sense for the system to make this decision making process visible.
Lotus Notes provides a system for allowing administrators to easily calculate the “effective access”



11.3. A CALL FOR NEW PATTERNS 367

Figure 11-7: Lotus Notes provides administrators a
tool for a window that allows an administrators to de-
termine a user’s effective access on a particular ob-
ject. Used with permission.

Figure 11-8: Lotus Notes logs each change to an ob-
ject’s Access Control List in a manner that is relatively
easy to audit. This interface could be improved with
a “search” facility and an “undo” button which allows
individual changes to be undone.

of a user on a particular object, as shown in Figure 11-7; it is likely that this is a general pattern
that could be expanded.

11.3.3 Distinguish “tainted” content
The Perl programming language[WCO00] has a concept of “tainted” data. The purpose of tainting
is to wall off any data that is provided from an untrusted source.1 When invoked with the -T option
or when the use taint command is executed, Perl won’t allow a tainted string to be used for a
filename or in a string that’s passed to a shell. Tainting protects against a variety of data-driven
attacks — for example, when an attacker enters a string inside backquotes on a CGI-based web
form, potentially causing a subshell to execute the contents of the string before passing it on the
command line to another program.

This concept of tainting can and should be extended to user interfaces, so that potentially tainted
strings are distinguished from pure strings that are generated from within an operating system
or application program. Such an approach would limit a large number of spoofing attacks that
currently plague computer users.

Today’s computers frequently display data provided by outside data sources using the same ty-
pography and ornamentation as information that is generated by the computer’s own operating
system and applications. Neumann has noted that puns, while they may sound pleasant, can carry
significant risks to both safety and security.[Neu90]

1Perl’s tainting rules are relatively straightforward: any string that comes from an untrusted source (e.g. data that is
provided by the user, an environment variable, read from a file, read from a network connection, or so on) is tainted. If
any input to a string operator or function is tainted, then the result is tainted. The only way to untaint a string is through
regular expression matching.



368 CHAPTER 11. Future Work: an HCI-SEC Research Agenda

Figure 11-9: To configure a computer for blue-
jacking, simply give the device a name that
might be mislead as an instruction. In this case,
the attacker is using a Palm Tungsten T

Figure 11-10: The pairing request from the attacker’s Blue-
tooth device is confusing to the victim because the name
of the attacker’s device appears to be an instruction from a
trustable party.

There are many opportunities for this sort of pattern on today’s computers. For example, host-
names, email addresses and other names that are created by third parties could all be displayed
with specific typography that sets them off from other operating system controls. Context-sensitive
help could give a full explanation of the risk to users.

Example: Internet Advertising
One of the reasons that tainting information from third parties is so hard is that some mechanism
must be developed for tainting images. Web sites have the ability to display arbitrary images
on the user’s computer. Attackers have used this ability to display simulacra web browsers for
spoofing attacks. Figure 11-11 demonstrates such an attack in an Internet advertisement. Ye and
Smith discuss this vulnerability in detail and propose a solution in which a web browser’s outline
constantly change in a manner that an attacker cannot predict.[YS02] Unfortunately, this solution
is distracting.

Example: Bluejacking
One newly emerging attack that tainting in the interface would limit is bluejacking. There are
two versions of this attack that have been documented. In the first (mostly harmless) version, an
attacker creates an anonymous VCARD in which all of the fields are empty except for the first name,
which might contain a little message like “You are Being Watched!” Because the transmission of
a VCARD is considered a reasonably benign operation, the Bluetooth protocol and security model



11.3. A CALL FOR NEW PATTERNS 369

Figure 11-11: Advertisements on web sites have the ability to spoof operating system controls. For example, this
advertisement on Tripod appears to be a Windows pop-up window with an important message. The fact that this pop-
up is being displayed on a Macintosh computer gives away the spoof, but on Windows machines these spoofs can be
quite realistic.

allows VCARDS to be sent anonymously and without authentication. The recipient of such a card
sees the message on their screen, but doesn’t know where it comes from. This attack was first seen
in December 2002.[McF03]

A more aggressive form of the attack occurs when the user of the Bluetooth devices is tricked into
“pairing” their device with an attacker’s Bluetooth device. Bluetooth pairing gives paired devices
unrestricted access to each other’s trusted databases.[Geh02] Because Bluetooth devices may be
assigned long human-readable names, and because these names are displayed during a pairing
request without tainting, attackers can unwittingly persuade users to pair their devices with the
attacking device by using long device names that can be misleadingly interpreted.

To understand how such a pairing attack could work, imagine that a computer is given the Blue-
tooth name “Enter ‘Yes’ To Win A Free Drink,” as shown in Figure 11-9. When an attacker then
attempts to use this device to pair with a victim’s machine, the victim sees the message that “Enter
‘Yes’ to Win A Free Drink” wishes to pair: do you wish to pair? (Figure 11-10) The attacker enters
“Yes” as the Bluetooth passkey. (The bluetooth Passkey is a one-time authenticator that is entered
on each device being paired to set up the initial Bluetooth pairing. Many devices have pre-assigned
passkeys.) It is believed that many untrained individuals in a bar or coffee shop would answer this
question “yes” and inadvertently pair with the attacker.

Although these kinds of semantic attacks are exceedingly difficult to eliminate with clever program-
ming, a good starting approach would be to distinguish text that is generated by applications and



370 CHAPTER 11. Future Work: an HCI-SEC Research Agenda

the operation system with text that is directly provided by untrusted entities.

Proto-pattern: Distinguish Tainted Content
This pattern is designed to help users resist a wide range of spoofing attacks which are based on
data supplied by an attacker being mistaken for data supplied by the system.

11.4 In Conclusion
The security and usability professions have long been at odds. Nevertheless, today’s computer users
must be able to achieve both security and usability in practice, otherwise they will increasingly have
neither.

This thesis has shown more than 20 specific techniques that can be used to simultaneously increase
usability and security. Many more techniques undoubtedly exist. What is needed now is the will of
industry to move these techniques from the research laboratory to the products that are used by the
world’s computer users, so that everyone may experience a computing future that is simultaneously
more secure and yet more usable.



APPENDIX A

Hard Drive Study Details

Table A.1: Drives acquired for the Memberance of Data Passed Study

Date of Date of Date of Image
# Manufacturer Model SN Manufacture Acquisition Cost Image Size (MB) Notes
1 Maxtor 7171AT K012914902 1994-04-20 2000-11-03 10.00 164
2 Western Digital Caviar 2700 WT286 041... 1995-04-15 2000-11-03 696 clean
3 Conner CFS425A SRT115532 1995 2000-11-03 10.00 406 cfmt
4 Western Digital Caviar 2340 WT265 124... 1994-04-13 2000-11-03 10.00 325
5 Maxtor 7120AT K004019564 1992-05-30 2000-11-14 124
6 Maxtor 7131AT C306QQES 1993-07-23 2000-11-14 5.00 125
7 Maxtor 7120AT K003852197 1992 0000-00-00 5.00 121
8 Quantum ProDrive ELS 047105M00... n/a 2000-11-14 162
9 Conner CP3000 DW06633 n/a 2000-11-11 41

10 Quantum ProDrive ELS UDD1284657 1993-12-04 2000-11-11 122
11 Quantum ProDrive LPS 142307023... n/a 2000-11-11 5.00 234
12 Western Digital Caviar 2540 WT261 049... 1994-06-03 2000-11-11 515
13 Conner CFS540A 94926-003 n/a 2000-11-11 516
14 Conner CFS420A CJFCHXM n/a 2000-11-11 406
15 Seagate ST3491A 632001-63... 2000-00-00 2000-11-11 408
16 Quantum ProDrive LPS 525AT EN52A011-... 1993-06-14 2000-11-11 500
17 Quantum ProDrive LPD 270MB AT 071146M01... n/a 2000-11-11 258
18 Maxtor 7213AT B10K1AZS 1993-01-19 2000-11-11 202
19 Western Digital Caviar 1270 WT263 083... 1994-06-08 2000-11-11 5.00 2002-07-26 147
20 Connor CFS540A 94926-003 n/a 2000-11-11 2002-06-02 516
21 Quantum Fireball 1280AT K1931 GWD... n/a 2000-11-11 2002-06-02 1,222
22 Conner CFS1081A 1GB FLBA6NV C... n/a 2000-11-11 2002-06-02 1,032
23 Maxtor 7850AV R703MW2S 1995-06-24 2000-11-11 2002-06-01 357
24 Conner CFS420A CJBH2NW n/a 2000-11-11 2002-06-01 327
25 Conner CFA340A BQBAGVP n/a 2000-11-11 2002-06-01 327
26 Conner Type 50 CF30121E AMB8LLL n/a 2000-11-11 2002-06-01 116
27 Conner CP30174E AM B8KEC n/a 2000-11-11 2002-06-01 162
28 n/a n/a n/a n/a 2000-11-11 2002-06-01 1,222
29 Quantum ProDrive ELS 162310682... n/a 2000-11-11 2002-07-26 122
30 Maxtor 7213AT K007190394 n/a 2000-01-01 5.00 2002-07-26 202
31 Maxtor 7120SR A214Y50S n/a 2000-11-11 5.00 2002-08-17 121
32 Western Digital Caviar 1270 WT263 078... 1994-06-22 2000-11-11 5.00 2002-07-26 148
33 HP/Quantum ProDrive LPS 142216382... n/a 2000-11-11 5.00 2002-07-26 162
34 Maxtor 7120SR A202YAZS 1991-09-23 2000-11-11 5.00 2002-08-17 39 clean
35 Maxtor 7213AT B10ZSAVS 1993-03-03 2000-11-11 5.00 2002-07-26 202
36 Western Digital Caviar 1270 WT263 054... 1994-07-29 2000-11-11 5.00 2002-07-26 148
37 Western Digital Caviar 1210 WT259 066... 1994-01-18 2000-11-11 5.00 2002-07-26 84
38 Quantum ProDrive LPS 350111133... n/a 2000-11-11 5.00 2002-07-26 0 clean
39 Maxtor MXT-540A B30HNETS n/a 2000-11-11 5.00 2002-07-27 109

(continued on next page)
Note: DOA = Dead On Arrival; zero = all blocks zeroed; cfmt = clean formatted

371



372 CHAPTER A. Hard Drive Study Details

Date of Date of Date of Image
# Manufacturer Model SN Manufacture Acquisition Cost Image Size (MB) Notes

40 Western Digital 0 2000-11-11 2002-07-23 1,033
41 Western Digital Caviar 21000 WM353 169... 1996 2000-11-11 17.00 2002-07-24 1,033
42 Quantum ProDrive LPS 141204444... n/a 2000-11-11 5.00 2002-07-27 116
43 IBM DPES-31080 B121111 n/a 2000-11-11 5.00 2002-07-27 0 clean
44 Conner CP30251 BMMB0HQBb n/a 2000-11-11 5.00 2002-07-27 240
45 Quantum ProDrive LPS 550204202... n/a 2000-11-11 5.00 2002-07-27 49
46 Seagate ST31276A 38700-009A n/a 2002-06-24 12.99 – DOA
47 Maxtor 71626A 39320376 n/a 2002-06-24 16.99 2002-07-27 1,554
48 Western Digital Caviar 2850 WT303 033... 1995-09-12 2002-06-24 8.50 2002-07-28 814
49 Quantum Lightning ProDrive 325509872... n/a 2002-06-24 7.99 2002-07-28 516
50 Fujitsu M1636TAU 01207410 1996-10-01 2002-06-24 12.95 2002-07-27 1,225
51 Samsung SW0212A/TGE J3ZJC32543 1998-12-01 2002-06-24 19.95 2002-07-27 2,014
52 Quantum Fireball 3.5 Series 822611042... 1996-04-01 2002-06-12 10.50 2002-07-28 1,222
53 Western Digital Caviar 2340 WT2456418... 1993-06-04 2002-06-28 5.00 2002-07-28 213
54 Western Digital Caviar 1365 WT298 003... 1994-12-05 2002-06-28 5.00 2002-07-28 348
55 Seagate ST5660A 9A2001-031 n/a 2002-06-28 5.00 2002-07-28 503
56 Western Digital Caviar 2850 DCM: ANBC... 1995-10-05 2002-06-28 5.00 2002-07-28 814
57 Maxtor 7541A J7036PGS 1995-12-17 2002-06-28 5.00 2002-07-28 517
58 Seagate ST3660A DQ539678 n/a 2002-06-28 2002-07-28 520
59 Conner CFS420A CJB8GD2 n/a 2002-06-07 6.99 2002-07-28 406
60 Maxtor 82559A4 C40NRNEA 1997-09-16 2002-06-28 2002-07-28 2,441
61 Western Digital Caviar 2340 WT2452142... 1993-03-10 2002-06-28 2002-07-29 213
62 Quantum Fireball 822606745... n/a 2002-06-28 2002-07-29 1,222
63 Quantum 3.5 Series 826536041... n/a 2002-06-28 2002-07-29 607
64 Conner CFS420A CJCN8PY n/a 2002-06-28 2002-07-29 406
65 Seagate ST3491A DK112018 n/a 2002-06-28 2002-07-29 408
66 Seagate ST32122A 9J7013-043 n/a 2002-07-30 19.95 2002-07-31 2,014
67 Maxtor 82160D2 19661-7C0... 1997-12-24 2002-07-30 19.95 2002-08-01 2,014
68 Quantum 540AT K1401 GJS... 1995-08-01 2002-08-08 5.00 2002-08-08 519
69 Conner CFS420A CJBHPKV n/a 2002-08-08 5.00 2002-08-08 406
70 IBM DALA-3540 2J119922 1995-08-01 2002-08-08 5.00 2002-08-08 516
71 Maxtor 7420AV H800C9VS 1994-11-05 2002-08-08 5.00 2002-08-08 0 clean
72 Quantum Maverick 332505033... 1995-03-01 2002-08-09 5.00 2002-08-09 258 clean
73 Samsung WA32162A J32HB96134 n/a 2002-08-08 5.00 2002-08-09 2,060
74 Western Digital Caviar 2700 WT273 033... 1994-11-28 2002-08-08 5.00 2002-08-10 696
75 Western Digital Caviar 2700 WT273 032... 1994-11-28 2002-08-08 5.00 2002-08-11 696
76 Western Digital Caviar 2850 WT303 102... 1995-10-01 2002-08-08 5.00 2002-08-11 814
77 Western Digital Caviar 2540 WT292 002... 1994-12-08 2002-08-08 5.00 2002-08-12 515
78 Western Digital Caviar 2700 WT273 036... 1994-12-08 2002-08-08 5.00 2002-08-12 696
79 Western Digital Caviar 3100 WT272 059... 1995-03-08 2002-08-13 7.00 2002-08-13 1,033
80 Western Digital Caviar 3100 WT272 108... 1995-04-06 2002-08-13 7.00 2002-08-13 1,033
81 Western Digital Caviar 11000 WT364 096... 1997-03-18 2002-08-13 7.00 2002-08-14 0 clean
82 Quantum / HP D2330-60003 166315481... n/a 2002-08-15 3.00 2002-08-14 162 clean
83 Quantum (HP) D2329A 510210030... n/a 2002-08-15 3.00 2002-08-15 81 clean
84 Quantum (HP) D2387A 194418970... n/a 2002-08-15 3.00 2002-08-16 201 clean
85 Quantum (HP) D2329A 510210090... n/a 2002-08-15 3.00 2002-08-16 81 clean
86 Quantum (HP) D2329A 168302065... n/a 2002-08-15 3.00 2002-08-16 81 clean
87 Maxtor 7540AV K12700290... 1995-01-02 2002-08-15 3.00 2002-08-16 473 clean
88 Quantum (HP) D2329A 168234252... n/a 2002-08-15 3.00 2002-08-16 81 clean
89 Western Digital Caviar 1210 WT269 081... 1994-02-05 2002-08-15 3.00 2002-08-16 93
90 Quantum (HP) D2329A 510210030... n/a 2002-08-15 3.00 2002-08-16 0 clean
91 Maxtor 7540RV K12701113... 1995-01-24 2002-08-15 3.00 2002-08-17 16 clean
92 Western Digital Caviar 22100 WM361 241... 1997-09-19 2002-08-16 2002-08-17 2,014 cfmt
93 IBM 92F0428 EC895987 1994-09-26 0 clean
94 Digital 199513-001 CX42091104 n/a 2002-08-08 2.00 2002-08-18 511
95 Quantum 3.5 series 1280MB 122608925... n/a 2002-08-08 2.00 2002-08-18 1,222
96 Western Digital Caviar 2850 WT303 063... 1996-03-24 2002-08-16 1.25 2002-08-18 814
97 Conner CFS541A B42112 96... n/a 2002-08-16 1.25 2002-08-18 515
98 NEC DSE1700A 9717801401 1997-04-01 2002-08-16 1.25 2002-08-19 1,627
99 Quantum Fireball 3.5 Series 826603835... 0 2002-07-21 612

100 Quantum Fireball 3.5 Series 526601732... 0 2002-07-22 612
101 Conner CFS635A 241670-002 0 2002-07-22 609
102 Western Digital Caviar 2700 CBBAKAC 1995 2002-07-21 0 clean
103 Quantum Fireball 3.5 Series 826603841... 0 2002-07-21 612
104 Western Digital Caviar 2540 WT307 037... 1995 2002-07-22 515
105 Quantum Fireball 826603943... n/a 2002-07-21 612
106 Western Digital Carviar 2540 WT261 023... 1995 2002-07-23 515
107 Western Digital Carviar 2700 WT286 033... 1995 2002-07-23 696
108 Western Digital Caviar 2700 CFAACAB 1995 2002-07-21 0 clean
109 IBM DSAA-3720 1MG2500541 1994 2002-07-21 612
110 Western Digital Caviar 2635 WT318 022... 1995 2002-07-22 610

(continued on next page)
Note: DOA = Dead On Arrival; zero = all blocks zeroed; cfmt = clean formatted



373

Date of Date of Date of Image
# Manufacturer Model SN Manufacture Acquisition Cost Image Size (MB) Notes

111 Seagate ST3250A CBMSFAGB09 n/a 2002-08-15 3.00 2004-10-29 204
112 Western Digital Caviar 2700 WT273 038... 1994 2002-07-23 696
113 Western Digital Caviar 2700 WT286 039... 1995 2002-07-22 696
114 Fujitsu M1612TAU 03007484 1995 2002-07-22 520
115 DSE1700A 9717801401 1997-04-01 2002-08-16 1.25 2002-08-19 688
116 Western Digital Caviar 1210 WT269 000... 1993 2002-07-22 0 clean
117 Western Digital Caviar 2850 WM303 167... 1996 2002-07-22 0 clean
118 Conner CP30174E KJ32112 0 2002-07-22 162
119 Connor CFS850A 37460-006 n/a 2002-08-16 1.25 – DOA
120 Western Digital 2850 0 2002-07-22 0 clean
121 Western Digital Carviar 2635 BNABKGH 1995 2002-07-22 610
122 Quantum Viking II 5500654 1998-10-13 2002-07-25 – DOA
123 Seagate ST32550WC K3600669 n/a 2002-07-25 – DOA
124 Seagate ST39140W AY149498 n/a 2002-07-25 0 clean
125 IBM F35C7803 ... n/a 2002-07-25 – DOA
126 Seagate ST34371W JD931086 n/a 0000-00-00 – DOA
127 Quantum ProDrive UDD1472324 n/a 2002-08-18 0 clean
128 Western Digital Caviar 22100 WT361 287... n/a 2002-08-16 1.25 2002-08-23 2,014
129 Quantum Fireball 156729463... n/a 2002-08-16 1.25 – DOA
130 Western Digital Caviar 2850 WT303 087... n/a 2002-08-16 1.25 – DOA
131 Seagate ST32122A 24001720-... n/a 2002-08-16 1.25 – DOA
132 Conner C30064N 0HBF9D7 n/a 2002-08-16 1.25 – DOA
133 NEC 0112081973 1998-06-16 2002-08-16 1.25 2002-08-26 2,014
134 Fujitsu M1612TAU 40M020040... 1998-06-16 2002-08-16 1.25 2002-08-27 520
135 SEagate ST5850A EB286698 1998-06-16 2002-08-16 1.25 – DOA
136 Seagate 21910 MCCN58-00... n/a 2002-08-16 1.25 – DOA
137 ??? C3323A MY5062HXCM n/a 2002-08-16 1.25 – DOA
138 Western Digital Caviar 2340 WT2454707... 1993-05-25 2002-08-16 1.25 2002-08-27 219 cfmt
139 Maxtor 7171AT D802ZAGS n/a 2002-08-16 1.25 2002-08-28 164 cfmt
140 Maxtor 7245AT M7245A 1993-07-16 2002-08-08 2.50 2002-08-29 234 cfmt
141 Maxtor 7131AT 07P1 1993-06-11 2002-08-16 1.25 2002-08-30 125 cfmt
142 Maxtor 7245AT B80NDT1S 1993-08-25 2002-08-16 1.25 2002-08-30 234 cfmt
143 Seagate ST3600N TR635496 1993-06-11 2002-08-16 1.25 2004-10-29 500
144 Maxtor 7245AT B80J4WPS 1993-08-10 2002-08-16 1.25 2002-08-30 234 cfmt
145 Maxtor 7245AT B80YQ6BS 1994-06-17 2002-08-16 1.25 2002-08-30 234 cfmt
146 Western Digital WDAC1210-21F WT269 163... 1994-06-18 2002-08-08 2.50 – DOA
147 Maxtor 7171AT D80328BS 1994-06-18 2002-08-08 2.50 2002-08-31 164 cfmt
148 Maxtor 7245AT B80PJYRS 1993-08-25 2002-08-08 2.50 – DOA
149 Maxtor 7213AT B113TH1S 1994-01-07 2002-08-08 2.50 2002-08-30 202 cfmt
150 Maxtor 7171AT D809RZ4S 1994-10-13 2002-08-08 2.50 2002-08-31 164 cfmt
151 Maxtor 7213AT B11AJH8S 1994-01-10 2002-08-08 2.50 2002-08-31 202 cfmt
152 Maxtor 7245AT B80PK1PS 1993-08-25 2002-08-08 2.50 2002-08-31 234 cfmt
153 Maxtor 7245AT B806ED5S 1993-01-26 2002-08-08 2.50 2002-08-31 234 cfmt
154 Maxtor 7213AT B10XEGES 1994-03-25 2002-08-08 2.50 2002-08-31 202 cfmt
155 Maxtor 7171AT D80395DS 1994-04-09 2002-08-08 2.50 2002-08-31 164 cfmt
156 Maxtor 7131AT C301PJDS 1993-06-13 2002-08-08 2.50 2002-08-31 125 cfmt
157 Maxtor 7171AT D8061W2S 1994-04-09 2002-08-08 2.50 2002-08-31 164 cfmt
158 Western Digital Caviar 2120 WT2315055... 1992-04-18 2002-08-08 2.50 2002-08-31 119 cfmt
159 Western Digital Caviar 21000 WM353 162... 1996-09-11 2003-10-01 – DOA
160 Western Digital Caviar 21000 WM353 162... 1996-09-11 2003-10-01 2003-01-12 4,028 cfmt
161 Quantum Fireball CX 710104000... n/a 2003-10-01 2003-01-19 550
162 Quantum Fireball ST 154720541... n/a 2003-01-01 – DOA
163 Quantum Sun 1080 SCSI 821622545... n/a 2003-01-01 – DOA
164 Western Digital Caviar 2850 CNBBJEG 1996-03-25 2003-01-01 – DOA
165 Maxtor 71084A J900PX3S 1995-03-09 2003-01-01 – DOA
166 Seagate ST32122A GJJ04338 n/a 2003-01-01 2004-10-29 2,014
167 Seagate ST1480N WN275799 n/a 2003-01-01 – DOA
168 Seagate ST51080N PA136634 1996-03-25 2003-01-01 2003-02-16 1,030
169 Seagate ST1480N TN751065 1996-03-25 2003-01-01 0 clean
170 Seagate ST1480N ZN234989 1996-03-25 2003-01-01 2004-10-29 411
171 Digital RZ28 CX42457936 n/a 2003-01-01 2003-02-16 2,007
172 Digital RZ28 CX42458867 n/a 2003-01-01 2003-02-16 2,007
173 Seagate ST1480N TN550825 1996-03-25 2003-01-01 – DOA
174 Quantum 1080 SCSI S201050 1996-03-25 2003-01-01 – DOA
175 Seagate Medalist 3210 7AB0YWA4 n/a 2003-01-01 3.00 – DOA
176 Seagate Medalist 3210 7AB0YWA4 1996 2003-01-01 3.00 2003-02-17 101
177 Seagate Medalist 2132 GAV82413 n/a 2003-01-01 3.00 2003-02-17 2,015
178 Seagate Medalist 2132 GCL82363 1996 2003-01-01 3.00 2003-02-17 424
179 Seagate ST32122A GJ780785 1996 2003-01-01 3.00 2003-02-23 2,014
180 Seagate ST52520A PC271729 1996 2003-01-01 3.00 – DOA
181 Seagate ST32122A XK598129 1996 2003-01-01 3.00 2003-02-23 1,883

(continued on next page)
Note: DOA = Dead On Arrival; zero = all blocks zeroed; cfmt = clean formatted



374 CHAPTER A. Hard Drive Study Details

Date of Date of Date of Image
# Manufacturer Model SN Manufacture Acquisition Cost Image Size (MB) Notes

182 Seagate ST32120A XJ364981 1996 2003-01-01 3.00 2003-02-23 2,014
183 Seagate ST31276A FNBPJQR 1996 2003-01-01 3.00 2003-02-24 1,221
184 Seagate ST31276A P72548691... 1996 2003-01-01 3.00 2003-02-24 1,221
185 Seagate ST31276A FNGS3YN 1996 2003-01-01 3.00 – DOA
186 Seagate ST31276A FNAJDV7 1996 2003-01-01 3.00 2003-02-24 1,184
187 Seagate ST32122A XJJ65216 1996 2003-01-01 3.00 2003-02-25 2,014
188 Seagate ST31720A GFB4STG 1996 2003-01-01 3.00 – DOA
189 Seagate ST31722A VJ660386 1996 2003-01-01 3.00 – DOA
190 Seagate ST31276A FNB418S 1996 2003-01-01 3.00 2003-02-26 1,221
191 Conner CP30174E STK01 9302 1996 2003-01-01 3.00 2003-02-26 162
192 Seagate ST32122A GJZ40470 1996 2003-01-01 3.00 – DOA
193 Western Digital Caviar 22500 WT349 102... 1997-08-23 2003-01-01 3.00 2003-02-28 2,441
194 Quantum Fireball 692634925... 1996 2003-01-01 3.00 2003-03-01 519
195 Quantum Fireball 540AT FB5... 1996 2003-01-01 3.00 2003-02-28 519
196 Quantum Fireball 540AT FB5... 1996 2003-01-01 3.00 2003-03-01 96
197 Quantum Fireball 692676631... 1996 2003-01-01 3.00 2003-03-01 191
198 Conner CFP1080S EX9DN72 1996 2003-01-01 3.00 2003-03-01 1,030
199 Maxtor 7540AV H40EGN6S 1995-03-22 2003-01-01 3.00 2003-03-01 514
200 Quantum Fireball 540AT LT5... 1996 2003-01-01 3.00 2003-03-01 516
201 Quantum Fireball 640AT FB6... 1996 2003-01-01 3.00 2003-03-01 53
202 Quantum Fireball 1700AT 1700AT Tm... 1996 2003-01-01 3.00 2003-03-01 1,628
203 Quantum Fireball 2110AT TM21A462 ... 1996 2003-01-01 3.00 – DOA
204 Quantum 1280AT 238275-001 1996 2003-01-01 3.00 2003-03-02 1,222
205 Fujitsu M1636TAU 05003264 1997-06-01 2003-01-01 3.00 2003-03-02 1,225
206 Seagate ST32122A GJQ23032 1996 2003-01-01 3.00 2003-03-02 2,014
207 Seagate ST52520A PD740864 n/a 2003-01-01 3.00 – DOA
208 Seagate ST52520A PD740932 n/a 2003-01-01 3.00 – DOA
209 Seagate ST52520A PC207124 n/a 2003-01-01 3.00 2003-03-02 2,446
210 Conner CFS420A D42124 n/a 2003-01-01 3.00 2003-03-02 406
211 Seagate ST3243A CBSHBLC07 n/a 2003-01-01 3.00 2003-03-02 204
212 Seagate ST3660A RAJ60205 n/a 2003-01-01 3.00 2003-03-02 402
213 Seagate ST31720A CFC22L8 n/a 2003-01-01 3.00 – DOA
214 Quantum ProDrive LPS 270AT TB27A011 n/a 2003-01-01 3.00 2003-03-02 258
215 Western Digital Caviar 22500 CMBAEMLOB... 1997-07-15 2003-01-01 3.00 2003-03-02 2,441 cfmt
216 Maxtor 7541A V10E8H0S 1996-06-15 2003-01-01 3.00 2003-03-02 517
217 Fujitsu MPA3026AT 06186178 1997-07-01 2003-01-01 3.00 2003-03-02 2,014
218 Conner CP30540 BJ9JYGC n/a 0000-00-00 – DOA
219 Seagate ST51080N IC221160 n/a 0000-00-00 2003-03-03 1,030
220 Seagate ST31200N FU136586 n/a 0000-00-00 2003-03-03 1,006
221 Quantum (HP) 270AT MV27A341 1994-10-01 0000-00-00 3.00 2003-03-03 258
222 Quantum (HP) 270AT TB27A341 1994-06-01 0000-00-00 3.00 2003-03-03 258
223 Western Digital Caviar 2340 WT265 093... 1993-11-26 0000-00-00 5.00 – DOA
224 Conner CFS420A D32214 n/a 0000-00-00 5.00 2003-03-04 406
225 Western Digital Caviar 2340 WT2457150... 1993-05-31 2003-01-01 3.00 – DOA
226 Western Digital Caviar 2340 AT2457405... 1993-05-31 2003-01-01 3.00 – DOA
227 Conner CFS210A E12111 1993-05-31 2003-01-01 3.00 2003-03-05 203
228 Western Digital Caviar 2420 WT2470788... 1994-07-13 2003-01-01 3.00 – DOA
229 Seagate ST3630A GAC61180 n/a 2003-01-01 3.00 – DOA
230 Western Digital Caviar 2340 WT2457150... 1993-05-31 2003-01-01 3.00 – DOA
231 Conner CFS420A D52221 n/a 2003-01-01 3.00 2003-03-06 406
232 Quantum 2.1AT 9832403B 1993-05-31 2003-01-01 3.00 – DOA
233 Quantum Caviar 2340 822611041... 1993-05-31 2003-01-01 3.00 – DOA
234 Western Digital Caviar 22100 WT361 101... 1996-12-08 2003-01-01 3.00 – DOA
235 Seagate ST31621A A33433SGR... n/a 2003-01-01 3.00 2003-03-08 107
236 Western Digital Caviar 280 WT2231866... 1992-07-25 2003-01-01 – DOA

Note: DOA = Dead On Arrival; zero = all blocks zeroed; cfmt = clean formatted



APPENDIX B

Mail Security Survey Details

This appendix presents details of the hard drive study presented in Chapter 3. Further details can
be found online at http://www.simson.net/ref/2004/smime-survey.html .

B.1 Commercially Oriented Email
Typical email exchanged between merchants and consumers includes advertisements from the mer-
chant to the consumer, questions that the consumer may pose the merchant, and receipts that the
merchant may send the consumer after the transaction takes place. The consumer may send the
merchant additional follow-up questions. Given that these are typical kinds of messages our respon-
dents exchange with their customers, we sought to discover what level of security our respondents
thought appropriate.

A majority of all respondents (58.8%) thought that receipts from online merchants should be digi-
tally signed, while a roughly a third (46.8%) thought that receipts should be sealed with encryption.
Remember, all respondents in the survey are online merchants—so these merchants are basically writ-
ing about what kind of messages they believe that they themselves should be sending. But given
our sampling of Amazon.com merchants, it may be that most of them are individuals or small
organizations who see themselves primarily as consumers.

On the other hand, few respondents thought that questions to online merchants required any sort
of special protection. Interestingly, our two groups with either actual or acknowledged experience
thought that questions to merchants required less protection than their counterpart groups.

Very few respondents (14%) thought advertisements should be digitally signed—a surprising num-
ber, considering that forged advertisements would definitely present many merchants with a sig-
nificant problem. Instead, a majority of respondents (54%) thought that advertisements require no
special protection at all. Roughly 29% of all respondents agreed with the statement that advertise-

375

http://www.simson.net/ref/2004/smime-survey.html


376 CHAPTER B. Mail Security Survey Details

ments should never be sent by email.1

The free-response answers suggest that merchants were talking about the world of e-commerce as
they would like it to be, rather than the one in which they are currently living:

• “Receipts from merchants should be encrypted if they contain your credit card information,
I’m pretty sure the ones I’ve received haven’t.” (30843)

• “I think that digital signing is probably more important than encryption when it comes to ad-
vertising or work correspondence. Encryption is more important when dealing with financial
transactions.”(30070)

• “I doubt any of my usual recipients would understand the significance of the signature.”
(30468)

• “Your survey did not address the fact that any email containing credit card information should
be encrypted. We get emails from customers almost every day with card numbers with orders,
rather than using our secure systems on our sales sites. It is more common than I would ever
have believed.” (30142)

1This question did not distinguish between email that should not be sent because it might be considered “spam”
and messages that should not be sent by email because their content is too sensitive, but comments from respondents
indicated that many took this question to be a question about unsolicited commercial email.



B.1. COMMERCIALLY ORIENTED EMAIL 377

ALL Europe US Savvy Green
Should be digitally signed 25% 39% ∗∗ 22% ∗∗ 33% ∗ 21% ∗

Should be sealed with encryption 13% 6% ∗ 15% ∗ 12% 14%
Should be both signed and sealed 34% 23% ∗ 36% ∗ 27% ∗ 37% ∗

Does not need special protection 25% 29% 25% 26% 25%
Should never be sent by email 3% 3% 3% 2% 3%

sealed or both 47% 30% ∗∗∗ 51% ∗∗∗ 39% ∗ 51% ∗

digitally signed or both 59% 62% 58% 60% 58%
Total Respondents 425 77 348 141 284
No Response (8) (3) (5) (1) (7)

∗p < .05; ∗∗p < .01; ∗∗∗p < .001;
Table B.1: When asked, most respondents thought that “Receipts from Online Merchants” should be digitally signed,
and many thought that such receipts should also be sealed.

ALL Europe US Savvy Green
Should be digitally signed 20% 15% 21% 18% 20%
Should be sealed with encryption 5% 6% 5% 6% 5%
Should be both signed and sealed 13% 9% 14% 8% ∗ 15% ∗

Does not need special protection 61% 69% 59% 67% 58%
Should never be sent by email 1% 0% 1% 0% 1%

sealed or both 18% 15% 19% 14% 20%
digitally signed or both 33% 24% 34% 26% ∗ 36% ∗

Total Respondents 426 78 348 141 285
No Response (7) (2) (5) (1) (6)

∗p < .05;
Table B.2: When asked what sort of protection was required for “Questions to online merchants,” most of our
respondents—all of whom were merchants—said that they didn’t think that any protection was needed.

ALL Europe US Savvy Green
Should be digitally signed 14% 14% 14% 18% 12%
Should be sealed with encryption 1% 1% 1% 2% 0%
Should be both signed and sealed 3% 1% 3% 2% 3%
Does not need special protection 54% 58% 53% 52% 54%
Should never be sent by email 29% 26% 30% 26% 30%

sealed or both 3% 3% 4% 4% 3%
digitally signed or both 17% 15% 17% 20% 15%
Total Respondents 429 78 351 142 287
No Response (4) (2) (2) (0) (4)

Table B.3: When asked what sort of protection is appropriate for “Advertisements,” most respondents thought that no
protection at all was required.



378 CHAPTER B. Mail Security Survey Details

B.2 Financial Communications
Not surprisingly, a majority (62.7%) of our respondents thought that financial statements should
be both signed and sealed. There was no significant difference in response rates to this question
between any of our groups. Similar response rates were seen for official mail sent to government
agencies.

Table B.4: Financial Communications: What Kind of Protection is Necessary?
“A bank or
credit-card
statement:”

“Mail to government agencies
on official business, such as

filing your tax return or filing
complaints with regulators:”

Does not need special protection 1.2% 4.2%
Should be digitally-signed 2.1% 9.2%
Should be sealed with encryption 16.2% 9.9%
Should be both signed and sealed 62.7% 64.6%
Should never be sent by email 17.8% 12.2%

sealed or both 78.9% 74.4%
digitally-signed or both 64.8% 73.7%
Total Respondents 426 426
No Response (7) (7)

B.3 Personal Email At Home and At Work
For years advocates of cryptography have argued that one of the primary purposes of the technology
is to protect personal email sent or received at home and at work. The respondents to our survey
found no strong desire for technical measures to ensure either integrity or privacy. Even more
noteworthy, respondents in the Europe and Savvy groups saw fewer needs for protection than those
in the US and Green group. One explanation for this result is that increased exposure to security
technology increases one’s confidence in the computer infrastructure—even when that technology
is not being employed. Another explanation is that generally more stringent privacy legislation in
Europe has removed eavesdropping as a concern from many people’s minds.

Table B.5: “Personal email sent or received at work:”
ALL Europe US Savvy Green

Does not need special protection 35% 47% ∗ 33% ∗ 40% 33%
Should be digitally-signed 17% 18% 17% 21% 15%
Should be sealed with encryption 15% 17% 14% 9% ∗∗ 18% ∗∗

Should be both signed and sealed 23% 14% ∗ 25% ∗ 18% 26%
Should never be sent by email 10% 4% ∗ 11% ∗ 13% 8%

sealed or both 38% 31% 39% 26% ∗∗∗ 44% ∗∗∗

digitally-signed or both 40% 32% 42% 38% 41%
Total Respondents 425 77 348 141 284
No Response (8) (3) (5) (1) (7)

∗p < .05; ∗∗p < .01; ∗∗∗p < .001;



B.4. COMMUNICATION WITH POLITICIANS 379

Table B.6: “Personal email sent or received at home:”
ALL Europe US Savvy Green

Does not need special protection 51% 58% 49% 53% 49%
Should be digitally-signed 18% 16% 18% 22% 16%
Should be sealed with encryption 9% 9% 9% 9% 9%
Should be both signed and sealed 23% 17% 24% 17% ∗ 25% ∗

Should never be sent by email 0% 0% 0% 0% 0%
sealed or both 31% 26% 33% 25% ∗ 34% ∗

digitally-signed or both 40% 32% 42% 38% 41%
Total Respondents 426 77 349 139 287
No Response (7) (3) (4) (3) (4)

∗p < .05;

B.4 Communication with Politicians
Unlike mail on official business, respondents felt that neither newsletters from politicians nor mail
to political leaders required any kind of special protection. Once again this is somewhat surprising,
given that such communications are easily spoofed either to discredit a politician or to mislead
leaders about the depth of public support on a particular issue.

There was no statistically-significant difference between the way that any of our groups answered
this question, so individual breakdowns by group are not provided.

Table B.7: Communication to and from Political Leaders: What Kind of Protection is Necessary?
“Newsletters from

politicians:”
“Mail to political leaders
voicing your opinion on a

matter:”
Does not need special protection 54.9% 52.5%
Should be digitally-signed 19.7% 27.2%
Should be sealed with encryption 0.5% 4.2%
Should be both signed and sealed 2.1% 10.3%
Should never be sent by email 22.8% 5.9%

sealed or both 2.6% 14.5%
digitally-signed or both 21.8% 37.5%
Total Respondents 426 427
No Response (7) (6)



380 CHAPTER B. Mail Security Survey Details



APPENDIX C

Johnny 2 User Test Details

C.1 Description of Test Participants
Effort were taken to parallel Whitten and Tygar’s recruitment and testings effort from the original
Johnny experiment as closely as possible given the expanded goals of Johnny 2. This includes
the use of similar language, posters, subject compensation, pre-test, consent forms, and after-test
debriefing whenever possible.

C.1.1 Recruitment
Subjects were recruited with an email sent to the mailing list free-money@mit.edu (a mailing
list of people who like to earn money by volunteering for human subject testing) and by posting 75
posters throughout the halls of MIT. Approximately 85 people responded to the advertisement.

By design, recruitment language was virtually identical to those used by Whitten and Tygar. For
example, Figure C-1 shows the recruitment text that was used in the Johnny experiment, while
Figure C-2 shows the recruitment poster used in Johnny 2.

Earn $20 and help make computer security better!

I need people to help me test a computer security program to see how easy
it is to use. The test takes about 2 hours, and should be fun to do.

If you are interested and you know how to use email (no knowledge
of computer security required), then call Alma Whitten at 268-3060
or email alma@cs.cmu.edu.

Figure C-1: Alma Whitten’s recruitment poster, from [Whi04a, p.93]

381

free-money@mit.edu


382 CHAPTER C. Johnny 2 User Test Details

Earn $20 and help 
make computer 
security better! 

 
I need people to help me test a computer 
security program to see how easy it is to use. 
The test takes about 1 hour, and should be 
fun to do. 
 
If you are interested and you know how to 
use email (no knowledge of computer 
security required), then call Simson at 
617-876-6111 or email simsong@mit.edu 
 
 

$2
0 

Se
cu

rit
y 

St
ud

y 
Si

m
so

n 
 

61
7-

87
6-

61
11

 
si

m
so

ng
@

m
it.

ed
u 

  $2
0 

Se
cu

rit
y 

St
ud

y 
Si

m
so

n 
 

61
7-

87
6-

61
11

 
si

m
so

ng
@

m
it.

ed
u 

 $2
0 

Se
cu

rit
y 

St
ud

y 
Si

m
so

n 
 

61
7-

87
6-

61
11

 
si

m
so

ng
@

m
it.

ed
u 

  $2
0 

Se
cu

rit
y 

St
ud

y 
Si

m
so

n 
 

61
7-

87
6-

61
11

 
si

m
so

ng
@

m
it.

ed
u 

 $2
0 

Se
cu

rit
y 

St
ud

y 
Si

m
so

n 
 

61
7-

87
6-

61
11

 
si

m
so

ng
@

m
it.

ed
u 

  $2
0 

Se
cu

rit
y 

St
ud

y 
Si

m
so

n 
 

61
7-

87
6-

61
11

 
si

m
so

ng
@

m
it.

ed
u 

 $2
0 

Se
cu

rit
y 

St
ud

y 
Si

m
so

n 
 

61
7-

87
6-

61
11

 
si

m
so

ng
@

m
it.

ed
u 

  $2
0 

Se
cu

rit
y 

St
ud

y 
Si

m
so

n 
 

61
7-

87
6-

61
11

 
si

m
so

ng
@

m
it.

ed
u 

   

Figure C-2: The poster used to recruit subjects; 75 copies were placed on first-floor hallways in MIT buildings 26, 8, 6,
2, 4, 10, 7 and 5



C.1. DESCRIPTION OF TEST PARTICIPANTS 383

Thank you for your interest in participating in the testing! Here is the intake questionnaire.
The answers will be used to select a set of test participants that has the particular demographic
characteristics needed for this research study. All information you give will be kept private, and
will only be included in research results in anonymized form.

1. How old are you?

2. What is your highest education level (high school, some college, undergrad degree, some
grad school, grad degree)?

3. What is your profession or main area of expertise (for example arts, science, medicine,
business, engineering, computers, administration...)?

4. For how long have you been using electronic mail?

5. Have you ever studied number theory or cryptography?

6. Have you ever used security software, such as secure email in Netscape or Microsoft Out-
look, or PGP, or any other software that involved data encryption? If yes, what was the
name of that software?

7. Do you know the difference between public (asymmetric) key cryptography and private
(symmetric) key cryptography? If yes, please explain briefly.

8. How do you read your email? (What program or online service?)

9. How did you hear about this study?
Thanks again, and I look forward to hearing from you.

Figure C-3: The Participant Intake Questionnaire.

C.1.2 Participant intake questionnaire
As mentioned in Section C.1.1, approximately 85 people responded to the advertisements for the
study. Each of these individuals was sent a copy of the Participant Intake Questionnaire (Figure C-
3) to disqualify those who had some knowledge of public key cryptography. Of those responding to
the questionnaire, 28 were disqualified because they were familiar with public key cryptography,
PGP, or S/MIME. These respondents were sent a message similar to the one in Figure C-4 and
scheduled on a first-come, first-serve basis. Those that were excluded were sent a message similar
to the one in Figure C-5. We were pleased that the respondents represented a wide range of age,
education level, and work experience.

A total of 44 subjects were tested under the terms of the COUHES protocol, with data from one
subject (S13) being discarded. (S13 was the first subject to experience the Briefing intervention.
Based on feedback from S13, the briefing was changing, making it inappropriate for S13’s data to
be included in the overall results.)

Subjects ranged in age from 18 to 63 (x = 33;σ = 14.2) The participants had all attended at
least some college; 21 were either graduate students or had already earned an advanced degree.
Professions were diverse, including PhD candidates in engineering and biology, administrative as-
sistants, clerks, and even a specialist in import/export. Two of the subjects (S12 and S19) appeared
to have significant difficulty understanding the English messages in the test, although they were
nevertheless able to complete the experiment.



384 CHAPTER C. Johnny 2 User Test Details

Hi. You fit the demographics that I’m looking for!

The study takes between 20-60 minutes and happens in my office on the 8th floor of the
MIT Stata Center.

Directions on how to get to my office are at http://www.simson.net/g828/

I keep an online calendar at http://calendar.simson.net/

Right now following slots are available; do any work for you?

Wednesday, January 26th, 1pm - 2pm
Wednesday, January 26th, 2:15pm - 3:15pm
Thursday, January 27th, 5:00pm - 6:00pm
Friday, January 28, 3:15pm - 4:15pm
Friday, January 28, 4:30pm - 5:30pm

Simson Garfinkel
simsong@csail.mit.edu

Figure C-4: Message sent to qualifying subjects

Hi. Thanks again for responding to the poster and the survey.

Unfortunately, right now I have enough people in your particular demographic category,
so I don’t need you as a subject.

This might change in the future. If you wish, I can hold your information on file and get
back to you if things change.

-Simson Garfinkel
simsong@csail.mit.edu

Figure C-5: Message sent to disqualified subjects

C.2 Description of the Testing Process
C.2.1 Test environment
Testing took place in MIT Room 32-G828, an 8th floor office in the MIT Stata Center. Figure C-6
shows a floor plan of the testing room; figures C-7 and C-8 photographs of the experimental setup
and a view of the experimenter’s laptop from the subject’s chair, respectively.

C.2.2 Greeting and orientation
Consent forms approved by the MIT Committee On the Use of Humans as Experimental Subjects
(COUHES) appears in Figures C-10 on page 387 through C-13 on page 390. The Initial Task
Description for the NoColor and Color group appears in Figure C-14 on page 391, while the Initial



C.2. DESCRIPTION OF THE TESTING PROCESS 385

#1
#2

desk

Figure C-6: The floor plan of 32-G828 showing the location of the Johnny 2 testing desk (grey rectangle) the subject’s
chair (oval #1) and the experimenter’s chair (oval #2). (Excerpted from [MIT04], with modifications.)

Figure C-7: A photograph of the Johnny 2 experimental station. The experimenter’s laptop is visible on the left. In front
of the keyboard is the Johnny 2 Color+Briefing Handout. At the right is the “PHONE” (Figure C-9).



386 CHAPTER C. Johnny 2 User Test Details

Figure C-8: A view of the experimenter’s laptop from the experimental subject’s chair. Note that the laptop’s screen is
not visible.

Figure C-9: The front and back of the Johnny 2 “PHONE”. The text reads: “You pick up the Campaign Phone and
discover that there is no dial tone. / You pick up your cell phone and discover that you have no coverage. / Apparently
you cannot call any of the members of the campaign team at this time.”

Task Description used by the Color+Briefing group appears in Figure C-15 on page 392.

C.2.3 Testing
The test began when the experimenter pressed the “Send email #1” button on the Experimenter’s
work bench (see Figure 7-7 on page 262). This sent message #1 to the subject. Subjects who did
not do so were prompted to press the Outlook Express ‘Send/Recv” button to receive the message.

A copy of Camtasia Studio 2 running on the subject’s computer recorded the subject’s screen and
the subject’s spoken utterances. Subjects who were quiet were reminded “it would be helpful if you
could think out loud.”

The experimenter used a Macintosh laptop both to take notes and to advance the experiment by
pressing the numbered buttons on the Experimenter’s work bench.

Unlike in the original Johnny experiment, subjects were only sent the scripted messages that has



C.2. DESCRIPTION OF THE TESTING PROCESS 387

 1 

CONSENT TO PARTICIPATE IN  
NON-BIOMEDICAL RESEARCH 

 
Johnny 2: 

A Study of Email Security 
 

 
You are asked to participate in a research study conducted by Simson L. Garfinkel, MS, and 
Robert C. Miller, Ph.D. at the Massachusetts Institute of Technology (M.I.T.). This research will 
be used as part of Simson L. Garfinkel’s Ph.D. dissertation. You were selected as a possible 
participant in this study because you responded to our advertisement and you did not have prior 
experience with mail security technology. You should read the information below, and ask 
questions about anything you do not understand, before deciding whether or not to participate. 
 
 
•  PARTICIPATION AND WITHDRAWAL 
 
Your participation in this study is completely voluntary and you are free to choose whether to be 
in it or not. If you choose to be in this study, you may subsequently withdraw from it at any time 
without penalty or consequences of any kind.  The investigator may withdraw you from this 
research if circumstances arise which warrant doing so.   
 
 
•  PURPOSE OF THE STUDY 
 
This study is to test the design of Outlook Express and CoPilot, a program that we have written to 
help sending and receiving secure email with Outlook Express. We are interested in seeing how 
you use CoPilot and what your reactions are to the program.  
 
 
•  PROCEDURES 
 
If you volunteer to participate in this study, we would ask you to do the following things: 
 
If you can manage it, it is extremely useful to me if you “think aloud” during the test. The 
computer has a microphone that will pick up what you say, and I’ll be taking notes as well. The 
more informative you can be about what you are doing and thinking, the better my data will be. 
 
In the test, you will be asked to play the role of a volunteer in a political campaign. After you 
volunteered, you were given the role of Campaign Coordinator. Your task is to send updates 
about the campaign plan out to the members of the campaign team by email. It is very important 
that the plan updates be kept secret from everyone other than the members of the campaign team, 
and also that the team members can be sure that the updates they receive haven’t been forged. In 
order to ensure this, you and the other team members will need to use CoPilot to make sure that 
all of the email messages are secure. 
 
Your email address for the purpose of this test is ccord@campaign.ex.com, and your password is 
volnteer.1 You should use the title “Campaign Coordinator” rather than using your own name. 
 
                                                
1 Please note that the word “volnteer” is intentionally misspelled.  

Figure C-10: Page 1 of the consent form



388 CHAPTER C. Johnny 2 User Test Details

 2 

Outlook Express and CoPilot have both been installed, and Outlook Express has been set up to 
access the email account.  No manuals for these programs are provided, but there may be some 
online help. A pad of paper and pens are also provided, if you want to use them. 
 
Before we start the test itself, I’ll be giving you a very basic demonstration of how to use Outlook 
Express to send and receive mail. The goal is to have you start out the test as a person who 
already knows how to use Outlook Express to send and receive email, and who is just now going 
to start using CoPilot to make sure your email can’t be forged or spied on while it’s being 
delivered over the network. The Outlook Express tutorial will take about 5 minutes, and then 
we’ll begin the actual testing. You can also use Mozilla Thunderbird if you would prefer, but not 
all of the advanced features of CoPilot work with Mozilla.  
 
The actual test itself should take roughly 20 minutes. 
 
After the test, you will be asked to answer a brief questionnaire with five questions. 
 
•  POTENTIAL RISKS AND DISCOMFORTS 
 
There are no known or foreseeable risks associated with participation in this study. 
 
•  POTENTIAL BENEFITS  
 
By partaking in this test, you may learn more about the features of Microsoft Outlook Express 
and/or secure email. 
 
This research is designed to help researchers develop techniques for making computer security 
systems easier-to-use.  We hope that your participation will help in this effort. 
 
•  PAYMENT FOR PARTICIPATION 
 
You will be paid $20 at the end of this experiment. If you decide to withdraw from the 
experiment before it is over, you will receive $1 for every 5 minutes of the experiment that have 
elapsed.  
 
 
•  CONFIDENTIALITY 
 
Any information that is obtained in connection with this study and that can be identified with you 
will remain confidential and will be disclosed only with your permission or as required by law.  
 
The notes that the experimenter takes will not be matched with any of your personal information, 
such as your name, email address, or phone. 
 
This test will be recorded to assist in the writing of the research report. The recording will consist 
of an audio recording of your comments and a recording of the computer’s screen made with 
special screen-recording software. If you wish, you may review the recording at the conclusion of 
the experiment. This recording will be used for creating a transcript of your test. Only members 
of the research team will have access to the recording. The recording will be on a secure 
computer. The audio recording itself will not be published or redistributed in any way, and will be 
destroyed at the conclusion of this experiment and the publication of the results. We may use the 

Figure C-11: Page 2 of the consent form



C.2. DESCRIPTION OF THE TESTING PROCESS 389

 3 

screen recording in our publications, but it will not have any information that personally-
identifies you. 
 
Each participant in the experiment will be given a code, such as Q1, Q2, Q3, etc. This code will 
be used to label experimenter’s notes and the recording associated with the test. The codes will 
also be used in all publications resulting from today’s test.  
 
•  IDENTIFICATION OF INVESTIGATORS 
 
If you have any questions or concerns about the research, please feel free to contact  
 
Principal Investigator:  Simson L. Garfinkel 

simsong@mit.edu 
32-G804 
617-876-6111 

 
Faculty Sponsor:  Robert C. Miller 

rcm@mit.edu 
32-G716 
617-324-6028 

 
 
 
•  EMERGENCY CARE AND COMPENSATION FOR INJURY 
 
In the unlikely event of physical injury resulting from participation in this research you may 
receive medical treatment from the M.I.T. Medical Department, including emergency treatment 
and follow-up care as needed. Your insurance carrier may be billed for the cost of such treatment. 
M.I.T. does not provide any other form of compensation for injury.  Moreover, in either providing 
or making such medical care available it does not imply the injury is the fault of the investigator. 
Further information may be obtained by calling the MIT Insurance and Legal Affairs Office at 1-
617-253 2822. 
 
•  RIGHTS OF RESEARCH SUBJECTS 
 
You are not waiving any legal claims, rights or remedies because of your participation in this 
research study.  If you feel you have been treated unfairly, or you have questions regarding your 
rights as a research subject, you may contact the Chairman of the Committee on the Use of 
Humans as Experimental Subjects, M.I.T., Room E32-335, 77 Massachusetts Ave, Cambridge, 
MA 02139, phone 1-617-253 6787. 
 
 

Figure C-12: Page 3 of the consent form



390 CHAPTER C. Johnny 2 User Test Details

 4 

 
SIGNATURE OF RESEARCH SUBJECT OR LEGAL REPRESENTATIVE 

 
I understand the procedures described above.  My questions have been answered to my 
satisfaction, and I agree to participate in this study.  I have been given a copy of this form. 
 
________________________________________ 
Name of Subject 
 
________________________________________ 
Name of Legal Representative (if applicable) 
 
________________________________________  ______________ 
Signature of Subject or Legal Representative   Date 
 
 
 

SIGNATURE OF INVESTIGATOR  
 
In my judgment the subject is voluntarily and knowingly giving informed consent and possesses 
the legal capacity to give informed consent to participate in this research study. 
 
 
________________________________________  ______________ 
Signature of Investigator     Date 
 
 

Figure C-13: Page 4 of the consent form



C.2. DESCRIPTION OF THE TESTING PROCESS 391

Page 1 of 2 Date ________________ 
Subject #: _______________________ Printed 1/12/2005 2:55 PM 

 1 

Initial Task Description 
You are the campaign coordinator. 
 
You are working for the campaign manager, Maria Page, mpage@campaign.ex.com 
 
The other members of the campaign team are: 
 
 Paul Butler, butler@campaign.ex.com   
 Ben Donnelly, bend@campaign.ex.com 
 Sarah Carson, carson@campaign.ex.com 
 Dana McIntyre, dmi@campaign.ex.com 
 
 
NOTE: Digital IDs for Paul, Ben, Sarah and Dana have been pre-loaded onto your 
machine by the IT Coordinator. 
 
You have arrived early for work. No one else from the campaign is in the office. 
 
If you wish to use the telephone to call a campaign member, please ask the experimenter 
for a “phone.” 
 
When you are asked by Maria, please send the schedule to the other team members.  
 
Once you have done this, wait for any email responses from the team members, and follow any 
directions they give you.  
 
Don’t forget to “think aloud” as much as you can. 

Figure C-14: Initial Task Description (NoColor and Color )



392 CHAPTER C. Johnny 2 User Test Details

Page 1 of 2 Date ________________ 
Subject #: _______________________ Printed 1/12/2005 2:55 PM 

 1 

Initial Task Description 
You are the campaign coordinator. 
 
You are working for the campaign manager, Maria Page, mpage@campaign.ex.com 
 
The other members of the campaign team are: 
 
 Paul Butler, butler@campaign.ex.com   
 Ben Donnelly, bend@campaign.ex.com 
 Sarah Carson, carson@campaign.ex.com 
 Dana McIntyre, dmi@campaign.ex.com 
 
 
NOTE: Digital IDs for Paul, Ben, Sarah and Dana have been pre-loaded onto your 
machine by the IT Coordinator. 
 
Digital IDs allow Outlook Express to authenticate the sender of email messages.  
 

A Yellow Border will appear around an email message the first time a particular Digital 
ID is used with an email address. 

 
A Green Border will appear around an email message each successive time that a 
particular Digital ID is used with an email address. 

 
A Red Border will appear around an email message if the Digital ID used with that email 
address changes. This might indicate that the sender has moved to a different computer, 
or that someone else is trying to impersonate the sender.  

 
A Gray Border indicates that no Digital ID was used to send the message. The sender 
might have forgotten or have a computer problem. Alternatively, the message might be 
sent by someone else who is trying to impersonate the sender. 

 
You have arrived early for work. No one else from the campaign is in the office. 
 
If you wish to use the telephone to call a campaign member, please ask the experimenter 
for a “phone.” 
 
When you are asked by Maria, please send the schedule to the other team members.  
 
Once you have done this, wait for any email responses from the team members, and follow any 
directions they give you.  
 
Don’t forget to “think aloud” as much as you can. 

Figure C-15: Initial Task Description (Color+Briefing )



C.2. DESCRIPTION OF THE TESTING PROCESS 393

been previously drafted: no spontaneous messages were sent from the experimenter to the sub-
ject. Subjects were permitted to ask questions to the experimenter during the test. Questions
about Outlook Express (other than OE’s handling of digital certificates) were generally answered,
but whenever a question regarding digital certificates or CoPilot were asked, the experimenter
responded “I don’t know” or with a confused shrug of the shoulders.

C.2.4 Messages sent to subjects
Subjects were sent a series of eight messages, reprinted below. In each case subjects were allowed to
read, evaluate, and respond to the messages before the follow-up message was sent. On occasion
subjects said that they were going to ignore a message. In these cases, a period of one or two
minutes was allowed to pass before next message was sent; in some cases, the subject changed
their mind during this time period and decided to respond to a spoof message because they had
reconsidered.

Message #1
From: Maria Page <mpage@campaign.ex.com>
To: Campaign Coordinator <ccord@campaign.ex.com>
Subject: Welcome to the Campaign! Signed: Yes; Digital ID 3400
CoPilot Color: Yellow
Text: Dear Campaign Coordinator,

Please click “reply” and send me a brief email message when you read this to let me know you are
ready.

Hi there! Once again, I wanted to thank you for taking time out of your busy schedule to work with us here
on the Senator’s re-election campaign. It’s just a few weeks to go before the election and we really, really,
really can use your help!

I’ve cc’ed the other team members on this email. They are:

• Paul Butler butler@campaign.ex.com , our campaign finance manager and chief election strate-
giest.

• Ben Donnelly bend@campaign.ex.com , who is officially Paul’s assistant, but who also runs the IT
for our campaign. Ben’s also a full-time student at the University of Pennsylvania.

• Sarah Carson carson@campaign.ex.com , who is a full-time graphics designer. She designed that
slick bumper sticker that is on the back of your car! She also does all of our press releases.

• Dana McIntyre dmi@campaign.ex.com , who is our office manager. Normally Dana would be there
with you in the office, but she’s out this week because her husband is having surgery! (Don’t worry,
it’s a routine procedure.)

Because Dana is out of the office this week, we’re going to be relying on you to help out in a big way! Don’t
be nervous, but we are counting on you!

Please click “reply” and send me a brief email message when you read this to let me know you are
ready.

—Maria

Comment: This is the initial message from Maria to the Campaign Coordinator. The message displays as yellow
because it is the first message received from the email address mpage@campaign.ex.com. Maria cc’s the other

butler@campaign.ex.com
bend@campaign.ex.com
carson@campaign.ex.com
dmi@campaign.ex.com


394 CHAPTER C. Johnny 2 User Test Details

campaign members on the email—Paul Butler, Ben Donnelly, Sarah Carson, and Dana McIntyre. CoPilot
running on Maria’s computer detects the CC and automatically includes the S/MIME certificates for each of
these identities. Because this feature of CoPilot was not operational, the copy of Outlook Express running on

Maria’s computer had these S/MIME certificates pre-loaded. Subject’s initial briefing also said that Digital IDs
for these individuals had been pre-loaded onto the Campaign Coordinator’s computer by the IT Coordinator.

Message #2
From: Maria Page <mpage@campaign.ex.com>
To: Campaign Coordinator <ccord@campaign.ex.com>
Subject: Speaking dates for Pennsylvania Signed: Yes; Digital ID 3400
CoPilot Color: Green
Text: Dear Campaign Coordinator,

Thanks for your email. It’s great that you are settling in. There is chocolate in the file cabinet on your left
if you want any. Also, feel free to use the phone for phone calls, but be sure that at least one phone line is
available at all times.

In any event, I want you to know that we have finalized the speaking dates for Pennsylvania. Here they are:

• Monday 10/10 Harrisburg

– 9:30am - Rally on the Green. Lots of media attention.
– noon - Photo-op at city library.
– 3:30 - Sit-in at the mayor’s office.

• Saturday 10/15 Hershey

– 10:00am - chocolate factory tour.
– 6:00pm - campaign dinner to honor chocolate workers.

• Tuesday 10/18 Philadelphia

– 10:00am - “Break the bell ” at the Liberty Bell.
– 4:00pm - Constitution 2 at Liberty Hall.

• Friday 10/21 Pittsburgh

– 10:00am - Toxic workshop at Pittsburgh Airport.
– 2:00pm - Meet the workers at the docks.

It’s important that we get this information out to the other members of the campaign. But we are not
releasing this information to the public until the day of each event. If the opposing campaign discovers
our schedule, they will arrange to have protesters show up at our events! That would be really, really bad.

Indeed, the other campaign may be trying to steal this information!

I’m having a problem with my email right now.

Please send the schedule to Paul Butler butler@campaign.ex.com and Dana McIntyre dmi@campaign.
ex.com . Thanks!

butler@campaign.ex.com
dmi@campaign.ex.com
dmi@campaign.ex.com


C.2. DESCRIPTION OF THE TESTING PROCESS 395

Remember, if anybody on our team asks for a copy of the schedule, please send it out to them! But please
don’t send it to anyone else.

—Maria

Comment: This is the second message from Maria to the Campaign Coordinator. The message displays in green
because it is the second message received from the email address mpage@campaign.ex.com. This message

contains the “secret” that must be distributed to the other campaign members and simultaneously shielded from
the attackers. In this message Maria asks that the Campaign Coordinator send the secret to

butler@campaign.ex.com and to demi@campaign.ex.com.

Message #3
From: Ben Donnelly <bend@campaign.ex.com>
To: Campaign Coordinator <ccord@campaign.ex.com>
Subject: I need a copy of the Pennsylvania dates! Signed: Yes; Digital ID 4159
CoPilot Color: Green
Text: Dear Campaign Coordinator,

Hi! This is Ben Donnelly. I run the computer systems for the campaign. I’m also a full-time student at Penn.
Welcome on board!

I just got off the phone with Maria. She said that you have a copy of the speaking dates for Pennsylvania and
that you could email them to me.

Can you please email me the schedule? I’m trying to make sure that we will be able to coordinate
wireless Internet coverage at each of the stops.

Thanks.

—bend

Comment: This is the first message from Ben Donnelly. It is green, however, because it the Digital ID was
installed on the computer by the Campaign IT Coordinator and because Maria has previously sent Ben’s key to
the Campaign Coordinator. Thus, the key arrived from two trusted sources. In this message Ben asks for a copy

of the schedule. Since it really is from Ben, the Campaign Coordinator should send the secret.



396 CHAPTER C. Johnny 2 User Test Details

Message #4
From: Paul J. Butler <butler@campaign.ex.com1>
To: Campaign Coordinator <ccord@campaign.ex.com>
Subject: Something is wrong with my email! Signed: Yes; Digital ID 9950
CoPilot Color: Red
Text: Dear Campaign Coordinator,

Did you get my previous email? Something screwy is going on. I sent you a long message and it bounced...
Did you get it?

Anyway, it’s urgent that I get a copy of the Candidate’s schedule within the next half-hour—I’m about to sign
a deal with a major outdoor advertising company.

I need you to send me a copy of the candidate’s schedule to both this account and my Hotmail account? You
can find the address in the campaign phone book—use Paul_J_Butler@Hotmail.com .

Thanks!

Comment: This is the first attack message. The attacker uses a self-signed certificate which necessarily has a
different ID than the ID that was passed to the Campaign Coordinator by Maria Page. (In this example. the

Digital ID for the attack certificate is 9950 while the one for “real” Paul Butler is 3410.) The message is
displayed in red because the Digital ID used for message #4 does not match the original Digital ID that was seen

for this email address. This is a spoof message that could easily be sent by an attacker. The Campaign
Coordinator should not follow the instructions in Message #4 because it does not come from a trusted source.

Some subjects were confused by this message. One subject didn’t understand why the campaign was trying to
sign an outside advertising contract to publicize a schedule that is being kept secret. (The subject didn’t realize
that it’s reasonable to purchase outdoor advertising space in advance at locations of planned rallies—both to
get the coverage and to prevent the opposing campaign from purchasing the space for attack advertisements.)
Another subject didn’t understand why there would be a rush to purchase a contract for a campaign rally that

was scheduled for many months in the future.

Message #5
From: Sarah Carson <sara carson personal@hotmail.com>
To: Campaign Coordinator <ccord@campaign.ex.com>
Subject: Dates for Pennsylvania? Signed: Yes; Digital ID 5999
CoPilot Color: Yellow
Text: Dear Campaign Coordinator,

Hi there! I’m working from home this week and can’t access my email from work, so I’m using HotMail.

I’m putting together the art for the Pennsylvania events. I need dates! Can you please send them to my

1This message has an extra header, Reply-To: paul j butler@hotmail.com, which causes replies to go to the attacker’s
hotmail account

Paul_J_Butler@Hotmail.com


C.2. DESCRIPTION OF THE TESTING PROCESS 397

HotMail account? It’s sara_carson_personal@hotmail.com .

I’m using HotMail to send this message, so you can probably just hit “reply. ”

Thanks so much. I really appreciate this.

—sc

Comment: This is second attack message. In this escalation of the attack, the attacker has created a new
HotMail identity that has a name similar to Sarah Carson’s (although the Hotmail account is actually

misspelled). The message is displayed in yellow because it is the first time that CoPilot has seen a signed email
message from this email address; CoPilot has no way of knowing if the Digital ID is legitimate or not because it
has never seen the email address sara carson personal@hotmail.com before. This message is signed so it carries

a digital certificate for sara carson hotmail@hotmail.com. Outlook Express sees this certificate and
automatically incorporates it into the Campaign Coordinator’s address book, making it possible to send a

digitally signed, digitally encrypted message to Attacker Sara. Several users fell for this ruse.

Message #6

From: Maria Carson <mpage@campaign.ex.com>
To: Campaign Coordinator <ccord@campaign.ex.com>
Subject: Please send the schedule to Butler and Sarah! Signed: No
CoPilot Color: Gray
Text: Dear Campaign Coordinator,

Hi there! I’m working from home this week and can’t access my email from work, so I’m using HotMail.

I’m putting together the art for the Pennsylvania events. I need dates! Can you please send them to my
HotMail account? It’s sara_carson_personal@hotmail.com .

I’m using HotMail to send this message, so you can probably just hit “reply. ”

Thanks so much. I really appreciate this.

—sc

Comment: This is the third attack message. In this message, the attacker has forged a message from the mpage
email address which tells the Campaign Coordinator to follow the instructions in the previous attack messages.

This style of attack, which involves using multiple personae, is in the style of the attacks described in Kevin
Mitnick’s classic The Art of Deception[MS02].

sara_carson_personal@hotmail.com
sara_carson_personal@hotmail.com


398 CHAPTER C. Johnny 2 User Test Details

Message #7
From: Maria Carson <mpage@campaign.ex.com>
To: Campaign Coordinator <ccord@campaign.ex.com>
Subject: Please send the schedule to Ben and Sarah Signed: Yes; Digital ID 3400
CoPilot Color: Green
Text: Dear Campaign Coordinator,

Hi once again! We’re going to be wrapping things up here pretty soon. You’ve been really great so far.

Can you please send a copy of the schedule to Ben Donnelly (bend@campaign.ex.com ) and to Sarah
Carson (carson@campaign.ex.com )?

Thanks!

—Maria

Comment: This message is the third legitimate message sent by Maria Carson to the Campaign Coordinator. In
it, Carson asks the Coordinator to send the schedule to Sarah Carson, the one Campaign volunteer who has not

legitimately received the schedule.

Message #8
From: Maria Carson <mpage@campaign.ex.com>
To: Campaign Coordinator <ccord@campaign.ex.com>
Subject: One last thing... Signed: Yes; Digital ID 3400
CoPilot Color: Green
Text: Dear Campaign Coordinator,

Thanks so much for all of your help today. It’s now time for the Debriefing Interview!

—Maria

Comment: This message is the fourth legitimate message sent by Maria Carson to the Campaign Coordinator. It
informs the test subject that the test is over.

bend@campaign.ex.com
carson@campaign.ex.com


C.2. DESCRIPTION OF THE TESTING PROCESS 399

Discussion
The astute reader may be confused by the fact that the experimental subject was asked to send the
same schedule to Ben Donnelly twice—first by Ben, then later by Maria. The explanation is that
Maria didn’t know that Ben had previously asked for a copy of the schedule, and wants to be sure
that he has received it.

C.2.5 Debriefing interview (NoColor)
At the Conclusion of the test, the experimenter turned over the “Initial Task Description” document
to reveal the “Debriefing Interview” that was on the other side. Subjects in the NoColor group were
given the Debriefing Interview shown in Figure C-16, while those in the Color and Color+Briefing
groups were given the Debriefing Interview shown in Figure C-17.

Subjects were permitted to answer the debriefing interview questions in writing or verbally. After
the formal questionnaire, the experimenter might ask participants additional questions based aimed
at having the subject clarify seemingly contradictory actions. Any questions on the part of the
subject were then answered at this time. At this point the recording was stopped, the subject was
thanked and paid $20.



400 CHAPTER C. Johnny 2 User Test Details

Page 2 of 2 Date ________________ 
Subject #: _______________________ Printed 1/12/2005 2:55 PM 

 2 

Debriefing Interview: 
Interview to follow the CoPilot Usability Test. Please write your answers below or 
speak them to the experimenter. Thank you! 
 

1. On a scale of 1 to 5, how important did you think the security was in this 
particular test scenario, where 1 is least important and 5 is most important? 

 
1 2 3 4 5 

 
2. Do you think that you sent the schedule to someone not associated with the 

campaign? 
Yes  No  I don’t know 

 
 Comments: 
 
 
 

3. Was there anything you thought about doing but then decided not to bother with? 
 
 

4. Is there anything you think you would have done differently if this had been a real 
scenario rather than a test? 

 
 

5. Were there any aspects of the software that you found particularly helpful? 
 
 

6. Were there any aspects of the software that you found particularly confusing? 
 
 
 

7. Are there any other comments you’d like to make at this time? 

Figure C-16: Debriefing Interview (NoColor )



C.2. DESCRIPTION OF THE TESTING PROCESS 401

Page 2 of 2 Date ________________ 
Subject #: _______________________ Printed 1/12/2005 2:56 PM 

 2 

Debriefing Interview: 
Interview to follow the CoPilot Usability Test. Please write your answers below or 
speak them to the experimenter. Thank you! 
 

1. On a scale of 1 to 5, how important did you think the security was in this 
particular test scenario, where 1 is least important and 5 is most important? 

 
1 2 3 4 5 

 
2. Do you think that you sent the schedule to someone not associated with the 

campaign? 
Yes  No  I don’t know 

 
 Comments: 
 
 
 

3. Did you notice the colored borders surrounding the messages?  
 
 

4. What did the “green” border mean? 
 
 

5. What did the “red” border mean? 
 
 

6. What did the “yellow” border mean? 
 
 

7. What did the “grey” border mean? 
 
 

8. Was there anything you thought about doing but then decided not to bother with? 
 
 

9. Is there anything you think you would have done differently if this had been a real 
scenario rather than a test? 

 
 

10. Were there any aspects of the software that you found particularly helpful? 
 
 

11. Were there any aspects of the software that you found particularly confusing? 
 
 
 

12. Are there any other comments you’d like to make at this time? 

Figure C-17: Debriefing Interview (Color and Color+Briefing )



402 CHAPTER C. Johnny 2 User Test Details

C.3 Summaries of Test Sessions
C.3.1 Subjects and Ordering
A total of 44 individuals participated in the MIT COUHES-approved protocol between December
21 and January 29. (Eight additional individuals participated in a “pre-test” that took place during
the first two weeks of December.)

ID 2 Age3 Education and Background4 Years5 Regular Trial
emailing email prog6 Date Time

S1 NC 26 pre-PhD, oceanographic engineering 15 Pine Dec 21 1:00 pm
S2 NC 63 ms, “science” 5 Yahoo Dec 21 2:57 pm
S3 C 23 B.S. biology/biochem 8 MIT Webmail Dec 22 3:11 pm
S4 C 23 grad degree, engineering 10 Outlook Jan 4 11:56 am
S5 C 23 ms student, EECS 9 Evolution Jan 4 1:00 pm
S6 C 22 some college, business 6 Eudora Jan 6 3:00 pm
S7 C 44 ms physics, working on CS PhD 10+ Yahoo Jan 7 8:55 am
S8 NC 58 some college, now an accounting clerk 8 Yahoo Jan 7 12:10 pm
S9 NC 48 some college, applied math 20 Athena Jan 7 1:15 pm
S10 C 55 BS, massage therapist 14 Hotmail Jan 7 2:03 pm
S11 C 28 pre-PhD, in Education 11 Eudora Jan 7 3:00 pm
S12 C 33 MS, Engineering 10 MIT Webmail Jan 10 10:20 am
S13 C+B7 55 grad degree, arts 5 Webmail Jan 11 10:00 am
S14 C+B 61 Phd engineering, materials 13 AOL Jan 11 2:02 pm
S15 NC 37 BS, science writer and editor 9 Eudora Jan 12 9:40 am
S16 C+B 22 some college, biology 9 MSN Hotmail Jan 12 4:06 pm
S17 NC 30 MS, mechanical engineering 10 MIT Webmail Jan 12 5:23 pm
S18 C+B 24 some grad, linguistics and philosophy 11 Outlook Express Jan 13 12:10 pm
S19 C 30 undergrad, education 8 Outlook Jan 13 1:42 pm
S20 C+B 19 some college; science and business 10+ MIT Webmail Jan 14 12:05 pm
S21 NC 23 masters student, ocean engineering 9 Outlook & Webmail Jan 14 3:30 pm
S22 C+B 52 MBA; does market research 5 Yahoo Jan 17 2:10 pm
S23 C 21 senior in mathematics 7 Webmail, OE Jan 19 9:30 am
S24 NC 44 some college; software developer 10 Eudora (PC) Jan 20 1:11 pm
S25 C 54 masters science writing; science writer 10 Eudora (Mac) Jan 21 3:15 pm
S26 C+B 43 college; now import/export mgr. 6 Excite Webmail Jan 21 4:15 pm
S27 C+B 48 master’s degree; IS helpdesk 15 pine Jan 25 9:40 am
S28 C 18 freshman; chemistry 7 Outlook Jan 25 12:05 pm
S29 NC 60 MA; linguistics, writing 5 AOL & Yahoo Jan 25 1:30 pm
S30 C+B 46 grad; finance 10 Eudora Jan 25 3:39 pm
S31 C+B 50 some grad (business); now a paralegal 10 Outlook Jan 25 5:15 pm
S32 C+B 18 freshman; english 7 webmail & FirstClass Jan 26 12:59 pm
S33 C 22 some grad; science, astronomy 8 pine & Outlook Jan 27 1:00 pm
S34 C+B 21 college; finance 10 Outlook & Hotmail Jan 27 3:00 pm
S35 NC 28 freshman 4 Webmail & Eudora Jan 27 5:00 pm
S36 C+B 19 senior; engineering 8 Webmail & Evolution Jan 27 6:30 pm
S37 NC 20 junior; mechanical engineering 7 Webmail Jan 28 10:45 am
S38 NC 19 sophomore; biology 8 Eudora & webmail Jan 28 12:18 pm
S39 C+B 35 Phd; physics 7 Yahoo Jan 28 2:00 pm
S40 NC 22 senior; mechanical engineering 6 MIT Webmail Jan 28 3:35 pm
S41 C+B 30 grad student; aero astro 9 pine Jan 28 4:30 pm
S42 C 18 freshman; engineering 8 Eudora; Outlook Express Jan 29 11:56 am
S43 NC 22 college; computer science 9 gmail; OE Jan 29 1:06 pm
S44 C+B 20 sophomore; chemistry 8 gmail; First Class Jan 29 2:18 pm

2NC: NoColor; C: Color; C+B: Color+Briefing
3intake questionnaire, question 1
4intake questionnaire, questions 2, 3
5intake questionnaire, question 4
6intake questionnaire, question 8
7S13 used a preliminary version of the briefing. This user uncovered a variety of problems with the Intervention and,

as a result, the decision was made to count this subject as a preliminary or “pre-test” participant. S13’s results are not
included in our reported statistics.



C.3. SUMMARIES OF TEST SESSIONS 403

C.3.2 Key for understanding tables
The following symbology is used in the following sections to discuss the actions and apparent metal states of the experimental subjects:

Symbol Meaning Discussion

“Sent” Subject sent email message as requested.

“Not sent” Subject made a conscious decision not to send the message.
“Signed” Message was signed with the Subject’s key.
“Sealed” Message was sealed (encrypted) using the actual recipient’s key—and not

necessarily the intended recipient’s key. (PGP makes it possible to seal
a message for one recipient and email it to another, but most S/MIME
implementations, including Outlook Express, do not have this capability.

“Spoofed” Subject sent the schedule to one of the Hotmail addresses controlled by
the Attacker.

“Tried” Subject tried to send an encrypted message to Attacker Paul’s Hotmail Ac-
count, but was stopped by Outlook Express because there was no suitable
Digital ID on file for Attacker Paul. These are scored as successful attacks,
as the attack would have been successful if Paul had simply attached a
digital certificate for his HotMail address to his attack message. The sub-
jects were saved not by their own cleverness, but by the experimenter’s
oversight.



404 CHAPTER C. Johnny 2 User Test Details

C.3.3 Results: NoColor
Subject sent schedule when requested by Avoided Sent

Sec. Attacker Attacker Attacker attacks sealed
ID score Maria 1 Maria 2 Ben Paul Sarah Maria any all any all
S1 4
S2 5
S8 5 a

S9 5 b

S15 4 c d

S17 n/ae

S21 3
S24 ?
S29 5 f n/a
S35 5 g

S37 5 n/a
S38 5
S40 4 h

S43 5 i j k

14 ?? 14/14 11/12 14/14 6/14 11/14 9/11 6/14 7/14 3/14
8 7 10 4 6 4 43% 0% 50% 21%
6 5 6 4/14 6 1

aCounted as a spoof even though message was not actually sent; S8 would have sent the email to Attacker Sarah, but
didn’t try because she thought it wouldn’t work.

bCounted as a spoof, even though the message was not actually sent until after the message from Attacker Maria was
received. Like S8, S9 assumed that Hotmail addresses couldn’t receive digitally signed e-mail, but unlike S8, S9 sent
directions to Attackers Paul and Sarah telling them how to make Digital IDs. When S9 later tried to send Attacker Sarah
the digitally signed message, it worked.

cS15 wouldn’t send the schedule to Ben and Sara’s campaign address because she had already sent the schedule to
Paul and Sara’s Hotmail addresses, at attacker Maria’s request, and thought that the legitimate message #7 was in fact
an attack message.

dS15 apologized for the delay.
eThere was no need for Attacker Maria to send her message if Attacker Paul and Attacker Sarah were successful in

their attacks. The experimenter was inconsistent and sometimes sent the message anyway, however.
fS29 didn’t read the message and thought that he had already complied
gBut he couldn’t send the message to Attacker Paul because he didn’t have a public key for Attacker Paul, and he

wanted to send the schedule encrypted.
hS40 thought that the emails had already been sent.
iS43 forgot to send the message to Sarah.
jSent with the Subject: line “Did you send this?”
kSent with a lecture that Paul and Sarah should “create more obscure account to avoid press leakage, remember: we

are in the business of information and secrets!!!



C.3. SUMMARIES OF TEST SESSIONS 405

C.3.4 Results: Colors (CoPilot Engaged)
Subject sent schedule when requested by Avoided Sent

Sec. Attacker Attacker Attacker attacks sealed
ID score Maria 1 Maria 2 Ben Paul Sarah Maria any all any all
S3 5
S4 4
S5 4 n/a
S6 5
S7 4 a b

S10 5
S11 4 c

S12 5 d n/a
S19 5
S23 5 e

S25 n/af

S28 5 n/a
S33 1
S42 5
14 4.4 13/14 13/13 11/12 7/14 7/14 6/12 7/14 4/14 5/14 5/14

11 11 10 5 6 3 50% 29% 36% 36%
5 4 3 1 1

2/14 1/12

aS7 sent the schedule signed and encrypted to all campaign members as soon as it was received.
bS7 didn’t follow Ben’s request because the mail had already been sent.
cS11 forgot to send the schedule to Sarah Carson
dS12 didn’t realize Message #2 contained instructions that needed to be acted upon
eS23 thought that the message had previously been sent to Ben; in fact, it had been sent to Paul.
fS25 refused to provide a rating for security. “I have no idea what the security was. I don’t know if it was important

or not, because I wasn’t aware of any security ever.”



406 CHAPTER C. Johnny 2 User Test Details

C.3.5 Results: Colors + Briefing
Subject sent schedule when requested by Avoided Sent

Sec. Attacker Attacker Attacker attacks sealed
ID score Maria 1 Maria 2 Ben Paul Sarah Maria any all any all
S14 5 a

S16 5
S18 b c

S20 5 d n/ae f g h

S22 3 i

S26 j

S27 5 k

S30 5 l

S31 5 n/a
S32 5 m n

S34 4 o p

S36 4 q r

S39 5
S41 5 s

S44 5 t

15 ?? 13/15 14/15 13/14 2/15 9/15 6/14 13/15 5/15 3/15 2/15
12 11 13 1 8 4 87% 33% 20% 13%
4 3 4 3 1

aS14 inadvertently sent campaign worker Sara Carson’s copy of the schedule to attacker Sara Carson’s hotmail account
due to a usability error in the Outlook Express Interface. Not scored as a spoof in this study because the message was
sent in response to campaign worker Maria Page’s legitimate email message #7.

bTwo sets of messages sent: one signed, and one both signed and sealed.
cBut only sent to Sarah; “I’ve only sent the message to sarah, for security reasons.”
dTwo copies sent: one not signed, one signed
eWhen he received the schedule from Maria, he immediately sent the schedule to every member of the campaign

team.
fSent email to Maria asking for confirmation of new address.
gSent email to Maria asking for confirmation of new address.
hAssumed message from Attacker Maria was his confirmation.
iAssumed mail already sent to Ben and that “Sara is at home and wants the info via her home hotmail account.”
jActually, S26 sent the message to Attacker Sarah because of the OE6 address book usability bug.
kSplit message into two parts in an attempt to foil any possible attacker.
lCopy sent to Ben as well, because he is the IT coordinator and Paul clearly has problems.

mMessage bounced because Sarah’s name was spelled correctly.
nWith new, correct spelling for Attacker Sarah.
oSent follow-up to Sarah, asking her if she has a HotMail address.
pAsked Miria to send the message herself.
qSent to Sarah but not Ben
rAsked Paul for his favorite color in an attempt to verify the HotMail persona.
sAsked for confirmation with a digitally signed message.
tSent email to Ben asking why Maria was not using her Digital ID

C.4 OpenSSL Configuration
Although there are several commercial and Open Source packages available for creating X.509v(3)
certificates, the package of choice appears to be the OpenSSL package. OpenSSL runs on many
different computers and has a tremendous cryptographic library, including a full S/MIME imple-



C.4. OPENSSL CONFIGURATION 407

mentation. There are also many tutorials on the Internet that explain how to use OpenSSL to create
S/MIME certificates and import those certificates into a variety of applications. One warning sign,
however, is that all of these tutorials have different instructions, and many of these instructions are
contradictory.

At the root of many of these problems it he fact that OpenSSL was written primarily as a subroutine
library. The OpenSSL command-line executable was written as a test bench for this library. it was
never designed to be used as a stand-alone application. Thus, the program has poor error handling,
poor data handling, and lousy support for interactive use. On the other hand, it is widely used.

OpenSSL Configuration File
OpenSSL requires that a configuration file be present in order for it to be used. This configuration
file specifies, among other things, the extensions that OpenSSL will support in the X.509v(3) cer-
tificates that it creates and processes. The first complication was that different versions of OpenSSL
come with different configuration files, and these different files have different support for exten-
sions. These extensions are, in turn, interpreted differently by different S/MIME clients. The
OpenSSL configuration file used to create the certificates used in the Johnny 2 experiment appear
in Section C.4.1 on page 410.

The next step in the process of creating the S/MIME certificates was to decipher the OpenSSL
commands for creating a certificate authority. Examples on the Internet invariably include this
step, but the certificate authority that they create is not scriptable: there is a passphrase on the CAs
private key and most of the creation commands need to be typed interactively.

Creating the CA
It was experimentally determined that a scriptable certification authority could be created satisfac-
torily with the following commands:

% mkdir certs
% echo ‘‘10’’ > certs/serial
% cp -f /dev/null certs/index.txt
% openssl req -new -x509 -nodes -keyout certs/cakey.pem \

-out certs/cacert.pem -days 1000 \
-subj ’/C=US/ST=California/L=Palo Alto/O=Certification Authority/CN=Certification Manager’

Some explanation is in order. The first like creates the certs directory which is where the
“database” that holds the CA files will be kept. The file certs/serial consists of a single
line that stores the hexdecimal number of the next certificate that the CA will issue. The file
certs/index.txt is a text file that contains the serial number and subject of every certificate
that the CA has allegedly created. (Or, at least, those that have been recorded.)

Now we are ready to consider the options for the OpenSSL command:

certs


408 CHAPTER C. Johnny 2 User Test Details

req The CA request system should be employed. This has the effect of
creating a private key and a corresponding public key.

-new A new certificate should be created.
-x509 Make an x509 self-signed certificate rather than a certificate signing

request.
-nodes “No DES.” That is, do not use DES (or any other symmetric en-

cryption algorithm) to encrypt the certificate’s private key. It is a
common mistake to read this argument as the plural of the word
“node.” It is important that the CA private key be stored without
encryption—otherwise, the experimenter would have been forever
typing and retyping passphrases while trying to get everything set
up.

-keyout certs/cakey.pem Place the private key in the specified file.
-out certs/cacert.pem Place the public key in the file certs/cacert.pem.
-days 1000 Make the certificate good for a little less than 3 years.
-subj ’. . . ’ Specifies the subject that will be present on the X509 certificate.

Notice that this field is itself divided into subfields for city, state,
locale, organization, and Common Name.

Creating each persona certificate
Each persona certificate is created with more-or-less the same set of commands. Here are the
commands for for creating the Campaign Coordinator’s public/private keypairs and OpenSSL cer-
tificate:

% echo "7283" > certs/serial
% CAMPAIGN=/C=US/ST=Pennsylvania/L=Philadelphia/O=Campaign Coordination
% openssl req -config openssl.cnf -new -nodes \

-subj ’\$(CAMPAIGN)/CN=Campaign Coordinator/emailAddress=ccord@campaign.ex.com’ \
-keyout certs/ccord.key -out certs/ccord.csr

% openssl ca -batch -config openssl.cnf -in certs/ccord.csr -out certs/ccord.crt

The openssl req command in this example is much the same as the req command that was used
to create the CA key, with two exceptions, both having to do with certificate’s subject field. First,
because this certificate will be used for S/MIME, it has the “emailAddress=” subfield as specified
by PKCS #9 and referenced in RFC 3850.[Ram04a] Second, because the “emailAddress=” field
makes this command far, far too long for one line, the common fields for campaign workers have
been placed in the environment variable CAMPAGIN. Because the “-x509” switch is not present, the
“req” subcommand creates a certificate signing request (CSR), rather than a self-signed request.

Once the CSR has been created, it is necessary to sign the certificate. This operation is performed
by the OpenSSL “ca” command. The meanings of the options specified are reasonably clear and
need not be explained.

As it turns out, Windows cannot import an x509 private/public key pair unless the two are com-
bined in a PKCS12 file. This combination can be done using the following command:



C.4. OPENSSL CONFIGURATION 409

% openssl pkcs12 -export -passout pass:"" -in certs/ccord.crt \
-inkey certs/ccord.key -out certs/ccord.pfx -name ’Campaign Coordinator’

The “-passout” command specifies the password that is used to encrypt the private key. OpenSSL
supports numerous password encryption schemes; in this case, the “pass:” character string specifies
that the rest of the argument will specify a password as a plaintext character string. We specify no
password because passwords are a drag to type when setting up certificates for fictional personas.

Importing the Johnny 2 S/MIME Certificates Windows and OE6
Once certificates were created, they needed to be imported into Windows and OE6. Importing
the certificates was imported because the Campaign Coordinator is informed “Digital IDs for Paul,
Ben, Sarah and Dana have been pre-loaded onto your machine by the IT Coordinator.” One advan-
tage of importing these certificates is that it allowed the Campaign Coordinator to send encrypted
email messages to each of the campaign participants without having to first obtain their public key
certificates. Instead of relying on importation, the scenario could have relied on CoPilot’s support
for third-party certificates, since the first message from Maria Page is cc’ed to the other campaign
members and therefore includes third-party certificates for those individuals.

Here once again, the proper way to do this under Windows was not immediately clear. We were
pleased to discover that the Campaign Coordinator’s certificate could be imported by double-
clicking on the PKCS12 file and adding it to the appropriate Windows certificate store with the Cer-
tificate Import Wizard.(check name). Attempts to import the other certificates in this way proved
fruitless, however.

After much experimentation, it was determined that the easiest way to import third-party S/MIME
certificates into Outlook Express was to email Outlook Express S/MIME messages that were signed
with the certificates that we desired to import. This created both the OE6 address book entry and
imports the certificate into the Windows certificate store. (Double-clicking on the certificate and
importing it with the appropriate Windows wizard imports the certificate to the certificate store,
but did not create the necessary Outlook Express address book entry.) For each certificate this
generated an Outlook warning because the CA key that was used to sign these certificates was not
explicitly trusted.8 We were able to edit the trust parameters for each S/MIME certificate and cause
Outlook Express to explicitly trust that certificate in particular. In this manner, we were able to
get OE6 to simulate the Key Continuity manner—at least to the point that OE6 would not warn us
when it saw these certificates. Once again, if CoPilot were fully operational, these manual “Wizard
of Oz” steps would have been performed automatically by the software.

8Well, we didn’t want to trust the CA—it’s private key was compromised because it wasn’t stored encrypted on the
hard drive!



410 CHAPTER C. Johnny 2 User Test Details

C.4.1 OpenSSL configuration file
This section includes the relevant statements (but not the comments) of the Johnny 2 OpenSSL
configuration file

HOME = .
RANDFILE = $ENV::HOME/.rnd
oid_section = new_oids

[ new_oids ]

[ ca ]
default_ca = CA_default # The default ca section

[ CA_default ]

dir = certs/ # Where everything is kept
certs = $dir/certs # Where the issued certs are kept
crl_dir = $dir/crl # Where the issued crl are kept
database = $dir/index.txt # database index file.
new_certs_dir = $dir # default place for new certs.

certificate = $dir/cacert.pem # The CA certificate
serial = $dir/serial # The current serial number
crl = $dir/crl.pem # The current CRL
private_key = $dir/cakey.pem # The private key
RANDFILE = $dir/.rand # private random number file

x509_extensions = usr_cert # The extentions to add to the cert

name_opt = ca_default # Subject Name options
cert_opt = ca_default # Certificate field options

default_days = 365 # how long to certify for
default_crl_days= 30 # how long before next CRL
default_md = md5 # which md to use.
preserve = no # keep passed DN ordering
policy = policy_match

# For the CA policy
[ policy_match ]
countryName = match
stateOrProvinceName = optional
organizationName = optional
organizationalUnitName = optional
commonName = supplied
emailAddress = optional

[ policy_anything ]
countryName = optional
stateOrProvinceName = optional
localityName = optional
organizationName = optional
organizationalUnitName = optional
commonName = supplied



C.4. OPENSSL CONFIGURATION 411

emailAddress = optional

[ req ]
default_bits = 1024
default_keyfile = privkey.pem
distinguished_name = req_distinguished_name
attributes = req_attributes
x509_extensions = v3_ca # The extentions to add to the self signed cert
string_mask = nombstr

[ req_distinguished_name ]
countryName = Country Name (2 letter code)
countryName_default = US
countryName_min = 2
countryName_max = 2
stateOrProvinceName = State or Province Name (full name)
stateOrProvinceName_default = Pennsylvania
localityName = Locality Name (eg, city)
localityName_default = Philadelphia

0.organizationName = Organization Name (eg, company)
0.organizationName_default = Campaign Coordination

organizationalUnitName = Organizational Unit Name (eg, section)
organizationalUnitName_default = Certification Authority

commonName = Common Name (eg, YOUR name)
commonName_max = 64
emailAddress = Email Address
emailAddress_max = 64

[ req_attributes ]
challengePassword = A challenge password
challengePassword_min = 0
challengePassword_max = 20

unstructuredName = An optional company name
[ usr_cert ]

basicConstraints = CA:FALSE
nsCertType = client, email, objsign
keyUsage = nonRepudiation, digitalSignature, keyEncipherment
nsComment = "OpenSSL Generated Certificate"

subjectKeyIdentifier = hash
authorityKeyIdentifier = keyid,issuer:always
subjectAltName = email:copy

[ v3_req ]
basicConstraints = CA:FALSE
keyUsage = nonRepudiation, digitalSignature, keyEncipherment

[ v3_ca ]
subjectKeyIdentifier = hash



412 CHAPTER C. Johnny 2 User Test Details

authorityKeyIdentifier = keyid:always,issuer:always
basicConstraints = critical,CA:true
keyUsage = cRLSign, keyCertSign
nsCertType = sslCA, emailCA
subjectAltName = email:copy
issuerAltName = issuer:copy

[ crl_ext ]
authorityKeyIdentifier=keyid:always,issuer:always

[ smime_all ]
nsCertType = email
keyUsage = critical,digitalSignature,keyEncipherment
extendedKeyUsage = emailProtection
subjectKeyIdentifier = hash
authorityKeyIdentifier = keyid,issuer:always
subjectAltName = email:move

[ smime_sign ]
nsCertType = email
keyUsage = critical,digitalSignature
extendedKeyUsage = emailProtection
subjectKeyIdentifier = hash
authorityKeyIdentifier = keyid,issuer:always
subjectAltName = email:move

[ smime_encrypt ]
nsCertType = email
keyUsage = critical,keyEncipherment
extendedKeyUsage = emailProtection
subjectKeyIdentifier = hash
authorityKeyIdentifier = keyid,issuer:always
subjectAltName = email:move



APPENDIX D

Two Email Proxies

Software for encrypting email messages has been widely available for more than 15 years, but the
email-using public has failed to adopt secure messaging. This failure can be explained through a
combination of technical, community, and usability factors.

As part of the work on this thesis, two email proxies were designed based on the design principles
and patterns outlined in Chapters 1 and 10 of this thesis. Those proxies, Stream and CoPilot, are
based on the same design principles but were created to serve different purposes:

• Stream: Written in C++ and deployed on MacOS and FreeBSD, Stream was designed and
written to be used in day-to-day operations. It functions as an POP and SMTP proxy, and
could also be used as a filter on a mail server.

• CoPilot: Written in python and shell script, CoPilot was created specifically for the purpose
of conducing the Johnny 2 user test. As a result, CoPilot actually had to be designed twice.
First a theoretical design was created to reflect how a system like CoPilot would actually be
written and deployed. But because CoPilot was used in a user test, an implemented design
also had to be created for the actual code that would be used to conduct the study.

The theoretical CoPilot system, like Stream, was designed to be deployable as a POP and
SMTP proxy, as a procmail filter, or as an Outlook Express plug-in. The implemented CoPilot
used in the user study was written in a combination of Python and shell scripts, it’s user
interface was framed HTML messages, and it’s sole purpose was to create those messages for
the user study.

Table D.1 compared Stream, the theoretical CoPilot design, and the practical CoPilot design.

413



414 CHAPTER D. Two Email Proxies

Stream CoPilot CoPilot
(implemented) (theoretical) (implemented)

Implementation Language C++ C++/C# Python & shell
Subject: line rewriting

Channel to User: Subject: line rewriting -or- Framed HTML
Outlook Express toolbar

Cryptographic Engine: PGP S/MIME & PGP S/MIME
Key distribution Hidden in header S/MIME attachment S/MIME attachment

Table D.1: A comparison of Stream vs. CoPilot

D.1 Proxy Philosophy
Through an application of the GOOD SECURITY NOW principle, these proxies all implement a
straightforward design philosophy that is designed to provide some security features for some email
messages now—and as a result let some email pass without security processing—rather than try-
ing to be an all-comprehensive email system that either secures all email now, or else provides
military-grade authentication for some email tomorrow. For the email proxies, this philosophy can
be distilled into several key points (patterns introduced in this thesis are noted where appropriate):

• Be unobtrusive—do not require an input from the user under normal circumstances. (Zero-
click security.)

• Be informative—tell the user what is going on, and make it possible for the user to learn
more. (Visibility of Actions.) EXPLICIT USER AUDIT

• If the user doesn’t have a key, create one. CREATE KEYS WHEN NEEDED

• Sign all outgoing messages. SEND S/MIME-SIGNED EMAIL

• Attach the user’s key to every outgoing message. LEVERAGE EXISTING IDENTIFICATION EMAIL-
BASED IDENTIFICATION AND AUTHENTICATION

• If possible, seal outgoing messages for each recipient. GOOD SECURITY NOW

• Inform the user of extraordinary happenings, and give the user a chance to discover routine
events.

• Do not cause significant usability problems for the recipients of the proxy user’s messages, or
who wish to send email to proxy user. NO EXTERNAL BURDEN

D.1.1 Philosophical justification
With a few notable exceptions, today’s email systems force users on every messages they send
whether that particular message will be sent with a digital signature and/or sealed for the recipient.
One common justification for giving users such low-level control is that cryptographic protection is
not always necessary—or even desired. Giving the user control ensures that the user will take the
right action.

The problem with this common justification is that it assumes a user who is unrealistically educated,
informed, and concerned.



D.1. PROXY PHILOSOPHY 415

Figure D-1: Outlook Express 6 shows OpenPGP-signed
messages as a blank message with two accompanying at-
tachments: one for the original message, and one for the
signature.

Figure D-2: When an S/MIME-signed message passes
through the Mailman mailing list software, Outlook Express
6 displays the result as a brief message containing the mail-
ing list “boilerplate” with two attachments: one for the orig-
inal message, and one for the S/MIME signature. The rea-
son for this failure is that mailman adds its boilerplate by
taking the original S/MIME message, encapsulating it in an
S/MIME envelope, and then adding a new text/plain
part that contains the boilerplate. Outlook Express 6’s
S/MIME implementation does not understand this second-
level encapsulation and act appropriately, even though it is
allowable by the standard.

For example, if a message signed with an OpenPGP signature is sent to an Outlook Express user,
the message and its signature both appear as attachments on an empty message (Figure D-1). If an
S/MIME-signed message is sent to a Mailman mailing list that adds a footer as an attachment, then
Outlook Express will display both the original message and the S/MIME signature as attachments
on the mailing list footer—even though Outlook Express allegedly implements the S/MIME standard!
(Figure D-2) This is because the Outlook Express S/MIME implementation is incomplete. Ordinary
users are in no position to learn these rules, learn the capabilities of their correspondents, and then
consistently apply the rules as needed. More likely, they will stop using the mail security technology
entirely.

The proxies developed for this thesis take a different approach. They remove decision making from
the user, and instead attempt to “do the right thing” based on the information that they have. The
theory is that the proxy is in a better position to notice and track specifics such as email clients used
by correspondents, rather than forcing the user to remember such minutia and take it into account
when each mail message is sent. When the proxy cannot determine if an email security capability
can be used, it should fall and not use it, if there is a possibility that the use of the proxy will cause
a burden to the user’s correspondents.



416 CHAPTER D. Two Email Proxies

D.1.2 Private key migration
When encryption keys for digital signatures and sealing are created dynamically on a client com-
puter, there needs to be some provision for backing up these keys in a secure manner. If keys are to
be backed up, then that backup has to happen either manually or automatically.

Programs like PGP provide manual systems for backing up and restoring both public and private
keys. Whitten and Tygar tested PGP’s facility for backing up keys and found it wanting.[WT98]
Manual key escrow further violates one of the design principles of the proxies described in this
appendix: if backup is manual, then the proxies cannot be unobtrusive. Outlook Express and
Thunderbird provide for manual backing up and migration of private keys in PKCS12 files, but this
functionality is difficult to use.

Instead, a variety of techniques were envisioned for automatically backing up the keys created by
Stream and CoPilot:

• The most straightforward approach was for the proxy to e-mail to the user’s own mail ac-
count a copy of the public and private key pairs. If there are multiple instances of the proxy
downloading mail from the same mailbox—perhaps by using POP’s “leave mail on server”
option—then each of those instances would receive access to the same private key material.
This approach implicitly trusts the maintainer of the email system with the user’s private key.
Such trust can be reduced by asking the user for a password when the proxy is installed, and
using that password to encrypt the private key material before it is sent.

• If the proxy is downloading email from an IMAP server, then the key can be uploaded to the
server as an attachment to a special message stored in the inbox.

• Finally, the key can be stored on an Internet-based synchronization service that is protected
by an independent username/password service. This is the approach that Apple MacOS 10.4
takes for synchronizing usernames, passwords, public key certificates, and private keys stored
in the Apple keychain through the “.Mac” online subscription service.

Migrating and protecting private keys needs to be an important part of any email security system.
But according to the survey of Amazon.com merchants presented in this thesis, of the 414 people
responding to the question, only 33% knew that they would be unable to access the content of
an email message if they lost the private key needed to unseal it! (When only the 102 users of
cryptography were considered, the number of those who realized that they needed to retain their
key rose to just 56%.) Thus, automatic key migration needs to be part of any system that is intended
for significant widespread use.

Although the proxies presented here did not implement key migration, such a system could easily
be added.

D.2 Stream: A PGP Proxy
Stream operates as a filter on outgoing email messages through the use of an SMTP proxy, and on
incoming email messages through the use of either a POP proxy or (in the case of IMAP), as a filter
that can be used by procmail[vdBG05] or placed directly in a “.forward” file.



D.2. STREAM: A PGP PROXY 417

Mail Server

Signed and
possibly sealed

message

Possibly
sealed and/or signed

message

POP 
proxy

SMTP 
proxy

stream
db

Unsealed
message

Unsealed,
unsigned
message

Mail Client

☹ ✉
✍

✉
✍

"+" in incoming 
Subject line 

indicates message 
was sealed. 

Subject: +Secret Message

Subject: +Confidential Response

"+" in outgoing Subject 
line indicates message 

must be sealed

Can't 
seal❶

❷
❸

❹❺

Figure D-3: The stream system design. ➊Messages are downloaded to the stream systems through the POP proxy,
which unseals sealed messages and verifies the signatures of signed messages. ➋Unsealed messages are passed
to the mail client. ➌Messages that are sent out from the mail client are signed and optionally sealed. ➍The signed
and possibly sealed message is to the SMTP server, and from there, to the intended recipient. ➎If a message Subject:
line contained the mandatory encryption character and Stream was unable to encrypt the message, the message is
returned to the sender via the POP proxy.

D.2.1 Sending mail
As an outgoing filter, Stream automatically performs these actions for each outgoing message M :

1. Determines the sender’s email address E.

2. Creates a public/private key pair for address E (KE) if one does not exist.

3. Places a copy of KE in M ’s message header using the approach described in Section 5.4.

4. Evaluates the recipients (R1...n) of M :

(a) If there are other recipients on the original message for which Stream has the keys on
file:

i. Those keys are extracted from the sender’s PGP keychain and signed.
ii. These signed keys are then embedded in the message’s MIME headers.

(b) If a public key (KR) for R is known, Stream:
i. Encapsulates M ’s original mail header within message M .

ii. Adds to this encapsulated header the key fingerprint for each recipient’s encryption
key.



418 CHAPTER D. Two Email Proxies

 Alice sends Bob a 
cleartext message with 

her public key embedded 
in the header. 

Alice Bob

{+key}

 ✉

Alice's key and email 
address are added to the 

Stream database.

{+key}

{+key}

Bob's reply to Alice is 
automatically sealed with 
Alice's key; Bob's key is 

embedded in the header.

{+key}

❶ ❷

❸

Figure D-4: Stream’s key distribution system ensures that the first reply from a stream user to a second Stream users’s
message will be cryptographically sealed. ➊All stream messages include a copy of the sender’s public key hidden in
the MIME headers. ➋When a message containing a hidden key is received, Stream automatically incorporates the key
into the program’s key database. ➌When the recipient of the message (Bob) replies to the sender, the message is
automatically encrypted by a copy of Stream that proxies the sender’s outgoing messages.

iii. Creates a new sanitized mail header for message M containing a single To: address
and a nondescript Subject: line.

iv. Encrypts M for the recipient and sends the message out through SMTP server SS.
(c) If the public key (KR) is not known:

i. If the message Subject: line contains the mandatory encryption character, the
message is sent back to the sender with a brief message added to the top indicating
that the message could not be encrypted for recipient R.

ii. Otherwise, the message is sent to recipient R without first being sealed.

Stream provides opportunistic encryption: if the email message can be encrypted, it is. If it cannot
be encrypted, it is sent without encryption. This behavior mimics the behavior of many encryption
users: they use it if they can, but if they can’t, they send their message anyway. However, Stream
gives users a simple mechanism to override this behavior: a special character (currently the plus
sign) is added to the beginning of the Subject: line.

D.2.2 Receiving mail
As an incoming filter, Stream automatically performs these actions on each incoming message M :



D.2. STREAM: A PGP PROXY 419





Claire

 Bob

Alice {+key claire}bob

{+key alice}bob
{+key bob}

To: Alice
cc: Claire
Subject:  Introduction

Dear Alice, I wanted
to introduce you to Claire.

---Bob

❶ Bob sends an email 
message to both 
Alice and Claire.

❷ Stream signs a copy of Claire's 
key and attaches it to the  
message that is sent to Alice. 

❸ Stream also signs a copy of 
Alice's key and attaches it to the 
copy of the message that is sent 
to Claire. 

❹
Alice and Claire can now 
exchange sealed mail.

Figure D-5: Stream provides for the opportunistic distribution of keys and peer-to-peer cross-certification, building upon
the PGP “web of trust.”[Gar94] In this example, ➊Bob sends an email message to both Alice and Claire. Stream splits
this message into two messages, one scheduled for delivery to each recipient. ➋Stream signs a copy of Claire’s key
and attaches that key to the message that Stream sends to Alice. ➌Stream also signs a copy of Alice’s key and attaches
it to the copy of the message that is sent to Claire. ➍Now Alice and Claire can immediately exchange secure mail, as
they have been given copies of each other’s keys, and those keys have been certified by Bob.

1. Remove any mail headers from the message that have X-Stream prefixes.

2. Remove the mandatory encryption character from the beginning of the Subject: line, if it is
present.

3. Determine if an encryption key is present in the mail header.

(a) If so, the key is added to the user’s key database.
(b) If this is a new key KE for an existing email address E in the database, the user is

notified of this fact. (Stream’s method of communicating with the user is to send the
user additional email messages.)

4. If the message is sealed with encryption:

(a) Stream unseals the message.
(b) Unencapsulate the encapsulated mail headers.
(c) If key fingerprints were present, Stream verifies that the fingerprints on the encapsulated

message headers match those for the copies of the keys in the key database.
(d) If the fingerprints do not match, a warning is sent to the recipient.



420 CHAPTER D. Two Email Proxies

(e) Insert the mandatory encryption character at the beginning of the Subject: line.

5. If the message is digitally signed:

(a) If a key is on-file, verify the signature.

(b) If the signature verifies, insert an X-STREAM mail header indicating this fact. (This
allows sophisticated users to look at headers to verify signatures, should they choose to
do so.)

(c) If the signature doesn’t verify, modify the Subject: line to indicate this fact. (For example,
by adding the words “(BROKEN SIGNATURE”) to the end of the Subject: line.)

In the above description, the phrase “beginning of the Subject: line” means the text that follows
the colon and following space, ignoring any number of repeating ”Re:” sequences.

Stream was developed in the fall of 2002 and used successfully by the author on MacOS, FreeBSD,
and Windows. A paper on the technology was presented at the 2003 National Conference on Digital
Government Research.[Gar03b]

D.2.3 Stream evaluation
Stream was intended to be a workbench for refining the technique of placing hidden signatures
and keys in e-mail messages; to demonstrate the viability of a transparent encryption property; and
to evangelize the philosophy that cryptography with weak email-based authentication was better
than email without cryptographic protections at all.

Although Stream was reasonably successful in each of these goals, the software failed to achieve
any adoption. The reason was not that nobody wished to download and install the program.
Instead, the reason was that people didn’t wish to go through the trouble of downloading software
that implemented a cryptographic email protocol that wasn’t compatible with any other system that
was currently deployed. This proved to be a fairly dramatic lesson and it guided the design of the
CoPilot system.

D.3 CoPilot: A Proxy or Plug-In that Implements KCM
CoPilot is the second proxy designed to implement the philosophy presented earlier in this ap-
pendix. CoPilot builds on the experience of the Stream project with the primary realization that
it is better to leverage the existing email security technology that has been deployed over the past
decade, rather than try to deploy a technology that implements a fundamental new standard.

Although there are many acknowledged problems with the S/MIME mail security standard—and
even more with today’s S/MIME implementations—it is the standard that has been deployed. The
philosophy of CoPilot is that it is better to use the standards that are deployed, rather than waiting
for better ones to come along.

The primary problem in automating S/MIME is that today’s S/MIME agents generate annoying
warning messages when they encounter email messages that are signed using Digital IDs that were
not issued by trusted CAs. CoPilot proposes two approaches to this solution:



D.3. COPILOT: A PROXY OR PLUG-IN THAT IMPLEMENTS KCM 421

• CoPilot could be distributed with an agent that can perform the necessary challenge-response
process with the Thawte web site and obtain a Thawte FreeMail certificate. At the present
time, the only information that Thawte appears to validate for obtaining these certificates is
the user’s email address. Since CoPilot would have access to that email address, the entire
acquisition process could be automated.

• Alternatively, CoPilot could be distributed with both the private key and the public key of “the
permissive CA”—that is, the CA that is willing to sign any digital certificate. (What makes the
CA permissive is the fact that its private key has been compromised by being distributed with
CoPilot.) Because CoPilot implements the TRACK RECIPIENTS pattern, it is able to differentiate
between the S/MIME users who have installed the permissive CA and those who have not.

CoPilot was created to demonstrate the viability of Key Continuity Management. But this the-
sis does not argue that Apple, Microsoft, and their customers should abandon today’s Certificate
Authority-based solutions. Instead, the argument is that today’s products need to more sensibly
handle the case when signed email is received for which the Digital ID was not created by a recog-
nized signing authority. By addressing this particular case in a manner that is consistent with the
principles outlined in this thesis, the use of S/MIME can be dramatically increased.



422 CHAPTER D. Two Email Proxies

Outlook / Outlook Express

Mail Server

POP SMTPIMAP

Message Display

CoPilot
db

CoPilot Plugin

Trusted
Display
Channel

CoPilot Plug-in

Track Received Keys

Track Recepients

Distinguish Internal Senders

Send Signed

Create Keys When Needed

Figure D-6: The design of the CoPilot Plug-in for Outlook Express specifies that CoPilot monitors incoming mail (from
POP or IMAP) and outgoing SMTP. As with Stream, CoPilot is able to unseal messages as they are downloaded and
automatically sign and/or seal messages as they are sent. Unlike Stream, CoPilot uses a piece of reserved real estate
in the Outlook Express window to convey information to the user. CoPilot also maintains a database of keys that have
been received and the inferred capabilities of the key holders.



D.3. COPILOT: A PROXY OR PLUG-IN THAT IMPLEMENTS KCM 423

Mail Server

POP SMTP

Message Display

pre-computed 
rules

Unmodified Outlook Express

Send Signed

keys imported in advance

Experimenter

Experimental Subject

Unix Pipe

CoPilot

SMTP

keys created in advance

Figure D-7: The actual CoPilot system that was developed for the Johnny 2 experiment. Keys were created in advance
using OpenSSL and imported directly into the copy of Outlook Express running on the subject’s workstation. The rules
for each message were pre-computed in advance to infer whether messages should be displayed with the yellow, green,
red, or gray borders. Messages were transmitted to CoPilot through a Unix Pipe. The CoPilot then opened an SMTP
connection to the Unix server and sent the messages. These were then displayed using an unmodified copy of Outlook
Express.



424 CHAPTER D. Two Email Proxies



APPENDIX E

Specific Recommendations to Vendors

This chapter is a an explicit list of recommendations for vendors of computer operating systems
and webmail services.

E.1 Recommendations for Desktop Software
The operating system:

• Make Windows FORMAT.EXE, the Apple Disk Utility, and the Unix newfs commands actually
overwrite every block of the media when an initialization is performed. Provide a “quick”
option which only writes down the file system structures for people who are in a rush but
do not make this the default. Make it clear that using the “quick” feature means that data
will not be overwritten. People who are not in a rush deserve to have their media properly
sanitized when they format it.

• Implement a sanitize(fd) system call that works with the file system to overwrite the
contents of an opened file, even on a journaling file system.

• Implement COMPLETE DELETE for the unlink() or DeleteFile() system calls along the lines
discussed in Chapter 3.

• For password fields: if the password that’s typed doesn’t match the password on file, the
software should try swapping the case and seeing if it works. If it works, then the user had
the Caps Lock key on.

Don’t display an annoying pop-up that says “Do you have the Caps Lock key on?” Of course
the user has the caps lock key on. Of course the user doesn’t realize it. Accept the password
and reset the Caps Lock flag; standard PC hardware lets the operating system perform this
function.

425



426 CHAPTER E. Specific Recommendations to Vendors

Some password fields have been modified to indicate the status of the Caps Lock key. This is
a useful indicator that should be encouraged.

• Provide easy-to-understand and standardized tools for viewing certificates.

Web Browsers:

• Unify the web browser cache, history, and cookies as discussed in Chapter 4.1. When the last
reference to a web page from the history or bookmarks is deleted, delete the pages in the
cache and any saved cookies that correspond to the site.

• Provide an easy-to-find “reset browser” feature that sets a timer, then performs a Reset to
Installation.

Mail clients:

• Provide a standard mechanism whereby “sent” email is actually queued for delivery, during
which time it an be edited or moved to a “draft” folder rather than having it being sent.

• Do not allow users to check boxes such as “Sign” if there is no S/MIME private key on file.

• Change the handling of sealed S/MIME mail so that mail that is downloaded by POP is au-
tomatically unsealed before it is stored. This reduces the penality for losing one’s key. Users
who wish to have their mail kept sealed can use a cryptographic file system to protect all of
their mail.

• For mail on IMAP servers, mail clients should have the capability to automatically re-seal mail
with new keys to allow for key migration.

• Develop a one-click support for mail clients so that they can automatically obtain email-only
certificates from CAs that wish to offer them for free.

• Increase the salience of icons that indicate if a message was signed or sealed. Decrease
the prominence of warnings that say signatures did not verify, since message signatures are
frequently using today’s email systems.

• (For Microsoft:) Correct the bug in Microsoft’s S/MIME library which prevents Outlook and
Outlook Express from opening S/MIME-signed messages that consist of a non-text attachment
but no body.

• (For Microsoft:) Correct the handling of the “sign all messages” option in Outlook and Out-
look Express. Currently both programs have an option to sign or not sign all outgoing mail,
but this default isn’t honored under some circumstances.

E.2 Recommendations for Organizations that Send Bulk Email
• Sign all outgoing email that is automatically generated and not designed to be replied to. This

includes all newsletters, bulletins, and other email announcements originating from email
addresses such as noreply@adc.apple.com and do_not_reply@microsoft.com .

noreply@adc.apple.com
do_not_reply@microsoft.com


E.3. RECOMMENDATIONS FOR WEBMAIL PROVIDERS 427

E.3 Recommendations for Webmail Providers
• Verify the signatures of S/MIME-signed mail so that these messages are validated and shown

in a distinctive manner.

• If this is too complicated, simply suppress the display of S/MIME attachments.

• Give users a simple option that will cause the webmail system to obtain a Digital IDs and use
them to automatically sign all outgoing mail.



428 CHAPTER E. Specific Recommendations to Vendors



Bibliography

[AB04] Tom Anderson and David Brady. Principle of least astonishment. Ore-
gon Pattern Repository, November 15 2004. http://c2.com/cgi/wiki?
PrincipleOfLeastAstonishment .

[Acc05] Access Data. Forensic toolkit—overview, 2005. http://www.accessdata.
com/Product04_Overview.htm?ProductNum=04 .

[Adv87] Display ad 57, February 8 1987.

[Age05] US Environmental Protection Agency. Wastes: The hazardous waste mani-
fest system, 2005. http://www.epa.gov/epaoswer/hazwaste/gener/
manifest/ .

[AHR05a] Ben Adida, Susan Hohenberger, and Ronald L. Rivest. Fighting Phishing
Attacks: A Lightweight Trust Architecture for Detecting Spoofed Emails (to
appear), 2005. Available at http://theory.lcs.mit.edu/˜rivest/
publications.html .

[AHR05b] Ben Adida, Susan Hohenberger, and Ronald L. Rivest. Separable Identity-
Based Ring Signatures: Theoretical Foundations For Fighting Phishing Attacks
(to appear), 2005. Available at http://theory.lcs.mit.edu/˜rivest/
publications.html .

[AIS77] Christopher Alexander, Sara Ishikawa, and Murray Silverstein. A Pattern Lan-
guage: towns, buildings, construction. Oxford University Press, 1977. (with Max
Jacobson, Ingrid Fiksdahl-King and Shlomo Angel).

[AKM+93] H. Alvestrand, S. Kille, R. Miles, M. Rose, and S. Thompson. RFC 1495: Map-
ping between X.400 and RFC-822 message bodies, August 1993. Obsoleted by
RFC2156 [Kil98]. Obsoletes RFC987, RFC1026, RFC1138, RFC1148, RFC1327
[Kil86, Kil87, Kil89, Kil90, HK92]. Status: PROPOSED STANDARD.

[Ale79] Christopher Alexander. The Timeless Way of Building. Oxford University Press,
1979.

429

http://theory.lcs.mit.edu/~rivest/publications.html
http://theory.lcs.mit.edu/~rivest/publications.html
http://theory.lcs.mit.edu/~rivest/publications.html
http://theory.lcs.mit.edu/~rivest/publications.html


430 BIBLIOGRAPHY

[Ale96] Christopher Alexander. Patterns in architecture [videorecording], October 8
1996. Recorded at OOPSLA 1996, San Jose, California.

[Alt00] Steven Alter. Same words, different meanings: are basic IS/IT concepts our
self-imposed Tower of Babel? Commun. AIS, 3(3es):2, 2000.

[Alv97] Harald T. Alvestrand. X.400 frequenty asked questions, October 27 1997. http:
//www.alvestrand.no/x400/faq-mhsnews.html . Cited on March 22,
2005.

[Ame05] American Library Association Office for Information Technology Policy. Man-
aging cookies to protect patron privacy, 2005. http://www.ala.org/ala/
washoff/oitp/emailtutorials/privacya/20.htm . Accessed April 20,
2005.

[And98] M. Andrews. RFC 2308: Negative caching of DNS queries (DNS NCACHE),
March 1998. Updates RFC1034, RFC1035 [Moc87b, Moc87c]. Status: PRO-
POSED STANDARD.

[App03] Appligent, Inc. Redax User Guide, Version 3.5. Appligent, 2003. http://www.
appligent.com .

[App04a] Apple Computer. Apple human interface guidelines, December 2004.
http://developer.apple.com/documentation/UserExperience/
Conceptual/OSXHIGuidelines/OSXHIGuidelines.pdf .

[App04b] Apple Computer. Apple human interface guidelines, March 2004.
http://developer.apple.com/documentation/UserExperience/
Conceptual/OSXHIGuidelines/OSXHIGuidelines.pdf .

[App04c] Apple Computer. Apple human interface guidelines, October 2004.
http://developer.apple.com/documentation/UserExperience/
Conceptual/OSXHIGuidelines/OSXHIGuidelines.pdf .

[App04d] Apple Computer. Apple software design guidelines, May 2004. http:
//developer.apple.com/documentation/MacOSX/Conceptual/
AppleSWDesign/AppleSWDesign.pdf .

[App04e] Apple Computer. Enabling secure storage with keychain services, June
2004. http://developer.apple.com/documentation/Security/
Conceptual/keychainServConcepts/keychainServConcepts.pdf .

[App05] Apple. Apple – Mac OS X – security, 2005. http://www.apple.com/
macosx/features/security/ . Cited on April 15, 2005.

[Art02] Henrik Artman. Procurer usability requirements: negotiations in contract devel-
opment. In NordiCHI ’02: Proceedings of the second Nordic conference on Human-
computer interaction, pages 61–70. ACM Press, 2002. ISBN 1-58113-616-1.



BIBLIOGRAPHY 431

[AS99] Anne Adams and Martina Angela Sasse. Users are not the enemy. Communica-
tions of the ACM, 42:41–46, 1999.

[Ass05] Association for India’s Development Austin. Computer drive, February 2005.
http://studentorgs.utexas.edu/aidaustin/comp_drive.html .

[ASZ96] D. Atkins, W. Stallings, and P. Zimmermann. RFC 1991: PGP message exchange
formats, August 1996. Status: INFORMATIONAL.

[Bal93] D. Balenson. RFC 1423: Privacy enhancement for Internet electronic mail: Part
III: Algorithms, modes, and identifiers, February 1993. Obsoletes RFC1115. Sta-
tus: PROPOSED STANDARD.

[Bar91] John A. Barry. Technobabble. MIT Press, 1991.

[Bax05] Ilse Baxter. Response to your questions, April 15 2005.

[BBG00] Nicholas Bohm, Ian Brown, and Brian Gladman. Electronic commerce: Who
carries the risk of fraud? Journal of Information Law & Technology, 2000. http:
//www2.warwick.ac.uk/fac/soc/law/elj/jilt/2000_3/bohm/ .

[bBL02] Yung bin Benjamin Lee, August 2002. Personal Communication (via Gene Spaf-
ford).

[BC87] Kent Beck and Ward Cunningham. Using pattern languages for object-oriented
programs. Technical Report CR-87-43, Apple Computer, Tektronix, September
1987.

[BDSG04] Dirk Balfanz, Glenn Durfee, D. K. Smetters, and R. E. Grinter. In search of usable
security: five lessons from the field. Security & Privacy Magazine, 2:19–24, Sept–
Oct 2004.

[BDSG05] Dirk Balfanz, Glenn Durfee, D. K. Smetters, and R. E. Grinter. Making the impos-
sible easy: Usable PKI. In Lorrie Cranor and Simson Garfinkel, editors, Security
and Usability. O’Reilly, 2005. To appear in August 2005.

[Ber02] Scott Berinato. Good stuff cheap: A new hardware market is developing to give
CIOs what they want most: good stuff cheap. This is its story. CIO, pages 53–59,
15 October 2002.

[Ber05a] David Berlind. Thought to be redacted, classified military info exposed by cut n’
paste. ZDNet, May 1 2005. http://blogs.zdnet.com/BTL/?p=1329 .

[Ber05b] Jordy Berson. Creating usable security products for consumers. In Lorrie Cranor
and Simson Garfinkel, editors, Security and Usability. O’Reilly, 2005. To appear
in August 2005.

[BF01] Dan Boneh and Matthew Franklin. Identity based encryption from the Weil pair-
ing. Lecture Notes in Computer Science, 2139:213+, 2001. citeseer.ist.
psu.edu/article/boneh01identitybased.html .



432 BIBLIOGRAPHY

[BHm04] Bob Blakley, Craig Heath, and members of The Open Group Security Forum.
Security design patterns. Technical Report G031, The Open Group, April 2004.
http://www.opengroup.org/publications/catalog/g031.htm .

[Bid96] C. Bradford Biddle. Misplaced priorities: The Utah Digital Signature Act and
liability allocation in a public key infrastructure. San Diego Law Review, 33,
1996.

[Bis96] Matt Bishop. Unix security: Threats and solutions, March 1996. http:
//seclab.cs.ucdavis.edu/projects/vulnerabilities/scriv/
1996-share86.pdf . Presentation to SHARE 86.0.

[BL03] Ann Bostrom and Ragnar E. Lofstedt. Communicating risk: Wireless and hard-
wired. Risk Analysis, 23(2):241–247, 2003.

[Bla93] Matt Blaze. A cryptographic file system for Unix. In 1st ACM Conference on Com-
munications and Computing Security, pages 9–16. ACM Press, November 1993.

[BNN04a] Mihir Bellare, Chanathip Namprempre, and Gregory Neven. Security proofs for
identity-based identification and signature schemes, 2004. http://eprint.
iacr.org/2004/252.pdf . Updated version of [BNN04b].

[BNN04b] Mihir Bellare, Chanathip Namprempre, and Gregory Neven. Security proofs for
identity-based identification and signature schemes. In C. Cachin and J. Ca-
menisch, editors, Advances in Cryptology — Eurocrypt 2004, volume 3027 of
Lecture notes in Computer Science, pages 268–286. 2004, 2004.

[Bor96] Lorraine Borman. SIGCHI: the early years. SIGCHI Bull., 28(1):4–6, 1996. ISSN
0736-6906. http://doi.acm.org/10.1145/249170.249172 .

[BP01] Steven Bauer and Nissanka B. Priyantha. Secure data deletion for Linux file sys-
tems. In Proc. 10th Usenix Security Symposium, pages 153–164. Usenix, San
Antonio, Texas, 2001. http://www.usenix.org/events/sec01/full_
papers/bauer/bauer_html/ .

[Bra89a] R. Braden. STD 3: Requirements for Internet hosts — communication layers,
October 1989. See also RFC1122, RFC1123 [Bra89b, Bra89c].

[Bra89b] R. T. Braden. RFC 1122: Requirements for Internet hosts — communication
layers, October 1, 1989. See also STD0003 [Bra89a]. Status: STANDARD.

[Bra89c] R. T. Braden. RFC 1123: Requirements for Internet hosts — application and sup-
port, October 1, 1989. See also STD0003 [Bra89a]. Updates RFC0822 [Cro82a].
Updated by RFC2181 [EB97]. Status: STANDARD.

[Bre00] Eric A. Brewer. Towards robust distributed systems (abstract). In PODC ’00:
Proceedings of the nineteenth annual ACM symposium on Principles of distributed
computing, page 7. ACM Press, 2000. ISBN 1-58113-183-6.



BIBLIOGRAPHY 433

[BS99] Ian Brown and C. R. Snow. A proxy approach to e-mail security. Softw. Pract.
Exper., 29(12):1049–1060, 1999. ISSN 0038-0644.

[BS03] Sacha Brostoff and M. Angela Sasse. Ten strikes and you’re out: Increasing
the number of login attempts can improve password usability. In Workshop on
Human-Computer Interaction and Security Systems, part of CHI2003. ACM Press,
April 2003. citeseer.ist.psu.edu/618589.html .

[BSD93] unlink, 1993. 4th Berkeley Distribution.

[Bud02] Len Budney. Mailcrypt, September 2002. http://mailcrypt.
sourceforge.net/ .

[Bus05] Business Environmental Resource Center. Hazardous waste generator fact sheet,
2005. http://sacberc.org/HazWaste.html .

[Bye03] Simon Byers. Scalable exploitation of, and responses to information leakage
through hidden data in published documents, April 3 2003.

[CAG02] Lorrie Faith Cranor, Manjula Arjula, and Praveen Guduru. Use of a P3P user
agent by early adopters. In WPES ’02: Proceedings of the 2002 ACM workshop on
Privacy in the Electronic Society, pages 1–10. ACM Press, 2002. ISBN 1-58113-
633-1.

[CAM+04] Lorrie Cranor, Mark Ackerman, Fabian Monrose, Andrew Patrick, and Norman
Sadeh. DIMACS workshop on usable privacy and security software, July 2004.
http://dimacs.rutgers.edu/Workshops/Tools/ .

[CAN03] CAN-SPAM act of 2003, November 2003. http://www.spamlaws.com/
federal/108s877.html .

[Car96] Remy Card. Announce 0.4, October 7 1996. http://www.ibiblio.org/
pub/historic-linux/ftp-archives/tsx-11.mit.edu/Oct-07-
1996/packages/ext2fs/old/announce.0.4 .

[Car02] Remy Card. CHATTR(1), 2002.

[Car04] Caron Carlson. CAN-SPAM leaves lid wide open. eWeek, May 20 2004. http:/
/www.eweek.com/article2/0,1759,1596134,00.asp .

[CDE+05] Lorrie Cranor, Brooks Dobbs, Serge Egelman, Giles Hogben, Jack Humphrey,
Marc Langheinrich, Massimo Marchiori, Martin Presler-Marshall, Joseph Reagle,
Matthias Schunter, David A. Stampley, and Rigo Wenning. The platform for
privacy preferences 1.1 (P3P1.1) specification, January 4 2005. http://www.
w3.org/TR/2005/WD-P3P11-20050104/Overview.html .

[CDFT98] J. Callas, L. Donnerhacke, H. Finney, and R. Thayer. RFC 2440: OpenPGP mes-
sage format, November 1998. Status: PROPOSED STANDARD.



434 BIBLIOGRAPHY

[CER99] CERT Coordination Center. CERT advisory ca-1999-04 melissa macro virus.
Technical report, CERT Coordination Center, Pittsburgh, PA, 27. March 1999.
http://www.cert.org/advisories/CA-1999-04.html .

[CER00] CERT Coordination Center. CERT advisory ca-2000-04 love letter worm. Tech-
nical report, CERT Coordination Center, Pittsburgh, PA, 4. May 2000. http://
www.cert.org/advisories/CA-2000-04.html .

[CER01] CERT Coordination Center. CERT advisory ca-2001-26 Nimda Worm. Technical
report, CERT Coordination Center, Pittsburgh, PA, 18. September 2001. http:
//www.cert.org/advisories/CA-2001-26.html .

[CFIJ99] Giovannissell Di Crescenzo, Niels Ferguson, Russell Impagliazzo, and Markus
Jakobsson. How to forget a secret. In STACS 99, pages 500–509. Springer
Verlag, 1999. http://www.macfergus.com/pub/forget.html . Lecture
Notes in Computer Science 1563.

[CG05] Lorrie Cranor and Simson Garfinkel. Security and Usability. O’Reilly, 2005.

[Chr95] Da Chronic. AOHell v3.0 rage against the machine, 1995.

[CK05] Michael Crawford and Paul Kallender. Trend micro bug down to over-quick test-
ing. Techworld, April 26 2005. http://www.techworld.com/security/
news/index.cfm?NewsID=3559 .

[Cla92] David Clark. A cloudy crystal ball—visions of the future (alternative title: Apoc-
alypse now). In Proceedings of the Twenty-Fourth Internet Engineering Task Force.
The Internet Society, July 13–17 1992. http://ietf.org/proceedings/
prior29/IETF24.pdf .

[Cla03] David Clark. Personal communication, 2003.

[CLR90] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduction to
Algorithms. The MIT Press, 1990.

[CLRS01] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
Introduction to Algorithms, Second Edition. The MIT Press, 2001.

[CNN05] CNN. U.S. soldiers cleared in Italian agent’s death. CNN.com, April 30 2005.
http://www.cnn.com/2005/US/04/30/italian.shooting/ .

[Co.03] Hitachi Software Engineering Co. Selinux policy editor, 2003. http://www.
selinux.hitachi-sk.co.jp/en/tool/selpe/selpe-top.html .

[Coa92] Peter Coad. Object-oriented patterns. Commun. ACM, 35(9):152–159, 1992.
ISSN 0001-0782.

[Coc05] Alistair Cockburn. The risk management catalog, 2005. http://members.
aol.com/acockburn/riskcata/risktoc.htm . unpublished; cited on
March 25, 2005.



BIBLIOGRAPHY 435

[Col04] Andrew Colley. Latest phishing scam most “devious” ever. ZDNet Aus-
tralia, March 3 2004. http://www.zdnet.com.au/news/security/0,
2000061744,39116416,00.htm .

[Com03] Comcast. How do I setup and clear the history (visted sites) in Internet Explorer?
Technical Report 17601, Comcast, 2003. http://faq.comcast.net/faq/
answer.jsp?name=17601 .

[Com04a] Federal Trade Comission. Disposal of consumer report information
and records, November 18 2004. http://www.ftc.gov/os/2004/11/
041118disposalfrn.pdf . Final Rule.

[Com04b] Federal Trade Comission. FTC issues final regulation on consumer informa-
tion and records disposal, November 18 2004. http://www.ftc.gov/opa/
2004/11/factadisposal.htm . Press Release.

[Com04c] Apple Computer. Hardware—iSight, 2004. http://www.apple.com/
isight/ . Cited September 18, 2004.

[Com05a] Apple Computer. About Safari international domain name support, March
21 2005. http://docs.info.apple.com/article.html?artnum=
301116 .

[Com05b] Apple Computer. Filevault: Safe, secure and speedy, 2005. http://www.
apple.com/macosx/features/filevault/ .

[Coo99] Alan Cooper. The Inmates Are Running The Asylum. Sams, Indianapolis, Indiana,
1999.

[Cor96] Microsoft Corporation. The microsoft internet security framework:
Technology for secure communication, access control, and commerce,
1996. http://msdn.microsoft.com/library/default.asp?url=/
library/en-us/dnsecure/html/msdn_misf.asp .

[Cor04a] Microsoft Corporation. How to minimize metadata in Microsoft Word docu-
ments, August 2004. http://support.microsoft.com/kb/223790/ . Mi-
crosoft Knowledge Base #223790.

[Cor04b] Microsoft Corporation. How to minimize metadata in word 2000 documents,
September 2004. http://support.microsoft.com/kb/237361/ . Mi-
crosoft Knowledge Base #237361.

[Cor04c] Microsoft Corporation. The Remove Hidden Data tool for Office 2003 and Of-
fice XP, August 2004. http://support.microsoft.com/kb/834427 . Mi-
crosoft Knowledge Base #834427.

[Cor05a] Microsoft Corporation. How to minimize metadata in Microsoft PowerPoint
presentations, 2005. http://support.microsoft.com/kb/314797 . Mi-
crosoft Knowledge Base #314797.



436 BIBLIOGRAPHY

[Cor05b] Microsoft Corporation. How to minimize metadata in word 2002, January
2005. http://support.microsoft.com/kb/290945/ . Microsoft Knowl-
edge Base #290945.

[Cor05c] Microsoft Corporation. How to minimize metadata in word 2003, 2005.
http://support.microsoft.com/kb/825576/ . Microsoft Knowledge
Base #825576.

[Cor05d] Microsoft Corporation. Microsoft powertoys for windows XP, 2005.
http://www.microsoft.com/windowsxp/downloads/powertoys/
xppowertoys.mspx .

[Cov05] Lynne Coventry. Usable biometrics. In Lorrie Cranor and Simson Garfinkel,
editors, Security and Usability. O’Reilly, 2005. To appear in August 2005.

[CPG+04] Jim Chow, Ben Pfaff, Tal Garfinkel, Kevin Christopher, , and Mendel Rosenblum.
Understanding data lifetime via whole system simulation. In Proceedings of the
13th USENIX Security Symposium, pages 321–336. Usenix, 2004. http://www.
usenix.org/events/sec04/tech/chow.html .

[CPM+98] Crispan Cowan, Calton Pu, Dave Maier, Jonathan Walpole, Peat Bakke, Steve
Beattie, Aaron Grier, Perry Wagle, Qian Zhang, and Heather Hinton. StackGuard:
Automatic adaptive detection and prevention of buffer-overflow attacks. In Proc.
7th USENIX Security Conference, pages 63–78. Usenix, San Antonio, Texas, jan
1998. citeseer.nj.nec.com/cowan98stackguard.html .

[CPVH77] D. Crocker, K. T. Pogran, J. Vittal, and D. A. Henderson. RFC 724: Proposed
official standard for the format of ARPA network messages, May 12, 1977. Ob-
soleted by RFC0733 [CVPH77]. Status: UNKNOWN. Not online.

[CRA03] Four grand challenges in trustworthy computing, November 2003. http:
//www.cra.org/Activities/grand.challenges/security/home.
html .

[Cre81] R. J. Creasy. The origin of the VM/370 time-sharing system. IBM Journal of
Research and Development, 25, September 1981.

[CRG97] Lorrie Faith Cranor, Paul Resnick, and Danielle Gallo. Technology inventory:
A catalog of tools that support parents’s ability to choose online content ap-
propriate for their children, December 1997. http://www.research.att.
com/projects/tech4kids/actions.html . Prepared for the Internet On-
line Summit: Focus on Children, December 1997; Revised for America Links Up,
September 1998.

[Cro82a] D. Crocker. RFC 822: Standard for the format of ARPA Internet text messages,
August 13, 1982. See also STD0011 [Cro82b]. Obsoletes RFC0733 [CVPH77].
Updated by RFC1123, RFC1138, RFC1148, RFC1327, RFC2156 [Bra89c, Kil89,
Kil90, HK92, Kil98]. Status: STANDARD.



BIBLIOGRAPHY 437

[Cro82b] David H. Crocker. STD 11: Standard for the format of ARPA Internet text mes-
sages, August 13, 1982. See also RFC0822 [Cro82a]. Obsoleted by RFC2822
[Res01]. Obsoletes RFC0733 [CVPH77].

[CSI03] CSI. 2003 CSI/FBI Computer Crime and Security Survey. Computer Secu-
rity Institute, 2003. http://i.cmpnet.com/gocsi/db_area/pdfs/fbi/
FBI2003.pdf .

[CSI04] CSI. 2004 CSI/FBI Computer Crime and Security Survey. Computer Secu-
rity Institute, 2004. http://i.cmpnet.com/gocsi/db_area/pdfs/fbi/
FBI2004.pdf .

[CVPH77] D. Crocker, J. Vittal, K. T. Pogran, and D. A. Henderson. RFC 733: Standard for
the format of ARPA network text messages, November 21, 1977. Obsoleted by
RFC0822 [Cro82a]. Obsoletes RFC0724 [CPVH77]. Status: UNKNOWN.

[CW87] D. D. Clark and D. R. Wilson. A comparison of commercial and military com-
puter security models. In 1987 IEEE Symposium on Security and Privacy. IEEE
Computer Society Press, April 1987.

[Dav96] Don Davis. Compliance defects in public key cryptography. In 6th USENIX Secu-
rity Symposium, pages 171–178. Usenix, July 22–27 1996.

[dCZ00] Leandro Nunes de Castro and Fernando José Von Zuben. Artificial immune sys-
tems: Part II—a survey of applications. Technical Report DCA-RT 02/00, Depart-
ment of Computer Engineering and Industrial Automation, School of Electrical
and Computer Engineering, State University of Campinas, SP, Brazil, February
2000. citeseer.ist.psu.edu/nunesdecastro00artificial.html .

[Del04a] Mark Delany. Domain-based email authentication using public-keys advertised
in the DNS (domainkeys), August 2004. INTERNET DRAFT.

[Del04b] What are the top 5 things you can do to improve your system performance?,
September 14 2004. http://support.dell.com/support/topics/
global.aspx/support/kb/en/document?dn=1089806&l=en&s=gen .

[DG02] Dipankar Dasgupta and Fabio González. An immunity-based technique to char-
acterize intrusions in computer networks. IEEE Trans. Evol. Comput., 6(3):1081–
1088, June 2002. citeseer.ist.psu.edu/dasgupta02immunitybased.
html .

[DH76] Whitfield Diffie and Martin E. Hellman. New directions in cryptography. IEEE
Transactions on Information Theory, IT-22(6):644–654, 1976. citeseer.ist.
psu.edu/diffie76new.html .

[DHR+98] S. Dusse, P. Hoffman, B. Ramsdell, L. Lundblade, and L. Repka. RFC 2311: S/
MIME version 2 message specification, March 1998. Status: INFORMATIONAL.



438 BIBLIOGRAPHY

[DiS02] Jennifer DiSabatino. Enron bankruptcy case highlights e-mail’s lasting trail.
Computerworld, January 21 2002. http://www.computerworld.com/
industrytopics/financial/story/0,10801,67583,00.html .

[DoD85] DoD CSC. Department of Defense Password Management Guideline. US DoD, April
12 1985. http://www.fas.org/irp/nsa/rainbow/std002.htm . CSC-
STD-002-85.

[DoD95] Cleaning and sanitization matrix, 1995. www.dss.mil/isec/nispom_0195.
htm . Chapter 8.

[Don05] Steve Doner. Personal communication, February 2005.

[DVGD96] C. Davis, P. Vixie, T. Goodwin, and I. Dickinson. RFC 1876: A means for express-
ing location information in the domain name system, January 1996. Updates
RFC1034, RFC1035 [Moc87b, Moc87c]. Status: EXPERIMENTAL.

[Eas97] D. Eastlake. RFC 2137: Secure domain name system dynamic update, April
1997. Updates RFC1035 [Moc87c]. Status: PROPOSED STANDARD.

[EB96] R. Elz and R. Bush. RFC 1982: Serial number arithmetic, August 1996. Updates
RFC1034, RFC1035 [Moc87b, Moc87c]. Status: PROPOSED STANDARD.

[EB97] R. Elz and R. Bush. RFC 2181: Clarifications to the DNS specification, July
1997. Updates RFC1034, RFC1035, RFC1123 [Moc87b, Moc87c, Bra89c]. Sta-
tus: PROPOSED STANDARD.

[Edm03] Ron Edmonds. Justice department hid parts of report criticizing diversity ef-
fort. Associated Press, October 31 2003. http://www.usatoday.com/news/
washington/2003-10-31-doj-report_x.htm .

[EFL+99] C. Ellison, B. Frantz, B. Lampson, R. Rivest, B. Thomas, and T. Ylonen. RFC
2693: SPKI certificate theory. IETF RFC Publication, September 1999.

[EHN03] A systematic review of the reserach on consumer understanding of nutrition
labeling, June 2003. http://www.ehnheart.org/files/consumer\%
20nutrition-143058A.pdf .

[Elk96] M. Elkins. RFC 2015: MIME security with pretty good privacy (PGP), October
1996. Status: PROPOSED STANDARD.

[Ell99] C. Ellison. RFC 2692: SPKI requirements. IETF RFC Publication, September
1999.

[Ell02] Carl Ellison. Improvements on conventional PKI wisdom. In 1st Annual PKI
Research Workshop—Proceedings, pages 165–175. National Institutes of Stan-
dards and Technology, 2002. http://www.cs.dartmouth.edu/˜pki02/
Ellison/ .



BIBLIOGRAPHY 439

[EMUM90] C. F. Everhart, L. A. Mamakos, R. Ullmann, and P. V. Mockapetris. RFC 1183: New
DNS RR definitions, October 1, 1990. Updates RFC1034, RFC1035 [Moc87b,
Moc87c]. Status: EXPERIMENTAL.

[Eng67] D. C. Engelbart. X-y position indicator for a display system, June 1967. US Patent
3,541,541.

[EPC05] EPCglobal. Guidelines on epc for consumer products, 2005. http://www.
epcglobalinc.org/public_policy/public_policy_guidelines.
html .

[ErK97] D. Eastlake, 3rd, and C. Kaufman. RFC 2065: Domain name system security
extensions, January 1997. Updates RFC1034, RFC1035 [Moc87b, Moc87c]. Sta-
tus: PROPOSED STANDARD.

[ES00] Carl Ellison and Bruce Schneier. Ten risks of PKI: What you’re not being told
about public key infrastructure. Computer Security Journal, XVI(1), 2000.

[Far96] Dan Farmer. Personal communication, December 21 1996.

[FB99] Armando Fox and Eric A. Brewer. Harvest, yield and scalable tolerant systems. In
Workshop on Hot Topics in Operating Systems, pages 174–178. IEEE Computer So-
ciety Press, March 28–30 1999. citeseer.ist.psu.edu/fox99harvest.
html .

[FC99] Andrew Flaig and Gloria Chang. Managing fraud and integrity risk... best prac-
tices offer key, Spring 1999. http://www.hotel-online.com/Trends/
Andersen/1999_FraudRisk.html .

[Fed97] Federal Trade Comission. Ftc says internet scam re-routes ‘surfers’ to interna-
tional telephone lines: High-tech scheme cost consumers hundreds of thousands
in illegally-billed computer time, February 19 1997. http://www.cslib.
org/attygenl/press/1997/comp/audiotex.htm .

[FK96] A. O. Freier and P. Karltrons. The SSL protocol, 1996. http://wp.netscape.
com/eng/ssl3/ssl-toc.html .

[FM97] David H. Freedman and Charles C. Mann. At Large: The Strange Case of the
World’s Biggest Internet Invasion. Simon & Schuster, 1997.

[FM04] Leah Findlater and Joanna McGrenere. A comparison of static, adaptive, and
adaptable menus. In CHI ’04: Proceedings of the SIGCHI conference on Human
factors in computing systems, pages 89–96. ACM Press, New York, NY, USA, 2004.
ISBN 1-58113-702-8.

[For05] Stephanie Forrest. Computer immune systems—papers, 2005. http://www.
cs.unm.edu/˜immsec/papers.htm .

[FS03] Niels Ferguson and Bruce Schneier. Practical Cryptography. Wiley Publishing,
2003.



440 BIBLIOGRAPHY

[FSA97] Stephanie Forrest, Anil Somayaji, and David. H. Ackley. Building diverse com-
puter systems. In Workshop on Hot Topics in Operating Systems, pages 67–72.
Usenix, 1997. citeseer.ist.psu.edu/forrest97building.html .

[FTC05] Donate your used computer today, February 2005. http://www.
firsttimecomputers.org/ .

[GAI04] GAIN Publishing. Precision time — home, 2004. http://www.precision-
time.com/ . Cited December 1, 2004.

[Gar91] Simson Garfinkel. Designing a write-once file system. Dr. Dobb’s Journal, 16:
78–88, January 1991.

[Gar94] Simson Garfinkel. PGP: Pretty Good Privacy. O’Reilly & Associates, 1994.

[Gar95] Simson Garfinkel. Illegal program troubles America Online. The Boston Globe,
April 1995. http://simson.net/clips/1995/95.Globe.AOHell.pdf .

[Gar96a] Simson L. Garfinkel. The web masters are watching. Internet Underground, 1996.

[Gar96b] Peter Garza. Affidavit in support of complaint, 1996. http://www.simson.
net/ref/1996/ardita.pdf . Prepared in connection with the criminal pros-
ecution of Julio Cesar Ardita.

[Gar00] Simson L. Garfinkel. Database Nation. O’Reilly & Associates, 2000.

[Gar02] Simson L. Garfinkel. Adopting fair information practices to low cost RFID sys-
tems, 2002. Paper presented at Privacy in Ubicomp’2002 workshop, Gotenborg,
Sweden, September 29th, 2002.

[Gar03a] Simson L. Garfinkel. Email-based identification and authentication: An alterna-
tive to PKI? Security & Privacy Magazine, 1:20–26, Nov. - Dec. 2003.

[Gar03b] Simson L. Garfinkel. Enabling email confidentiality through the use of
opportunistic encryption. In The 2003 National Conference on Digi-
tal Government Research. National Science Foundation, 2003. http:/
/www.digitalgovernment.org/dgrc/dgo2003/cdrom/PAPERS/
citsprivacy/garfinkel.pdf .

[Gar04a] Simson Garfinkel. The pure software act of 2006. TechnologyReview.com, April 7
2004. http://simson.net/clips/2004/2004.TR.04.PureSoftware.
pdf .

[Gar04b] Simson L. Garfinkel. Interview with owner of disk #21, October 21 2004.

[Gar04c] David Garrett. Outlook & its rivals. Processor, October 1 2004.

[Gar05] Simson L. Garfinkel. Design Principles and Pattersn for Computer Systems that
are Simultaneously Secure and Usable. PhD thesis, MIT, Cambridge, MA, April 26
2005.



BIBLIOGRAPHY 441

[Geh02] Christian Gehrmann. BluetoothTM security white paper. Technical report, Blue-
tooth SIG Security Expert Group, may 2002. https://www.bluetooth.org/
foundry/sitecontent/document/security_whitepaper_v1 . Version
1.01.

[Gei04] Matthew Geiger. Computer-forensic privacy tools: A forensic evaluation, 2004.
Final project in CMU 95-818: Privacy Policy, Law, and Technology.

[Ger04] Jack M. Germain. Dell spyware decision spurs new trend. E Com-
merce Times, November 2004. http://www.ecommercetimes.com/story/
37668.html .

[GGL03] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The Google file sys-
tem. In SOSP ’03: Proceedings of the nineteenth ACM symposium on Operating
systems principles, pages 29–43. ACM Press, 2003. ISBN 1-58113-757-5.

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Pat-
terns: Elements of Reusable Object-Oriented Software. Addison-Wesley Profes-
sional, 1995.

[Gil04] Alorie Gilbert. California lawmaker introduces RFID bill. CNet News.com, Febru-
ary 24 2004. http://news.zdnet.com/2100-3513_22-5164457.html .

[GJSJ91] David K Gifford, Pierre Jouvelot, Mark A. Sheldon, and James O’Toole Jr. Se-
mantic file systems. In Proceedings of the 13th ACM Symposium on Operating
Systems Principles. ACM Press, ACM Press, 1991.

[GK03] Nathaniel S. Good and Aaron Krekelberg. Usability and privacy: a study of Kazaa
P2P file-sharing. In Proceedings of the conference on Human factors in computing
systems, pages 137–144. ACM Press, 2003. ISBN 1-58113-630-7.

[GL85] Simson L. Garfinkel and J. Spencer Love. A file system for write-once media,
October 1985.

[GLNS93] Li Gong, T. Mark A. Lomas, Roger M. Needham, and Jerome H. Saltzer. Protect-
ing poorly chosen secrets from guessing attacks. IEEE Journal on Selected Areas
in Communications, 11(5):648–656, June 1993.

[GNM+05] Simson L. Garfinkel, Erik Nordlander, Robert C. Miller, David margrave, and
Jeffrey I. Schiller. How to make secure email easier to use. In CHI 2005. ACM
Press, 2005.

[Gol91] James K. Goldston. A Guide to Understanding Data Remanence in Automated
Information Systems. National Computer Security Center, 1991. http://www.
fas.org/irp/nsa/rainbow/tg025-2.htm . NCSC-TG-025, Library No. 5-
236,082.

[Goo04] Google. Choose your Google toolbar configuration, 2004. http://toolbar.
google.com/prdlg.html . Cited December 1, 2004.



442 BIBLIOGRAPHY

[Gra04] Jerry Grasso. Earthlink and webroot release second spyaudit report, June 16
2004.

[Gru89] Jonathan Grudin. The case against user interface consistency. Commun. ACM,
32(10):1164–1173, 1989. ISSN 0001-0782.

[GS91] Simson Garfinkel and Gene Spafford. Practical UNIX Security. O’Reilly & Asso-
ciates, 1991.

[GS02a] Simson Garfinkel and Abhi Shelat. Remembrance of data passed. IEEE Security
and Privacy Magazine, January 2002.

[GS02b] Simson Garfinkel and Gene Spafford. Web Security, Privacy & Commerce. O’Reilly
& Associates, 2002.

[GSN+05] Simson L. Garfinkel, Jeffrey I. Schiller, Erik Nordlander, David Margrave, and
Robert C. Miller. Views, reactions, and impact of digitally-signed mail in e-
commerce. In Financial Cryptography and Data Security 2005. Springer Verlag,
2005. To Appear.

[Gut96] Peter Gutmann. Secure deletion of data from magnetic and solid-state mem-
ory. In Sixth USENIX Security Symposium Proceedings. Usenix, San Jose, Cal-
ifornia, July 22-25 1996. http://www.cs.auckland.ac.nz/˜pgut001/
pubs/secure_del.html . Online paper has been updated since presentation
in 1996.

[Gut00] Peter Gutmann. X.509 style guide, October 2000. http://www.cs.
auckland.ac.nz/˜pgut001/pubs/x509guide.txt .

[Gut01] Peter Gutmann. Pki technology survey and blueprint, 2001. http://www.cs.
auckland.ac.nz/˜pgut001/pubs/pkitech.pdf .

[Gut02a] Peter Gutmann. Lessons learned in implementing and deploying crypto software.
In Proc of the 11th Usenix Security Symposium. Usenix, San Francisco, California,
2002.

[Gut02b] Peter Gutmann. PKI: It’s not dead, just resting, August 2002. http://www.cs.
auckland.ac.nz/˜pgut001/pubs/notdead.pdf . Extended article with
many more citations on the author’s home page.

[Gut02c] Peter Gutmann. PKI: It’s not dead, just resting. Computer, 35:41–49, August
2002.

[Gut03] Peter Gutmann. Plug-and-play PKI: A PKI your mother can use. In 12th USENIX
Security Symposium, pages 45–58. Usenix, August 4–8 2003. http://www.
usenix.org/events/sec03/tech/gutmann.html .

[Gut04a] Peter Gutmann. Everything you never wanted to know about pki but were forced
to find out, 2004. http://www.cs.auckland.ac.nz/˜pgut001/pubs/
pkitutorial.pdf . Slides of Gutmann’s PKI Tutorial.



BIBLIOGRAPHY 443

[Gut04b] Peter Gutmann. Why isn’t the Internet secure yet, dammit. In AusCERT Asia
Pacific Information Technology Security Conference 2004; Computer Security: Are
we there yet? AusCERT, May 2004. http://www.cs.auckland.ac.nz/˜
pgut001/pubs/dammit.pdf .

[GVU99] GVU. GVU’s tenth WWW user survey results, 1999. http://www.cc.gatech.
edu/gvu/user_surveys/survey-1998-10/ .

[Hal03] Richard Hale. Personal communication, 2003.

[Har05] Jason Harris. Keyring stats, March 20 2005. http://keyserver.kjsl.com/
˜jharris/ka/2005-03-20/keyring_stats .

[Has02] Judi Hasson. VA toughens security after PC disposal blunders. Federal Computer
Week, August 26 2002.

[HB05] Phillip Hallam-Baker. Re: [hcisec] outlook bug: altered digi-
tally signed messages not reported, April 1 2005. Message-ID
a123a5d6050401105218cffc7a@mail.gmail.com sent to the HCI-SEC mail-
ing list.

[Hil05] Hillside.net. Hillside history, 2005. http://hillside.net/history.html .

[HK92] S. Hardcastle-Kille. RFC 1327: Mapping between X.400(1988) /ISO 10021 and
RFC 822, May 1992. Obsoleted by RFC1495, RFC2156 [AKM+93, Kil98]. Ob-
soletes RFC987, RFC1026, RFC1138, RFC1148 [Kil86, Kil87, Kil89, Kil90]. Up-
dates RFC0822, RFC0822 [Cro82a, Cro82a]. Status: PROPOSED STANDARD.

[Hod05] Carolyn Hodge. Personal communication, April 19 2005.

[Hof99] P. Hoffman. RFC 2634: Enhanced security services for s/mime, June 1999.

[Hop04] Clearing your Internet surfing history, 2004. http://www.hopeforhealing.
org/clear . Cited on November 18, 2004.

[Hor05] Darik Horn. Darik’s boot and nuke, March 2005. dban.sourceforget.net .
Cited on April 2, 2005.

[Hos00] Hilary H. Hosmer. Visualizing risks: Icons for information attack scenarios. In
23rd National Information Systems Security Conference. National Institute of Stan-
dards and Technology, October 16–19 2000.

[Hos04] Philipp Hoschka. W3c interaction domain, October 28 2004. http://www.w3.
org/Interaction/ .

[How04] Michael Howard. Attack surface: Mitigate security risks by minimiz-
ing the code you expose to untrusted users. MSDN Magazine, Novem-
ber 2004. http://msdn.microsoft.com/msdnmag/issues/04/11/
AttackSurface/default.aspx .



444 BIBLIOGRAPHY

[HPZ04] Stephanie Hackett, Bambang Parmanto, and Xiaoming Zeng. Accessibility of in-
ternet websites through time. In The 6th International ACM/SIGCAPH Conference
on Assistive Technologies, pages 32–39. ACM Press, October 18–20 2004.

[Hug93] Eric Hughes. A cypherpunk’s manifesto, March 9 1993. http://www.
activism.net/cypherpunk/manifesto.html .

[Hus05] Hushmail.com. How Hushmail works, 2005. http://www.hushmail.com/
about-how . Accessed on March 20, 2005.

[Ile04] Dan Ilett. Trojan poses as lycos europe screensaver. CNET News.com, Decem-
ber 7 2004. http://news.com.com/Trojan+poses+as+Lycos+Europe+
screensaver/2100-7349_3-5481674.html .

[Ing05] Cheridan Inglis. Personal communication from thawte public relations, February
26 2005.

[Ins98] American National Standards Institute. ANSI Z535.4 product safety signs and
labels, 1998.

[ISO00] ISO. BS ISO/IEC 17799: 2000 (BS 7799-1:2000): Information Technology —
Code of Practice for Information Security Management. British Standards Institute,
2000.

[Jen97] Brian Michael Jenkins. Protecting surface transportation systems and pa-
trons from terrorist activities case studies of security practices and a
chronology of attacks, December 1997. http://citeseer.ist.psu.edu/
jenkins97protecting.html .

[Joh91] John C. Brezina. Digital ID (service mark), 1991. Serial Number 74208016.

[Joh00] Jeff Johnson. GUI Bloopers: Dont’s and Do’s for Software Developers and Web
Designers. Morgan Kaufmann Publishers, 2000.

[Joh04] Alex Johnson. Shhh ... someone might hear you: Access to information sharply
curtailed under ashcroft. MSNBC, November 18 2004. http://msnbc.msn.
com/id/6512840/ .

[JRS03] A. Juels, R. Rivest, and M. Szydlo. The blocker tag: Selective block-
ing of RFID tags for consumer privacy, 2003. citeseer.nj.nec.com/
juels03blocker.html .

[JtM00] Uwe Jendricke and Daniela Gerd tom Markotten. Usability meets security - the
identity-manager as your personal security assistant for the internet. In ACSAC
’00: Proceedings of the 16th Annual Computer Security Applications Conference,
page 344. IEEE Computer Society, December 2000. ISBN 0-7695-0859-6. http:
//www.acsac.org/2000/papers/90.pdf .



BIBLIOGRAPHY 445

[Jur05] Juran Institute. Our founder, 2005. http://www.juran.com/lower_2.
cfm?article_id=21 . Discussion of the so-called Pareto principle at the Juran
Institute’s website.

[Jus04] Mike Just. Designing and evaluating challenge-question systems. Security &
Privacy Magazine, 2:32–39, Sept–Oct 2004.

[Jus05] Mike Just. Designing authentication systems with challenge questions. In Lorrie
Cranor and Simson Garfinkel, editors, Security and Usability. O’Reilly, 2005. To
appear in August 2005.

[Kar89] Clare-Marie Karat. Iterative usability testing of a security application. In Proceed-
ings of the Human Factors Society 33rd Annual Meeting—1989, pages 273–277.
Human Factors & Ergonomics Society, 1989.

[Kas01] Frank Kastenholz. Re: skeeter & bubba tcp options?, Novem-
ber 30 2001. http://www.postel.org/pipermail/
internet-history/2001-November/000071.html . in message
200111300021.fAU0LW508101@boreas.isi.edu sent to the Internet-History
mailing list.

[KBK05] Clare-Marie Karat, Carolyn Brodie, and John Karat. Usability design and evalu-
ation for privacy and security solutions. In Lorrie Cranor and Simson Garfinkel,
editors, Security and Usability. O’Reilly, 2005. To appear in August 2005.

[KBS04] Gene Kim, Kevin Behr, and George Spafford. The Visible Ops Handbook: Starting
ITIL in 4 Practical Steps. Information Technology Process Institute, June 2004.

[KDP02] D. Kirovski, M. Drinic, and M. Potkonjak. Enabling trusted software integrity,
2002. http://citeseer.ist.psu.edu/kirovski02enabling.html .

[Kei03] Richard Keightley. Encase version 3.0 manual revision 3.18, 2003. http://
www.guidancesoftware.com/ .

[Ken93] S. Kent. RFC 1422: Privacy enhancement for Internet electronic mail: Part II:
Certificate-based key management, February 1993. Obsoletes RFC1114. Status:
PROPOSED STANDARD.

[Kic03] Russ Kick. The justice dept’s attorney workforce diversity study—
uncensored, October 21 2003. http://www.thememoryhole.org/feds/
doj-attorney-diversity.htm .

[Kil86] S. E. Kille. RFC 987: Mapping between X.400 and RFC 822, June 1, 1986.
Obsoleted by RFC2156 [Kil98]. Updated by RFC1026, RFC1138, RFC1148
[Kil87, Kil89, Kil90]. Status: UNKNOWN.

[Kil87] S. E. Kille. RFC 1026: Addendum to RFC 987: (mapping between X.400 and
RFC-822), September 1, 1987. Obsoleted by RFC1327, RFC1495, RFC2156
[HK92, AKM+93, Kil98]. Updates RFC0987 [Kil86]. Updated by RFC1138,
RFC1148 [Kil89, Kil90]. Status: UNKNOWN.



446 BIBLIOGRAPHY

[Kil89] S. E. Kille. RFC 1138: Mapping between X.400(1988) /ISO 10021 and RFC
822, December 1, 1989. Obsoleted by RFC1327, RFC1495, RFC2156 [HK92,
AKM+93, Kil98]. Updates RFC0822, RFC0987, RFC1026 [Cro82a, Kil86, Kil87].
Updated by RFC1148 [Kil90]. Status: EXPERIMENTAL.

[Kil90] S. E. Kille. RFC 1148: Mapping between X.400(1988) /ISO 10021 and RFC 822,
March 1, 1990. Obsoleted by RFC1327, RFC1495, RFC2156 [HK92, AKM+93,
Kil98]. Updates RFC0822, RFC0987, RFC1026, RFC1138 [Cro82a, Kil86, Kil87,
Kil89]. Status: EXPERIMENTAL.

[Kil98] S. Kille. RFC 2156: MIXER (Mime Internet X.400 Enhanced Relay): Map-
ping between X.400 and RFC 822/MIME, January 1998. Obsoletes RFC0987,
RFC1026, RFC1138, RFC1148, RFC1327, RFC1495 [Kil86, Kil87, Kil89, Kil90,
HK92, AKM+93]. Updates RFC0822 [Cro82a]. Status: PROPOSED STANDARD.

[Kin01] Kingpin. Palm OS password lockout bypass, March 2001. http://www.
atstake.com/research/advisories/2001/a030101-1.txt . CAN-
2001-0157.

[KMRT96] T. Krauskopf, J. Miller, P. Resnick, and W. Treese. Pics label distribution label
syntax and communication protocols, version 1.1, 1996. W3C Recommendation
REC-PICS-labels-961031.

[Koh78] Loren M. Kohnfelder. Towards a practical public-key cryptosystem. PhD thesis,
MIT, Cambridge, MA, May 1978. Undergraduate thesis supervised by L. Adle-
man.

[Koo99] Bert-Jaap Koops. The Crypto Controversy: A Key Conflict in the Information SOci-
ety. Kluwer Law International, 1999.

[Koz04] Charles M. Kozierok. Extended prml (eprml). PCGuide.com, 2004. http://
www.pcguide.com/ref/hdd/geom/dataEPRML-c.html .

[KPS02] Charlie Kaufman, Radia Perlman, and Mike Speciner. Network Security: Private
Communication in a Public World. Prentice Hall, second edition, 2002.

[KS94] Gene H. Kim and Eugene H. Spafford. The design and implementation of trip-
wire: A file system integrity checker. In ACM Conference on Computer and Com-
munications Security, pages 18–29. ACM Press, 1994. citeseer.ist.psu.
edu/article/kim93design.html .

[KSS+97] Jeffrey O. Kephart, Gregory B. Sorkin, Morton Swimmer, , and Steve R. White.
Blueprint for a computer immune system. In Proceedings of the 1997 Virus Bul-
letin International Conference. Virus Bulletin Ltd., October 1–3 1997. http://
www.research.ibm.com/antivirus/SciPapers/Kephart/VB97/ .

[Lam05] Butler Lampson. Computer security in the real world, March 18 2005. Invited
talk at Harvard University.



BIBLIOGRAPHY 447

[Las97] Alex Lash. Utah grants first certificate authority. C—Net News.Com, December
3 1997. http://news.com.com/Utah+grants+first+certificate+
authority/2100-1023_3-205932.html .

[Lau05] Robin Laurén. Re: PGP fingerprints on business cards and hash visualiza-
tions, March 28 2005. Message ID 6a9e4b98050328062248d2551f@mail.
gmail.com posted to the hcisec@yahoogroups.com mailing list.

[Lav04] Lavasoft. Protect your privacy, 2004. http://www.lavasoftusa.com/ .
Cited December 1, 2004.

[Lea94] Doug Lea. Design patterns for avionics control systems. Technical Report DSSA
Adage Project ADAGE-OSW-94-01, SUNY Oswego & NY CASE Center, 1994.
http://g.oswego.edu/dl/acs/acs/acs.html .

[Lev04] Benjamin Levy. Personal communication, January 19 2004.

[Lew90] Peter H. Lewis. ‘Little black boxes’ that can save a hard drive. The New York
Times, April 29 1990.

[Ley04a] John Leyden. Meet the peeping tom worm. The Register, August 2004. http:/
/www.theregister.co.uk/2004/08/23/peeping_tom_worm/ .

[Ley04b] John Leyden. Oops! firm accidentally ebays customer database. The Regis-
ter, June 7 2004. http://www.theregister.co.uk/2004/06/07/hdd_
wipe_shortcomings/ .

[LFS92] A. S. Levy, S. B. Fein, and R. E. Schucker. More effective nutrition label formats
are not necessarily preferred. Journal of the American Diet Association, 10:1230–
1234, October 1992. PMID 1401661.

[LHDL04] Scott Lederer, Jason I. Hong, Anid K. Dey, and James A. Landay. Personal privacy
through understanding and action: Five pitfalls for designers. In Personal and
Ubiquitious Computing. Springer-Verlag, 2004.

[LHDL05] Scott Lederer, Jason I. Hong, Anid K. Dey, and James A. Landay. Five pitfalls in
the design for privacy. In Lorrie Cranor and Simson Garfinkel, editors, Security
and Usability. O’Reilly, 2005. To appear in August 2005.

[Lie04] Håkon Wium Lie. personal communication, July 2004.

[Lin87] J. Linn. RFC 989: Privacy enhancement for Internet electronic mail: Part I: Mes-
sage encipherment and authentication procedures, February 1, 1987. Obsoleted
by RFC1040, RFC1113. Status: UNKNOWN.

[Lin93] J. Linn. RFC 1421: Privacy enhancement for Internet electronic mail: Part I:
Message encryption and authentication procedures, February 1993. Obsoletes
RFC1113. Status: PROPOSED STANDARD.

6a9e4b98050328062248d2551f@mail.gmail.com
6a9e4b98050328062248d2551f@mail.gmail.com
hcisec@yahoogroups.com


448 BIBLIOGRAPHY

[LK01] Stefan Ludwig and Winfried Kalfa. File system encryption with integrated user
management. SIGOPS Oper. Syst. Rev., 35(4):88–93, 2001. ISSN 0163-5980.

[Loi04] Eleanor T. Loiacono. Cyberaccess: web accessibility and corporate america. Com-
mun. ACM, 47(12):82–87, 2004. ISSN 0001-0782.

[Lub04] Alan Luber. Beware of spyware, adware & sneakware. Smart Computing,
15:47–50, August 2004. http://www.smartcomputing.com/editorial/
article.asp?article=articles/2004/s1508/14s08/14s08.asp .

[Lud02] Stephanie Ludi. Access for everyone: Introducing accessibility issues to students
in internet programming courses. In 32nd ASEE/IEEE Frontiers in Education Con-
ference, pages S1C–7 – 9. IEEE, November 6–9 2002.

[LW04] Jörg Lehmann and André Wobst. Pyx reference manual, December 15 2004.
http://pyx.sourceforge.net .

[Lym01] Jay Lyman. Troubled dot-coms may expose confidential client data. NewsFac-
tor Network, August 8 2001. http://www.newsfactor.com/perl/story/
12612.html .

[M.04] Rich M. SSL’s credibility as phishing defense is tested, March 8
2004. http://news.netcraft.com/archives/2004/03/08/ssls_
credibility_as_phishing_defense_is_tested.html .

[Mac97] Courtney Macavinta. TRUSTe marks down privacy labels. CNET News.com,
September 17 1997. http://news.com.com/2100-1023-203339.html .

[Man92] B. Manning. RFC 1348: DNS NSAP RRs, July 1992. Obsoleted by
RFC1637 [MC94a]. Updates RFC1034, RFC1035 [Moc87b, Moc87c]. Updated
by RFC1637 [MC94a]. Status: EXPERIMENTAL.

[Mar97] John Markoff. Patient files turn up in used computer. New York Times, April
1997.

[Mar03] Aaron Marcus. Universal, ubiquitious, user-interface design for the disabled and
elderly. Interactions, pages 23–27, March/April 2003.

[Mar05a] Gervase Markham. IDN spoofing strategy, February 15 2005. http://
weblogs.mozillazine.org/gerv/archives/007556.html .

[Mar05b] David Martin. Re: [hcisec] test of S/MIME signature: Message 2 of 2 (personal
communication), 2005.

[Maz00] David Mazières. Self-certifying File System. PhD thesis, Massachusetts Institute
of Technology, May 2000.

[MBA05] George Moromisato, Paul Boyd, and Nimisha Asthagiri. Achieving usable se-
curity in groove virtual office. In Lorrie Cranor and Simson Garfinkel, editors,
Security and Usability. O’Reilly, 2005. To appear in August 2005.



BIBLIOGRAPHY 449

[MC94a] B. Manning and R. Colella. RFC 1637: DNS NSAP resource records, June
1994. Obsoleted by RFC1706 [MC94b]. Obsoletes RFC1348 [Man92]. Updates
RFC1348 [Man92]. Status: EXPERIMENTAL.

[MC94b] B. Manning and R. Colella. RFC 1706: DNS NSAP resource records, October
1994. Obsoletes RFC1637 [MC94a]. Status: INFORMATIONAL.

[McF03] Paul McFedries. The word spy—bluejacking, November 2003. http://www.
wordspy.com/words/bluejacking.asp . Cited on September 19, 2004.

[ME91] Scott Muller and Alan C. Elliott. QueGuide to Data Recovery. Que Corporation,
1991.

[MGS03] Haralambos Mouratidis, Paolo Giorgini, and Markus Schumacher. Security pat-
terns for agent systems. In Eighth European Conference on Pattern Languages of
Programs. unknown publisher, June 25–29 2003. http://dit.unitn.it/˜
pgiorgio/papers/EuroPLoP03.pdf .

[Mic00] Microsoft. Microsoft extensible firmware initiative FAT32 file system specifica-
tion, December 6 2000. http://www.microsoft.com/hwdev/download/
hardware/fatgen103.pdf .

[Mic01] Microsoft. Farewell Clippy: what’s happening to the infamous office assistant
in office XP, April 11 2001. http://www.microsoft.com/presspass/
features/2001/apr01/04-11clippy.asp .

[Mic02] Microsoft. Encrypting file system in windows xp and windows server
2003, August 1 2002. www.microsoft.com/technet/ prodtechnol/
winxppro/deploy/cryptfs.mspx . Updated April 11, 2003; cited Novem-
ber 11, 2004.

[Mic03a] Microsoft. How to clear the history entries in Internet Explorer, December 16
2003. http://support.microsoft.com/kb/157729 .

[Mic03b] Microsoft. OL2000: how Outlook promotes and demotes menus based on usage,
September 29 2003. http://support.microsoft.com/default.aspx?
scid=kb;en-us;220939 .

[Mic03c] Microsoft. Windows server 2003 security guide. Microsoft TechNet, April
23 2003. http://www.microsoft.com/technet/security/prodtech/
windowsserver2003/W2003HG/SGCH00.mspx .

[Mic04] How and why to clear your cache, 2004. http://www.microsoft.com/
windows/ie/using/howto/customizing/clearcache.mspx . Cited on
November 18, 2004.

[Mic05] Microsoft. Next-generation secure computing base, 2005. http://www.
microsoft.com/resources/ngscb/default.mspx . Cited on April 2,
2005.



450 BIBLIOGRAPHY

[MIT03] MIT IST. Q: When i log into the web client i am getting a message that says
my password is being sent in the clear, is that true?, June 9 2003. http://
itinfo.mit.edu/answer.php?id=1187 .

[MIT04] MIT. Building 32 – 8th floor, Ray and Maria Stata Center, space accounting
floorplan, MIT Department of Facilities, 2004. http://floorplans.mit.
edu/pdfs/32_8.pdf .

[MJLF84] Marshall K. McKusick, William N. Joy, Samuel J. Leffler, and Robert S. Fabry. A
fast file system for UNIX. Computer Systems, 2(3):181–197, 1984. citeseer.
ist.psu.edu/article/mckusick84fast.html .

[MN04] M. Granger Morgan and Elaine Newton. Protecting public anonymity. Issues in
Science and Technology, pages 83–90, Fall 2004.

[Moc83a] P. V. Mockapetris. RFC 882: Domain names: Concepts and facilities, Novem-
ber 1, 1983. Obsoleted by RFC1034, RFC1035 [Moc87b, Moc87c]. Updated by
RFC0973 [Moc86]. Status: UNKNOWN.

[Moc83b] P. V. Mockapetris. RFC 883: Domain names: Implementation specification,
November 1, 1983. Obsoleted by RFC1034, RFC1035 [Moc87b, Moc87c]. Up-
dated by RFC0973 [Moc86]. Status: UNKNOWN.

[Moc86] P. V. Mockapetris. RFC 973: Domain system changes and observations, January 1,
1986. Obsoleted by RFC1034, RFC1035 [Moc87b, Moc87c]. Updates RFC0882,
RFC0883 [Moc83a, Moc83b]. Status: UNKNOWN.

[Moc87a] P. Mockapetris. STD 13: Domain Names — Concepts and Facilities, November
1987. See also RFC1034, RFC1035 [Moc87b, Moc87c].

[Moc87b] P. V. Mockapetris. RFC 1034: Domain names — concepts and facilities, November
1, 1987. Obsoletes RFC0973, RFC0882, RFC0883 [Moc86, Moc83a, Moc83b].
See also STD0013 [Moc87a]. Updated by RFC1101, RFC1183, RFC1348,
RFC1876, RFC1982, RFC2065, RFC2181, RFC2308 [Moc89, EMUM90, Man92,
DVGD96, EB96, ErK97, EB97, And98]. Status: STANDARD.

[Moc87c] P. V. Mockapetris. RFC 1035: Domain names — implementation and spec-
ification, November 1, 1987. Obsoletes RFC0973, RFC0882, RFC0883
[Moc86, Moc83a, Moc83b]. See also STD0013 [Moc87a]. Updated by RFC1101,
RFC1183, RFC1348, RFC1876, RFC1982, RFC1995, RFC1996, RFC2065,
RFC2181, RFC2136, RFC2137, RFC2308 [Moc89, EMUM90, Man92, DVGD96,
EB96, Oht96, Vix96, ErK97, EB97, VTRB97, Eas97, And98]. Status: STANDARD.

[Moc89] P. V. Mockapetris. RFC 1101: DNS encoding of network names and other types,
April 1, 1989. Updates RFC1034, RFC1035 [Moc87b, Moc87c]. Status: UN-
KNOWN.

[Mon02] John Monroe. Personal communication, September 23 2002.



BIBLIOGRAPHY 451

[MS02] Kevin D. Mitnick and William L. Simon. The Art of Deception. John Wiley & Sons,
2002.

[MT79] Robert Morris and Ken Thompson. Password security: a case history. Commun.
ACM, 22(11):594–597, 1979. ISSN 0001-0782.

[Mxx04] Mxxcon. Important patch for all xp-sp2 users!, August 11 2004. http://
forum.emule-project.net/index.php?showtopic=56016 .

[Nat89] National Research Concil, Committee on Risk Perception and Communication.
Improving Risk Communication. National Academy Press, 1989.

[Nat05] National Security Agency. Security-Enhanced Linux, 2005. http://www.nsa.
gov/selinux/ .

[NC05] National Security Agency and Central Security Service. Nsa/css storage device
declassification manual, 2005. NSA/CSS Policy Manual 9-12 (Draft).

[Net94a] Netscape Communications. Netscape Communications offers new network nav-
igator free on the Internet, October 13 1994. http://cgi.netscape.com/
newsref/pr/newsrelease1.html .

[Net94b] Netscape Communications. Netscape communications ships release 1.0 of
netscape navigator and netscape servers, December 15 1994. http://cgi.
netscape.com/newsref/pr/newsrelease8.html .

[Net97] Preview release of netscape communicator fuels use of web-based email netscape
teams with content and service providers to encourage users to try next-
generation email client, 1997. http://wp.netscape.com/newsref/pr/
newsrelease314.html .

[Net05a] Netcraft. April 2005 web server survey, April 2005. http://news.netcraft.
com/archives/web_server_survey.html .

[Net05b] Microsoft Developer Network. DeleteFile, 2005. http://msdn.microsoft.
com/library/en-us/fileio/base/deletefile.asp .

[Neu90] Peter G. Neumann. Inside risks: a few old coincidences. Commun. ACM, 33(9):
202, 1990. ISSN 0001-0782.

[Nic05] Stuart Nicholson. Re: s/mime (personal communication), January 25 2005.

[Nie89] Jakob Nielsen. Usability engineering at a discount. In G. Salvendy and M. J.
Smith, editors, Designing and Using Human-Computer Interfaces and Knowledge
Based Systems, pages 394–401. Elsevier Science Publishers, 1989.

[Nie90] Jakob Nielsen. Big paybacks from ‘discount’ usability engineering. IEEE Software,
7:107–108, May 1990.

[Nie93a] Jakob Nielsen. Iterative user-interface design. Computer, 26(11):32–41, 1993.
ISSN 0018-9162.



452 BIBLIOGRAPHY

[Nie93b] Jakob Nielsen. Usability Engineering. Academic Press, 1993.

[Nie94] Jakob Nielsen. Guerrilla HCI: using discount usability engineering to penetrate
the intimidation barrier. useit.com, 1994. http://www.useit.com/papers/
guerrilla_hci.html .

[NIS85] Password usage, 1985. http://www.itl.nist.gov/fipspubs/fip112.
htm .

[NIS93] Automated password generator (apg), 1993. http://www.itl.nist.gov/
fipspubs/fip181.htm .

[Nor83] Donald A. Norman. Design rules based on analyses of human error. Commun.
ACM, 26(4), April 1983.

[Nor97] Don Norman. Privacy and car navigational systems. The Risks Digest, 19, May
31 1997. http://catless.ncl.ac.uk/Risks/19.20.html\#subj3.1 .

[Nor05] Eric Norman. Re: [hcisec] PGP fingerprints on business cards and
hash visualization. hcisec@yahoogroups.com, March 26 2005. Message-ID
0a7a6191c82f5c11d29d3ce53232f35f@doit.wisc.edu.

[NP81] Larry Niven and Jerry Pournelle. Oath Of Fealty. Simon & Schuster, September
1981.

[NTK02a] Hard news, July 12 2002. http://www.ntk.net/2002/07/12/ .

[NTK02b] Yahoo’s seven word fragments you can’t say in html email, July 12 2002. http:
//www.ntk.net/2002/07/12/yahoo.txt .

[NTN02] Samir Nanavati, Michael Thieme, and Raj Nanavati. Biometrics: Identity Verifi-
cation in a Networked World. John Wiley & Sons, Inc., 2002.

[OH04] Timothy L. O’Brien and Saul Hansell. Barbarians at the digital gate. New York
Times, September 19 2004.

[Oht96] M. Ohta. RFC 1995: Incremental zone transfer in DNS, August 1996. Updates
RFC1035 [Moc87c]. Status: PROPOSED STANDARD.

[oM98] National Library of Medicine. Pure food and drugs, April 27 1998. http://
www.nlm.nih.gov/exhibition/phs_history/106.html . Cited on April
18, 2005.

[OR04] Diana Oblinger and Laura Ruby. Accessible technology: Opening doors for dis-
abled students. NACUBO Business Officer, pages 27–31, January 2004.

[Org80] Organisation for Economic Co-operation and Development. Guidelines
on the protection of privacy and transborder flows of personal data,
1980. http://www.oecd.org/document/18/0,2340,en_2649_34255_
1815186_1_1_1_1,00.html .



BIBLIOGRAPHY 453

[pal05] palmOne, Inc. Resetting your device (soft, system/warm, hard, in-cradle,
power down, battery disconnect, zero out), 2005. http://kb.palmone.
com/SRVS/CGI-BIN/WEBCGI.EXE?New,Kb=PalmSupportKB,ts=Palm_
External2001,case=obj(887) . Solution ID 887.

[Per03] Mindy Pereira. Trusted S/MIME Gateways. Dartmouth College, May 2003. Senior
Honors Thesis: Winter/Spring 2003, Department of Computer Science, Dart-
mouth College.

[Per05a] Radia Perlman. The ephemerizer: Making data disappear. Technical Report
SMLI TR-2005-140, Sun Labs, Sun Microsystems, February 2005. http://
research.sun.com/techrep/2005/smli_tr-2005-140.pdf .

[Per05b] Radia Perlman. Personal communication, March 22 2005.

[PEW05] Pew Internet & American Life Project, 2005. http://www.pewinternet.
org/ .

[PGP98] PGPdisk, 1998. http://www.pgpi.org/products/pgpdisk . version 6.02.

[PKW04] Alan Peacock, Xian Ke, and Matthew Wilkerson. Typing patterns: a key to user
identification. Security & Privacy Magazine, 2:40–47, Sept–Oct 2004.

[PLF03] Andrew Patrick, A. Chris Long, and Scott Flinn, editors. Workshop on Human-
Computer Interaction and Security Systems, part of CHI2003. ACM Press, Fort
Lauderdale, Florida, April 5-10 2003. http://www.andrewpatrick.ca/
CHI2003/HCISEC/ .

[Por00a] John D. Porter. Crypt-randpasswd-.0.2, July 21 2000. http://search.cpan.
org/˜jdporter/Crypt-RandPasswd-0.02/ .

[Por00b] John D. Porter. Crypt::randpasswd, 2000. http://search.cpan.org/˜
jdporter/Crypt-RandPasswd-0.02/lib/Crypt/RandPasswd.pm .

[Pos80a] J. Postel. RFC 768: User datagram protocol, August 28, 1980. Status: STAN-
DARD. See also STD0006 [Pos80b].

[Pos80b] J. Postel. STD 6: User Datagram Protocol, August 1980. See also RFC0768
[Pos80a].

[Pou03] Kevin Poulsen. Justice e-censorship gaffe sparks controversy. SecurityFocus, Octo-
ber 23 2003. http://www.theregister.co.uk/2003/10/23/justice_
ecensorship_gaffe_sparks_controversy/ .

[Pre05] President’s Information Technology Advisory Committee. Cyber security: A crisis
of prioritization, February 2005. Report to the President.

[Pri03] Privacy Rights Clearinghouse. RFID position statement of consumer pri-
vacy and civil liberties organizations, November 20 2003. http://www.
privacyrights.org/ar/RFIDposition.htm .



454 BIBLIOGRAPHY

[Pro04] The Honeynet Project. Trend: Life expectancy increasing for unpatched or vul-
nerable Linux deployments. Know Your Enemy — Trend Analysis, December 17
2004. http://www.honeynet.org/papers/trends/life-linux.pdf .

[PS99] Adrian Perrig and Dawn Song. Hash visualization: a new technique to improve
real-world security. In Manuel Blum and C. H. Lee, editors, Cryptographic Tech-
niques and E-COmmerce: Proceedings of the 1999 International Workshop on Cryp-
tographic Techniques and E-Commerce (CryTEC ’99), pages 131–138. City Univer-
sity of Hong Kong Press, 1999. citeseer.ist.psu.edu/perrig99hash.
html .

[Raj03] RajuAbju Inc. History of AOL warez, 2003. http://www.rajuabju.com/
warezirc/historyofaolwarez.htm .

[Ram04a] B. Ramsdell. RFC 3850: Secure/multipurpose Internet mail extensions
(S/MIME) version 3.1 certificate handling, July 2004.

[Ram04b] B. Ramsdell. RFC 3851: Secure/multipurpose Internet mail extensions
(S/MIME) version 3.1 message specification, July 2004.

[Ras00] Jef Raskin. The humane interface (book excerpt). Ubiquity, 1(14):3, 2000.

[Ray03] Eric S. Raymond. The Art of UNIX Programming, chapter Chapter 11: Interfaces;
Applying the Rule of Least Surprise. Addison-Wesley Profesional, 2003. http:
//www.faqs.org/docs/artu/ch11s01.html .

[Rei87] Brian Reid. Reflections on some recent widespread computer break-ins. Com-
mun. ACM, 30(2):103–105, 1987. ISSN 0001-0782.

[Rei04] Tom Reinke, November 9 2004. Telephone interview with Director of Technol-
ogy.

[Rek99a] Jun Rekimoto. Time-machine computing, 1999. http://www.csl.sony.co.
jp/person/rekimoto/tmc/ . Cited on April 1, 2005.

[Rek99b] Jun Rekimoto. Time-machine computing: A time-centric approach for the
information environment. In ACM Symposium on User Interface Software
and Technology, pages 45–54. ACM Press, 1999. citeseer.nj.nec.com/
rekimoto99timemachine.html .

[Ren05] Karen Renauld. Evaluating authentication mechanisms. In Lorrie Cranor and
Simson Garfinkel, editors, Security and Usability. O’Reilly, 2005. To appear in
August 2005.

[Res01] P. Resnick. RFC 2822: Internet message format, April 2001 2001.

[Ric05] Robert Richardson. Factor x 2: Are passwords really so bad? Are tokens any
better? Computer Security Alert, pages 1–4, January 2005.

[Riv04] Ronald Rivest. Personal communication, September 2004.



BIBLIOGRAPHY 455

[Rob04a] Mark Roberti. Legislation isn’t the answer. RFID Journal, July 19 2004. http:/
/www.rfidjournal.com/article/articleview/1031/1/2/ .

[Rob04b] Paul Roberts. AOL survey finds rampant online threats, clueless users.
Computerworld, October 23 2004. http://www.computerworld.com/
securitytopics/security/story/0,10801,96918,00.html .

[Ros00] James M. Rosenbaum. In defense of the DELETE key. The Green Bag, 3(4):393–
396, Summer 2000.

[Ros05] Seth Ross. Ten general security rules 1–5. Securius.com, 1(5), 2005.
http://www.securius.com/newsletters/Ten_General_Security_
Rules_1-5.html .

[Rot05] Volker Roth. A user-centric approach to encrypted e-mail. International Journal
of Human-Computer Studies, 2005. Tenatively accepted for publication.

[RP94] J. Reynolds and J. Postel. RFC 1700: ASSIGNED NUMBERS, October 1994. See
also STD0002. Obsoletes RFC1340. Status: STANDARD.

[RSA99] RSA Laboratories. PKCS #12: Personal information exchange syntax standard,
June 24 1999. http://www.rsasecurity.com/rsalabs/node.asp?id=
2138 .

[RT78] D. M. Ritchie and K. Thompson. The UNIX time-sharing system. The Bell System
Technical Journal, 57(6 (part 2)):1905+, 1978. citeseer.ist.psu.edu/
ritchie74unix.html .

[Rub03] Laura Ruby. Federal regulation creates economic incentives for competition, in-
novation among technology companies. Information Technology and Disabilities,
9(1), October 2003. http://www.rit.edu/˜easi/itd/itdv09n1/ruby.
htm .

[S0̈2] Eva Söderström. Standardising the business vocabulary of standards. In SAC
’02: Proceedings of the 2002 ACM symposium on Applied computing, pages 1048–
1052. ACM Press, 2002. ISBN 1-58113-445-2.

[SA99] Frank Stajano and Ross Anderson. The resurrecting duckling: Security is-
sues for ad-hoc wireless networks. In 1999 AT&T Software Symposium,
pages 172–194. AT&T, September 15 1999. citeseer.ist.psu.edu/
stajano99resurrecting.html .

[SA04] Stephen Shankland and Scott Ard. Document shows SCO prepped lawsuit
against BofA. News.Com, March 4 2004. http://news.com.com/2100-
7344_3-5170073.html .

[Sal96] Arto Salomaa. Public Key Cryptography. Springer-Verlag, 1996.

[Sal04] Jerome Saltzer. Personal communication, 2004.



456 BIBLIOGRAPHY

[Sam05] Geetanjali Sampemane. Re: [hcisec] test of S/MIME signature: Message 1 of 2
(personal communication), 2005.

[SAN04] SANS Institute. The twenty most critical internet security vulnerabilities (up-
dated) — the experts consensus, October 8 2004. http://www.sans.org/
top20/ .

[Sas03] M. Angela Sasse. Computer security: Anatomy of a usability disaster, and a plan
for recovery. In Workshop on Human-Computer Interaction and Security Systems,
part of CHI2003. ACM Press, April 2003. citeseer.ist.psu.edu/618589.
html .

[Sas04a] M. Angela Sasse. Personal communication, July 2004.

[Sas04b] M. Angela Sasse. Usability and trust in information systems. In Robin Mansell
and Brian S. Collins, editors, Cyber Trust in Information Societies. Edward Elgar,
2004.

[SB04] Tobias Straub and Harald Baier. A framework for evaluating the usability and
the utility of PKI-enabled applications. In Public Key Infrastructure: First Eu-
ropean PKI Workshop: Research and Applications, EuroPKI 2004, Samos Island,
Greece, June 25-26, 2004. Proceedings, volume 3093, pages 112–125. Technische
Universitat Darmstadt, 2004. http://www.informatik.tu-darmstadt.
de/ftp/pub/TI/TR/TI-04-05.paper_usability.pdf .

[SC04] Securities and Exchange Commission. 17 cfr part 248, disposal of consumer
report information. Federal Register, 69(235):71322 – 71329, December 8 2004.
http://www.sec.gov/rules/final/34-50781.pdf . Final Rule.

[Sca04] Sarah D. Scalet. Scumware out there. CSO, November 2004. http://www.
csoonline.com/read/110104/sware.html .

[Sch96] Bruce Schneier. Applied Cryptography. John Wiley & Sons, 1996.

[Sch03a] Markus Schumacher. Security Engineering with Patterns. PhD thesis, Darmstadt
University of Technology, May 2003.

[Sch03b] Markus Schumacher. Security Engineering with Patterns: Origins, Theoretical
Models, and Ne Applications. Springer, 2003. LCNS 2754.

[Sch04a] Jeffrey I. Schiller. Personal communication, August 28 2004. Text originally
written for inclusion in [GNM+05] but omitted due to space constraints.

[Sch04b] Sarah Schweitzer. Parties call foul over N. H. phone-jaming suit. The Boston
Globe, October 23 2004.

[Sec04] RSA Security. American Online and RSA securty launch AOL passcode premium
service, September 21 2004. http://www.rsasecurity.com/press_
release.asp?doc_id=5033 .



BIBLIOGRAPHY 457

[Sec05a] RSA Security. E*TRADE financial offers RSA SecurID two-factor authenti-
cation solution to its U.S. retail customers, March 1 2005. http://www.
rsasecurity.com/press_release.asp?doc_id=5567 .

[Sec05b] SecuritySpace.com. SSL server survey – certificate authority (CA) market share,
March 2005. http://www.securityspace.com/sspace/ .

[SFJ96] Douglas C. Schmidt, Mohamed Fayad, and Ralph E. Johnson. Software patterns.
Commun. ACM, 39(10):37–39, 1996. ISSN 0001-0782.

[SFPM04] Paul Slovic, Melissa L. Finucane, Ellen Peters, and Donald G. MacGregor. Risk
as analysis and risk as feelings: Some thoughts about affect, reason, risk and
rationality. Risk Analysis, 24(2), 2004.

[SG02] D. K. Smetters and R. E. Grinter. Moving from the design of usable security tech-
nologies to the design of useful secure applications. In NSPW ’02: Proceedings of
the 2002 workshop on New security paradigms, pages 82–89. ACM Press, 2002.
ISBN 1-58113-598-X.

[SGS+00] John D. Strunk, Garth R. Goodson, Michael L. Scheinholtz, Craig A.N. Soules,
and Gregory R. Ganger. Self-securing storage: Protecting data in compro-
mised systems. In Proceedings of the 4th USENIX OSDI Symposium, pages
165–180. Usenix, October 23–25 2000. http://www.usenix.org/events/
osdi2000/full_papers/strunk/strunk_html/ .

[Sha85] Adi Shamir. Identity-based cryptosystems and signature schemes. In Proceedings
of CRYPTO 84 on Advances in cryptology, pages 47–53. Springer-Verlag New York,
Inc., New York, NY, USA, 1985. ISBN 0-387-15658-5.

[Sha04] Sharman Networks. Kazaa — the guide, 2004. http://www.kazaa.com/us/
help/new_nospy.htm .

[SHF97] Anil Somayaji, Steven Hofmeyr, and Stephanie Forrest. Principles of a computer
immune system. In Meeting on New Security Paradigms, pages 75–82. New York,
NY, USA : ACM, 1998, September 23–26 1997. ISBN 0897919866. citeseer.
ist.psu.edu/11313.html .

[Shn82] Ben Shneiderman. The future of interactive systems and the emergence of direct
manipulation. Behaviour and Information Technology, 1:237–256, 1982.

[Sho95] Adam Shostack. An overview of shttp, May 1995. http://www.homeport.
org/˜adam/shttp.html . Unpublished.

[Sip95] Janice C. Sipior. The ethical and legal quandary of email privacy. Communica-
tions of the ACM, 38(12):48–54, December 1995.

[SK03] Kimberly Stone and Richard Keightley. Can computer investigations survive
Windows XP? Technical report, Guidance Software, 2003. http://www.
guidancesoftware.com/corporate/whitepapers/downloads/
XPwhitepaper.pdf .



458 BIBLIOGRAPHY

[SK05] Jerome H. Saltzer and M. Frans Kaashoek. Topics in the engineering of computer
systems (working title), 2005. http://mit.edu/6.033/www/reference.
html . draft release 2.0.

[SMM00] P. Slovic, J. Monahan, and D. M. MacGregor. Violence risk assessment and risk
communication: The effects of using actual cases, providing instructions, and
employing probability vs. frequency formats. Law and Human Behavior, 24:271–
296, 2000.

[Som02] Anil Somayaji. Operating System Stability and Security through Process Homeosta-
sis. PhD thesis, University of New Mexico, July 2002. http://www.cs.unm.
edu/˜immsec/publications/soma-diss.pdf .

[Sop04] Sophos. W32/rbot-gr, October 2004. http://www.sophos.com/
virusinfo/analyses/w32rbotgr.html .

[Sot05] Lisa J. Sotto. New Federal rule on disposal of consumer information. Privacy
Officers Advisor, pages 12–14, January 2005.

[SP98] Perdita Stevens and Rob Pooley. Systems reengineering patterns. In SIGSOFT
’98/FSE-6: Proceedings of the 6th ACM SIGSOFT international symposium on
Foundations of software engineering, pages 17–23. ACM Press, 1998. ISBN 1-
58113-108-9.

[Spi03] Diomidis Spinellis. Organized pruning of file sets. ;login:, 28:39–42, June
2003. http://www.spinellis.gr/pubs/trade/2003-login-prune/
html/prune.html .

[Spr03] Tom Spring. Hard drives exposed: We bought or salvaged ten used drives and
found sensitive business and personal data on all but one. PCWorld, May 2003.
http://www.pcworld.com/news/article/0,aid,110012,00.asp .

[SQ95] Michelle Slatalla and Joshua Quittner. Masters of Deception: The Gang That Ruled
Cyberspace. Harper-Collins, 1995.

[SR03] Arvind Singhal and Everett M. Rogers. Combatting AIDS: Communication Strate-
gies in Action. Sage Publications, 2003.

[SS75] Jerome H. Saltzer and Michael D. Schroeder. The protection of information in
computer systems. Proceedings of the IEEE, 63:1278–1308, September 1975.

[Sta01] Richard M. Stallman. GNU general public license, 2001. http://www.gnu.
org/copyleft/gpl.html . Cited November 16, 2004.

[Sta03] William Stallings. Cryptography and Network Security. Prentice Hall, 2003.

[Sti97] Harrell W. Stiles. Credit card check digit validation, 1997. http://www.
beachnet.com/˜hstiles/cardtype.html .

[Sto04] Debbie Stolper. Personal communication, January 1 2004.



BIBLIOGRAPHY 459

[Swe04] Claire Swedberg. California RFID legislation rejected. RFID Journal, July 5 2004.
http://www.rfidjournal.com/article/articleview/1015/1/1/ .

[Sym04] Symantec. Symantec security response—w32.klez.h@mm, June6 2004.
http://securityresponse.symantec.com/avcenter/venc/data/
w32.klez.h@mm.html .

[Tan97] John C. Tang. Eliminating a hardware switch: weighing economics and values in
a design decision. Center for the Study of Language and Information, Stanford,
CA, USA, 1997. ISBN 1-57586-080-5. 259–269 pp.

[Tec04] Pointsec Mobile Technologies. A fiver buys access & log-in codes to major finan-
cial services group, June 8 2004. http://www.pointsec.com/news/news_
pressrelease.asp?PressID=2004_June_8 .

[Tec05] TechSmith. Camtasia studio, 2005. http://www.techsmith.com/
products/studio/ .

[Tel01] Telecommunication Standardizaton Sector. ITU-T recommendation X.509 —
ISO/ITEC 9594-8: Information Technology—Open Systems Interconnection—
The Directory: Public-Key and Attribute Certificate Frameworks. International
Telecommunication Union, February 23 2001. COM 7-250-E Revision 1.

[The04] The Mozilla Organization. Mozilla jargon file, September 9 2004. http://
www.mozilla.org/docs/jargon.html .

[The05a] The Council of European National TLD Registries. Centr statement on IDN ho-
mograph attacks, February 22 2005. http://www.centr.org/docs/2005/
02/homographs.html .

[The05b] The Japan Times. Bug in antivirus software hits LANs at JR east, some me-
dia. The Japan Times Online, April 24 2005. http://www.japantimes.com/
cgi-bin/getarticle.pl5?nn20050424a2.htm .

[Tog05] Bruce Tognazzini. Design for usability. In Lorrie Cranor and Simson Garfinkel,
editors, Security and Usability. O’Reilly, 2005. To appear in August 2005.

[TR03] Mary Frances Theofanos and Janice Redish. Bridging the gap between accessi-
bility and usability. Interactions, pages 36–45, November/December 2003.

[Tre04] Ambrose Treacy. Re: Bug in handling of S/MIME-signed mail in outlook 2003
(personal communication), October 27 2004.

[Tro05] Trolltech. Qt 3.3 whitepaper, 2005. http://www.trolltech.com/
products/whitepapers.html .

[TRU04] TRUSTe. TRUSTe’s mission, 2004. http://www.truste.org/about/
mission_statement.php . Cited on April 17, 2005.



460 BIBLIOGRAPHY

[TW03] Jamie Twycross and Matthew M. Williamson. Implementing and test-
ing a virus throttle. In 12th Usenix Security Symposium. Usenix,
2003. http://www.usenix.org/events/sec03/tech/full_papers/
twycross/twycross_html/implementation.html .

[UDoHoAPDS73] Education US Department of Health and Welfare. Secretary’s Advisory Commit-
tee on Automated Personal Data Systems. Records, Computers, and Rights of
Citizens; report. MIT Press, 1973.

[US 04] Usability: Usability basics, 2004. http://www.usability.gov/basics/ .

[US88] California v. Greenwood, May 16 1988. 486 US 35.

[US03] The fair and accurate credit transactions act of 2003, 2003. Public Law 108-159,
117 Stat. 1952.

[U.S04] VISA U.S.A. Payment card industry data security standard, December
2004. http://usa.visa.com/download/business/accepting_visa/
ops_risk_management/cisp_PCI_Data_Security_Standard.pdf .

[USA04] United States of America v. Bradford C. Councilman, June 29 2004. http:
//www.ca1.uscourts.gov/pdf.opinions/03-1383-01A.pdf . No. 03-
1383 (1st Cir).

[Uta95] Utah. Utah Digital Signature Act, Utah Code §§46-3-101 to 46-3-504, 1995. ch.
61.

[vdBG05] Stephen R. van den Berg and Philip Guenther. Procmail homepage, 2005. http:
//www.procmail.org .

[Ver96] VeriSign, Inc. Digital ID (service mark), 1996. Serial Number 75160774.

[Ver05a] VeriSign. Certificate interoperability service, 2005. http://www.
verisign.com/products-services/security-services/pki/
cert-interoperability/ . Last accessed April 15, 2005.

[Ver05b] VeriSign. Verisign certification practice statement, version 3.0, April 1
2005. http://www.verisign.com/repository/CPS/VeriSignCPSv3_
03.15.05.pdf .

[Ver05c] Inc. VeriSign. Manage SSL certificates from VeriSign, Inc., 2005. http://
www.verisign.com/products-services/security-services/ssl/
current-ssl-customers/manage-ssl-certificates/index.html .
Cited on March 22, 2005.

[Vic01] Kim J. Vicente. Crazy clocks: Counterintuitive consequences of “intelligent” au-
tomation. IEEE Intelligent Systems, pages 74–76, November / December 2001.

[Vil02] Matt Villano. Hard-drive magic: Making data disappear forever. New York Times,
May 2 2002.



BIBLIOGRAPHY 461

[Vir04] Virginia Joint Commission on Technology & Science. 2004–2005 commission
work plan, May 26 2004. http://jcots.state.va.us/publications/
work\%20plans/workplan04.htm .

[VIS05] VISA. Cardholder information security program, 2005. http://usa.visa.
com/business/accepting_visa/ops_risk_management/cisp.html .

[Vix96] P. Vixie. RFC 1996: A mechanism for prompt notification of zone changes (DNS
NOTIFY), August 1996. Updates RFC1035 [Moc87c]. Status: PROPOSED STAN-
DARD.

[VTRB97] P. Vixie, Editor, S. Thomson, Y. Rekhter, and J. Bound. RFC 2136: Dynamic up-
dates in the domain name system (DNS UPDATE), April 1997. Updates RFC1035
[Moc87c]. Status: PROPOSED STANDARD.

[Wal02] Carl A. Waldspurger. Memory resource management in VMware ESX server.
SIGOPS Oper. Syst. Rev., 36(SI):181–194, 2002. ISSN 0163-5980.

[Wat05] Watchfire Corporation. Welcome to Bobby WorldWide, 2005. http://bobby.
watchfire.com/bobby .

[WBG+87] Charles Cresson Wood, William W. Banks, Sergio B. Guarro, Abel A. Garcia, Vik-
tor E. Hampel, and Henry P. Sartorio. Computer Security: A Comprehensive Con-
trols Checklist. John Wiley & Sons, 1987. Edited by Abel A. Garcia.

[WCO00] Larry Wall, Tom Christiansen, and Jon Orwant. Programming Perl (3rd Edition).
O’Reilly, 2000.

[WCSJ02] Michael S. Wogalter, Vincent C. Conzola, and Tonya L. Smith-Jackson. Research-
based guidelines for warning design and evaluation. Applied Ergonomics, 33,
2002.

[WDL99] M. S. Wogalter, D. M. DeJoy, and K. R. Laughery. Warnings and Risk Communi-
cation. Taylor and Francis, 1999.

[Wei03] S. A. Weis. Security and privacy in radio-frequency identification devices, 2003.

[WFSB93] Michael S. Wogalter, R. M. Forbes, L. J. Van’t Slot, and T. Barlow. Facilitating
communication of label information and warnings by increasing the surface area
and print size on small product containers. In Proc Interface 93, pages 181–186.
Human Factors Society, 1993.

[Whi00] Alma Whitten. People to invite. chisec@groups.yahoo.com, May 12 2000. http:
//groups.yahoo.com/group/hcisec/message/1 .

[Whi03] Alma Whitten. personal website., 2003. http://www.gaudior.net/alma/ .

[Whi04a] Alma Whitten. Making Security Usable. PhD thesis, School of Computer Science,
Carnegie Mellon University, 2004.

[Whi04b] Alma Whitten. Personal communication, December 6 2004.



462 BIBLIOGRAPHY

[Wik] Wikipedia. X.400. http://en.wikipedia.org/wiki/X.400 . Cited on
March 22, 2005.

[Wil03] Matthew M. Williamson. Design, implementation and test of an email virus
throttle, June 2003. citeseer.ist.psu.edu/705198.html . HPL-2003-
118.

[Wil05] Jeff Williams. Unsafe at any (CPU) speed, April 30 2005. http://www.
aspectsecurity.com/documents/Aspect_HCSS_Brief.ppt .

[WKH97] M. Wahl, S. Kille, and T. Howes. RFC 2253: Lightweight Directory Access Pro-
tocol (v3): UTF-8 string representation of distinguished names, December 1997.
Status: PROPOSED STANDARD.

[Won00] Edward Wong. Web site lists Iran coup names. The New York Times,
June 24 2000. http://www.library.cornell.edu/colldev/mideast/
irnytrep.htm .

[Woo84] Charles C. Wood. Logging, security experts, data base, and crypto key manage-
ment. In Proceedings ACM’84 Annual Conference: The Fifth Generation Challenge.
ACM Press, October 8–10 1984.

[Woo04] Paul Woolverton. Computer files hang around, Theer trial shows. The Fayet-
teville (NC) Observer, October 25 2004. http://www.fayettevillenc.
com/story.php?Template=local&Story=6645176 .

[Wor96] Anthony Worsley. Which nutrition information do shoppers want on food labels?
Asia Pacific Journal of Clinical Nutrition, 5:70–78, 1996. http://elecpress.
monash.edu.au/APJCN/Vol5/Num2/52p70.htm .

[WR95] Suzanne P. Weisband and Bruce A. Reinig. Managing user perceptions of email
privacy. Commun. ACM, 38(12):40–47, 1995. ISSN 0001-0782.

[WRA04] Theer found guilty of murder, conspiracy, December 3 2004. http://www.
wral.com/fayettevillenews/3969062/detail.html .

[WT98] Alma Whitten and J. D. Tygar. Usability of security: A case study. Technical re-
port, Carnegie Mellon University, December 1998. citeseer.ist.psu.edu/
whitten98usability.html .

[WT99] Alma Whitten and J. D. Tygar. Why Johnny can’t encrypt: A usability evaluation
of PGP 5.0. In 8th USENIX Security Symposium, pages 169–184. Usenix, 1999.
citeseer.nj.nec.com/whitten99why.html .

[WT03] Alma Whitten and J. D. Tygar. Safe staging for computer security. In Work-
shop on Human-Computer Interaction and Security Systems, part of CHI2003.
CHI, ACM SIGCHI, 2003. http://132.246.128.219/CHI2003/HCISEC/
hcisec-workshop-whitten.pdf .



BIBLIOGRAPHY 463

[WY94] Michael S. Wogalter and Stephen L. Young. The effect of alternative product-
label design on warning compliance. Applied Ergonomics, 25:53–57, 1994.

[XSC04] Jun Xiao, John Stasko, and Richard Catrambone. An empirical study of the
effect of agent competence on user performance and perception. In AAMAS ’04:
Proceedings of the Third International Joint Conference on Autonomous Agents and
Multiagent Systems, pages 178–185. IEEE Computer Society, Washington, DC,
USA, 2004. ISBN 1-58113-864-4.

[Yam97] K. Yamagishi. When a 12.86% mortality rate is more dangerous than 24.14%:
Implications for risk communication. Applied Cognitive Psychology, 11:495–506,
1997.

[YBAG04] Jeff Yan, Alan Blackwell, Ross Anderson, and Alasdair Grant. Password memo-
rability and security: empirical results. Security & Privacy Magazine, 2:25–31,
Sept–Oct 2004.

[Yee02] Ka-Ping Yee. User interaction design for secure systems. In Proceedings of the 4th
International Conference on Information and Communications Security. Springer-
Verlag, 2002. LNCS 2513.

[Yee03] Ka-Ping Yee. Secure interaction design and the principle of least authority. In
Workshop on Human-Computer Interaction and Security Systems, part of CHI2003.
ACM SIGCHI, 2003. http://sims.berkeley.edu/˜ping/sid/yee-sid-
chi2003-workshop.pdf .

[Yee04] Ka-Ping Yee. Aligning security and usability. Security & Privacy Magazine, 2:
48–55, Sept–Oct 2004.

[Yee05a] Ka-Ping Yee. Goals for strategies for secure interaction design, 2005.

[Yee05b] Ka-Ping Yee. Guidelines and strategies for secure interaction design. In Lorrie
Cranor and Simson Garfinkel, editors, Security and Usability. O’Reilly, 2005. To
appear in August 2005.

[Ylo96] T. Ylonen. SSH - secure login connections over the Internet. In Proceedings of the
6th Security Symposium) (USENIX Association: Berkeley, CA), page 37. Usenix,
1996. http://citeseer.nj.nec.com/ylonen96ssh.html .

[YS02] Zishuang (Eileen) Ye and Sean Smith. Trusted paths for browsers. In 11th Usenix
Security Symposium. Usenix, August 2002.

[ZE01] Panayiotis Zaphiris and R. Darin Ellis. Website usability and content accessibility
of the top usa universities. In In Proceedings of WebNet 2001 Conference. Associ-
ation for the Advancement of Computing in Education, October 23–27 2001.

[Zel04] Kim Zelonis. Avoiding the cyber pandemic: A public health approach to prevent-
ing malware propagation, Fall 2004. Master’s Thesis.

[Zim91a] Philip Zimmermann. pgp.c, June 1991.



464 BIBLIOGRAPHY

[Zim91b] Philip Zimmermann. Pretty good privacy: Rsa public key cryptography for the
masses, June 5 1991.

[Zim91c] Philip Zimmermann. Public key crypto freeware protects e-mail. RISKS Digest,
June 7 1991.

[Zim95] Philip R. Zimmermann. The Official PGP User’s Guide. MIT Press, 1995.

[Zim00] Philip Zimmermann. Statement made at the ’future of PGP luncheon’ at the the
eleventh conference on computers, freedom and privacy, 2000.

[Zon04] Zone Labs. Internet security products, online safety, software, protection, 2004.
http://www.zonelabs.com/ . Cited December 1, 2004.

[ZS96] Mary Ellen Zurko and Richard T. Simon. User-centered security. In NSPW ’96:
Proceedings of the 1996 workshop on New security paradigms, pages 27–33. ACM
Press, New York, NY, USA, 1996. ISBN 0-89791-944-0.

[Zur05a] Mary Ellen Zurko. Designing Secure Systems that People Can Use, chapter Embed-
ding Security in Collaborative Applications: A Lotus Notes/Domino Perspective.
O’Reilly, 2005.

[Zur05b] Mary Ellen Zurko. Lotus notes/domino: Embedding security in collaborative ap-
plications. In Lorrie Cranor and Simson Garfinkel, editors, Security and Usability.
O’Reilly, 2005. To appear in August 2005.

[ZZ01] Panayiotis Zaphiris and Giorgos Zacharia. Website content accessibility of 30,000
cypriot web sites. In Proceedings of the 8th Panhellenic Conference on Infor-
matics. Nicosia, Cyprus, pages 128–136. Springer-Verlag, November 8–10 2001.
citeseer.ist.psu.edu/442526.html .



Referenced Authors

Access Data 133
Ackerman, Mark 7
Ackley, David. H. 361
Adams, Anne 38, 42, 349
Adida, Ben 196, 238
Agency, US

Environmental Protection 138
Alexander, Christopher 15, 58,

138
Alter, Steven 99
Alvestrand, H. 443, 445, 446
Alvestrand, Harald T. 205
American Library Association

Office for Information
Technology Policy 145

Anderson, Ross 42, 245
Anderson, Tom 320
Andrews, M. 450
Apple 345
Apple Computer 45–47, 55, 62
Appligent, Inc. 158
Ard, Scott 155
Arjula, Manjula 80, 256
Artman, Henrik 95, 98
Association for India’s

Development Austin 109
Asthagiri, Nimisha 169, 220, 222
Atkins, D. 168, 183

Baier, Harald 49
Bakke, Peat 14
Balenson, D. 164
Balfanz, Dirk 42, 64, 65
Banks, William W. 40
Barlow, T. 84
Barry, John A. 98, 321
Bauer, Steven 66, 69

Baxter, Ilse 213
Beattie, Steve 14
Beck, Kent 58
Behr, Kevin 23
Bellare, Mihir 237, 432
Berinato, Scott 104
Berlind, David 156
Berson, Jordy 56
Biddle, C. Bradford 288
bin Benjamin Lee, Yung 103
Bishop, Matt 51
Blackwell, Alan 42
Blakley, Bob 59
Blaze, Matt 106
Bohm, Nicholas 171
Boneh, Dan 238
Borman, Lorraine 22, 42
Bostrom, Ann 357
Bound, J. 450
Boyd, Paul 169, 220, 222
Braden, R. 432
Braden, R. T. 432, 436, 438
Brady, David 320
Brewer, Eric A. 226
Brodie, Carolyn 43
Brostoff, Sacha 28
Brown, Ian 169, 171
Budney, Len 254
Bush, R. 432, 450
Business Environmental Resource

Center 138
Byers, Simon 156, 158

Callas, J. 168
Card, Remy 66, 67
Carlson, Caron 283
Catrambone, Richard 365

Central Security Service 108
CERT Coordination Center 180,

311, 344
Chang, Gloria 15
Chow, Jim 76, 113
Christiansen, Tom 367
Christopher, Kevin 76, 113
Chronic, Da 28
Clark, D. D. 21, 51, 163
Clark, David 24, 163
CNN 156
Co., Hitachi Software Engineering

313
Coad, Peter 58
Cockburn, Alistair 15
Colella, R. 448, 449
Colley, Andrew 243
Comcast 153
Comission, Federal Trade 17, 92,

93
Commission, Exchange 92
Computer, Apple 106, 233, 305
Conzola, Vincent C. 83, 84
Cooper, Alan 43, 57, 100, 135,

329, 350, 358, 365
Cormen, Thomas H. 287
Corporation, Microsoft 73, 165,

315, 353
Coventry, Lynne 26
Cowan, Crispan 14
Cranor, Lorrie 7, 42, 87
Cranor, Lorrie Faith 5, 80, 85, 256
Crawford, Michael 361
Creasy, R. J. 363
Crescenzo, Giovannissell Di 77
Crocker, D. 233, 234, 432, 436,

437, 443, 446

465



466 BIBLIOGRAPHY

Crocker, David H. 436
CSI 21
Cunningham, Ward 58

Dasgupta, Dipankar 361
Davis, C. 450
Davis, Don 222
de Castro, Leandro Nunes 361
DeJoy, D. M. 84
Delany, Mark 200
Dey, Anid K. 51, 55
Dickinson, I. 450
Diffie, Whitfield 18, 35, 162, 203,

204, 208, 287
DiSabatino, Jennifer 141
Dobbs, Brooks 87
DoD CSC 39
Doner, Steve 165
Donnerhacke, L. 168
Drinic, M. 310, 343
Durfee, Glenn 42, 64, 65
Dusse, S. 165

Eastlake, D. 450
Edmonds, Ron 155
Egelman, Serge 87
Elkins, M. 168, 183
Elliott, Alan C. 112
Ellis, R. Darin 96
Ellison, C. 217
Ellison, Carl 224–226, 288
Elz, R. 432, 450
Engelbart, D. C. 285
EPCglobal 89
Everhart, C. F. 450

Fabry, Robert S. 113
Farmer, Dan 312
Fayad, Mohamed 14, 15
Federal Trade Comission 296
Fein, S. B. 82
Ferguson, Niels 77, 287
Findlater, Leah 364
Finney, H. 168
Finucane, Melissa L. 357, 358
Flaig, Andrew 15
Forbes, R. M. 84
Forrest, Stephanie 361
Fox, Armando 226
Franklin, Matthew 238
Frantz, B. 217
Freedman, David H. 203

Freier, A. O. 14

GAIN Publishing 294
Gallo, Danielle 5, 85
Gamma, Erich 58
Ganger, Gregory R. 362
Garcia, Abel A. 40
Garfinkel, Simson 7, 20, 21, 28,

42, 50, 76, 102, 104, 107, 109,
110, 117, 120, 127, 296, 310,
419

Garfinkel, Simson L. 6, 66, 92,
117, 152, 169, 170, 174, 175,
178, 242, 249, 273, 300, 317,
330, 332, 420, 456

Garfinkel, Tal 76, 113
Garrett, David 170, 171
Garza, Peter 203
Gehrmann, Christian 369
Geiger, Matthew 77, 154
Germain, Jack M. 291
Ghemawat, Sanjay 121
Gifford, David K 122
Gilbert, Alorie 301
Giorgini, Paolo 59
Gladman, Brian 171
Gobioff, Howard 121
Goldston, James K. 106
Gong, Li 22, 40
González, Fabio 361
Good, Nathaniel S. 366
Goodson, Garth R. 362
Goodwin, T. 450
Google 294
Grant, Alasdair 42
Grasso, Jerry 291
Grier, Aaron 14
Grinter, R. E. 42, 64, 65
Grudin, Jonathan 30
Guarro, Sergio B. 40
Guduru, Praveen 80, 256
Guenther, Philip 416
Gutmann, Peter 18, 19, 65, 77,

116, 117, 206, 207, 211, 222,
225, 229, 232, 241, 242, 287,
288, 308, 309

GVU 170

Hackett, Stephanie 97
Hale, Richard 194
Hallam-Baker, Phillip 360

Hampel, Viktor E. 40
Hansell, Saul 295
Hardcastle-Kille, S. 429, 436, 445,

446
Harris, Jason 214
Hasson, Judi 103
Heath, Craig 59
Hellman, Martin E. 18, 35, 162,

203, 204, 208, 287
Helm, Richard 58
Henderson, D. A. 436, 437
Hillside.net 58
Hinton, Heather 14
Hodge, Carolyn 88
Hoffman, P. 165, 246
Hofmeyr, Steven 361
Hogben, Giles 87
Hohenberger, Susan 196, 238
Hong, Jason I. 51, 55
Horn, Darik 77
Hoschka, Philipp 360
Hosmer, Hilary H. 89, 90
Howard, Michael 345
Howes, T. 57
Hughes, Eric 176
Humphrey, Jack 87
Hushmail.com 169

Ilett, Dan 363
Impagliazzo, Russell 77
Inglis, Cheridan 247
Institute, American

National Standards 85
Ishikawa, Sara 15, 58
ISO 91

Jakobsson, Markus 77
Jendricke, Uwe 57, 58
Jenkins, Brian Michael 15
John C. Brezina 168
Johnson, Alex 155
Johnson, Jeff 41, 285
Johnson, Ralph 58
Johnson, Ralph E. 14, 15
Jouvelot, Pierre 122
Joy, William N. 113
Jr., James O’Toole 122
Juels, A. 300
Juran Institute 238
Just, Mike 42, 332

Kaashoek, M. Frans 320



BIBLIOGRAPHY 467

Kalfa, Winfried 106
Kallender, Paul 361
Karat, Clare-Marie 22, 42, 43, 59
Karat, John 43
Karltrons, P. 14
Kastenholz, Frank 201
Kaufman, C. 450
Kaufman, Charlie 207, 209, 229
Ke, Xian 42
Keightley, Richard 73, 133
Kent, S. 164
Kephart, Jeffrey O. 361
Kick, Russ 155
Kille, S. 57, 429, 436, 443, 445,

446
Kille, S. E. 429, 436, 443, 445,

446
Kim, Gene 23
Kim, Gene H. 23, 52
Kingpin 50
Kirovski, D. 310, 343
Kohnfelder, Loren M. 18, 162,

204, 226, 228
Koops, Bert-Jaap 79
Kozierok, Charles M. 116
Krauskopf, T. 85
Krekelberg, Aaron 366

Lampson, B. 217
Lampson, Butler 163
Landay, James A. 51, 55
Langheinrich, Marc 87
Lash, Alex 288
Laughery, K. R. 84
Laurén, Robin 64
Lavasoft 292
Lea, Doug 15
Lederer, Scott 51, 55
Leffler, Samuel J. 113
Lehmann, Jörg 472
Leiserson, Charles E. 287
Leung, Shun-Tak 121
Levy, A. S. 82
Levy, Benjamin 201
Lewis, Peter H. 114
Leyden, John 103, 304
Lie, Håkon Wium 153
Linn, J. 164
Lofstedt, Ragnar E. 357
Loiacono, Eleanor T. 96
Lomas, T. Mark A. 22, 40

Love, J. Spencer 117
Luber, Alan 295
Ludi, Stephanie 94
Ludwig, Stefan 106
Lundblade, L. 165
Lyman, Jay 103

M., Rich 243
Macavinta, Courtney 88
MacGregor, D. M. 358
MacGregor, Donald G. 357, 358
Maier, Dave 14
Mamakos, L. A. 450
Mann, Charles C. 203
Manning, B. 448–450
Marchiori, Massimo 87
Marcus, Aaron 95
margrave, David 6, 170, 174, 456
Markham, Gervase 232
Markoff, John 103
Martin, David 195
Mazières, David 225, 243
McFedries, Paul 369
McGrenere, Joanna 364
McKusick, Marshall K. 113
members of The Open Group

Security Forum 59
Microsoft 106, 111, 153, 345,

363, 365
Miles, R. 443, 445, 446
Miller, J. 85
Miller, Robert C. 6, 170, 174, 175,

178, 456
MIT 385
MIT IST 307
Mitnick, Kevin D. 238, 258, 397
Mockapetris, P. 450
Mockapetris, P. V. 430, 438, 439,

448, 450, 452, 461
Monahan, J. 358
Monroe, John 104, 105
Monrose, Fabian 7
Morgan, M. Granger 79
Moromisato, George 169, 220,

222
Morris, Robert 20, 22, 39
Mouratidis, Haralambos 59
Muller, Scott 112
Mxxcon 356

Namprempre, Chanathip 237, 432

Nanavati, Raj 242
Nanavati, Samir 242
National Research Concil,

Committee on Risk Perception
and Communication 357

National Security Agency 108,
313

Needham, Roger M. 22, 40
Netcraft 211, 212
Netscape Communications 202
Network, Microsoft Developer 113
Neumann, Peter G. 311, 367
Neven, Gregory 237, 432
Newton, Elaine 79
Nicholson, Stuart 256
Nielsen, Jakob 27, 28, 41, 44, 351
Niven, Larry 19
Nordlander, Erik 6, 170, 174, 175,

178, 456
Norman, Don 139, 327
Norman, Donald A. 41, 43, 134,

329
Norman, Eric 366

Oblinger, Diana 95
O’Brien, Timothy L. 295
of Medicine, National Library 81
Ohta, M. 450
on Automated Personal

Data Systems, Welfare.
Secretary’s Advisory Committee
79, 80, 304, 325, 326

Organisation for Economic
Co-operation and Development
326

Orwant, Jon 367

palmOne, Inc. 139
Parmanto, Bambang 97
Patrick, Andrew 7
Peacock, Alan 42
Pereira, Mindy 169
Perlman, Radia 76, 207, 209, 229,

231
Perrig, Adrian 64
Peters, Ellen 357, 358
Pfaff, Ben 76, 113
Pogran, K. T. 436, 437
Pooley, Rob 15
Porter, John D. 47, 48
Postel, J. 201, 360, 453
Potkonjak, M. 310, 343



468 BIBLIOGRAPHY

Poulsen, Kevin 155
Pournelle, Jerry 19
President’s Information

Technology Advisory
Committee 14, 349

Presler-Marshall, Martin 87
Privacy Rights Clearinghouse 300
Priyantha, Nissanka B. 66, 69
Project, The Honeynet 138
Pu, Calton 14

Quittner, Joshua 101

RajuAbju Inc. 28
Ramsdell, B. 165, 408
Raskin, Jef 364
Raymond, Eric S. 320
Reagle, Joseph 87
Redish, Janice 94, 97
Reid, Brian 20, 22, 40, 310, 343
Reinig, Bruce A. 355
Reinke, Tom 210
Rekhter, Y. 450
Rekimoto, Jun 362
Renauld, Karen 354
Repka, L. 165
Resnick, P. 85, 437
Resnick, Paul 5, 85
Reynolds, J. 201
Richardson, Robert 26
Ritchie, D. M. 113
Rivest, R. 217, 300
Rivest, Ronald 75
Rivest, Ronald L. 287
Roberti, Mark 301
Roberts, Paul 19, 291
Rogers, Everett M. 360
Rose, M. 443, 445, 446
Rosenbaum, James M. 140
Rosenblum, Mendel 76, 113
Ross, Seth 312
Roth, Volker 169
RSA Laboratories 287
Ruby, Laura 95, 97

Sadeh, Norman 7
Salomaa, Arto 287
Saltzer, Jerome 106
Saltzer, Jerome H. 7, 14, 22, 29,

39, 59, 320
Sampemane, Geetanjali 195
SANS Institute 15, 23

Sartorio, Henry P. 40
Sasse, M. Angela 25, 28, 286
Sasse, Martina Angela 38, 42, 349
Scalet, Sarah D. 291
Scheinholtz, Michael L. 362
Schiller, Jeffrey I. 6, 164, 165,

170, 174, 175, 178, 456
Schmidt, Douglas C. 14, 15
Schneier, Bruce 287, 288
Schroeder, Michael D. 7, 14, 22,

29, 39, 59, 320
Schucker, R. E. 82
Schumacher, Markus 58, 59
Schunter, Matthias 87
Schweitzer, Sarah 258
Securities 92
Security, RSA 249
SecuritySpace.com 210
Shamir, Adi 237
Shankland, Stephen 155
Sharman Networks 292
Shelat, Abhi 102, 104, 109, 110,

120, 127
Sheldon, Mark A. 122
Shneiderman, Ben 326
Shostack, Adam 183
Silverstein, Murray 15, 58
Simon, Richard T. 22, 43, 59, 349
Simon, William L. 238, 258, 397
Singhal, Arvind 360
Sipior, Janice C. 76
Slatalla, Michelle 101
Slot, L. J. Van’t 84
Slovic, P. 358
Slovic, Paul 357, 358
Smetters, D. K. 42, 64, 65
Smith-Jackson, Tonya L. 83, 84
Smith, Sean 54, 368
Snow, C. R. 169
Söderström, Eva 99
Somayaji, Anil 361
Song, Dawn 64
Sophos 304
Sorkin, Gregory B. 361
Sotto, Lisa J. 93
Soules, Craig A.N. 362
Spafford, Eugene H. 23, 52
Spafford, Gene 7, 20, 21, 50, 76,

107, 310
Spafford, George 23
Speciner, Mike 207, 209, 229

Spinellis, Diomidis 362
Spring, Tom 103
Stajano, Frank 245
Stallings, W. 168, 183
Stallings, William 287
Stallman, Richard M. 66
Stampley, David A. 87
Stasko, John 365
Stein, Clifford 287
Stevens, Perdita 15
Stiles, Harrell W. 125
Stolper, Debbie 285
Stone, Kimberly 73
Straub, Tobias 49
Strunk, John D. 362
Swedberg, Claire 301
Swimmer, Morton 361
Symantec 182
Szydlo, M. 300

Tang, John C. 306
Technologies, Pointsec Mobile 103
TechSmith 261
Telecommunication

Standardizaton Sector 211
Thayer, R. 168
The Council of European National

TLD Registries 232
The Japan Times 361
The Mozilla Organization 341
Theofanos, Mary Frances 94, 97
Thieme, Michael 242
Thomas, B. 217
Thompson, K. 113
Thompson, Ken 20, 22, 39
Thompson, S. 443, 445, 446
Thomson, S. 450
Tognazzini, Bruce 13, 62, 317
tom Markotten, Daniela Gerd 57,

58
Treacy, Ambrose 194
Treese, W. 85
Trolltech 94
TRUSTe 87
Twycross, Jamie 356
Tygar, J. D. 27, 31, 35, 37, 48, 49,

60, 83, 85, 161, 168, 350

Ullmann, R. 450
US Department of Health,

Education 79, 80, 304, 325,
326



BIBLIOGRAPHY 469

U.S.A., VISA 92
Utah 288

van den Berg, Stephen R. 416
VeriSign 206, 357
VeriSign, Inc. 227
Vicente, Kim J. 361
Villano, Matt 103
Virginia Joint Commission on

Technology & Science 301
VISA 92
Vittal, J. 436, 437
Vixie, Editor, P. 450
Vixie, P. 450
Vlissides, John 58

Wagle, Perry 14
Wahl, M. 57
Waldspurger, Carl A. 363
Wall, Larry 367
Walpole, Jonathan 14
Watchfire Corporation 96, 97
Weis, S. A. 300

Weisband, Suzanne P. 355
Wenning, Rigo 87
White, Steve R. 361
Whitten, Alma 7, 16, 27, 31, 35,

37, 42, 48, 49, 51–53, 60, 83,
85, 161, 168, 180, 236, 237,
252, 253, 255, 259, 269, 281,
287, 350, 381, 416

Wikipedia 205
Wilkerson, Matthew 42
Williams, Jeff 89
Williamson, Matthew M. 356
Wilson., D. R. 21, 51, 163
Wobst, André 472
Wogalter, M. S. 84
Wogalter, Michael S. 83, 84
Wong, Edward 155
Wood, Charles C. 163
Wood, Charles Cresson 40
Woolverton, Paul 144
Worsley, Anthony 82

Xiao, Jun 365

Yamagishi, K. 358
Yan, Jeff 42
Ye, Zishuang (Eileen) 54, 368
Yee, Ka-Ping 7, 42, 53, 54, 61,

296, 303, 311, 340, 344
Ylonen, T. 14, 18, 202, 217, 241,

249, 334
Young, Stephen L. 84

Zacharia, Giorgos 96
Zaphiris, Panayiotis 96
Zelonis, Kim 358, 359
Zeng, Xiaoming 97
Zhang, Qian 14
Zimmermann, P. 168, 183
Zimmermann, Philip 66, 167, 216
Zimmermann, Philip R. 183
Zone Labs 292
Zuben, Fernando José Von 361
Zurko, Mary Ellen 22, 43, 57, 59,

169, 217, 331, 349



470 BIBLIOGRAPHY



Colophon

This thesis was typeset using pdfLATEX, a decision that was agonized over long and hard. The alter-
native was to use FrameMaker or Microsoft Word. But FrameMaker has been largely abandoned
by Adobe and Microsoft Word has a horrible habit of corrupting large files that contain numerous
images. After hearing several horror stories and suffering a few of them directly, the decision was
made to use a document preparation system that kept its source files in ASCII text. As an added
benefit, this allowed the use of the Subversion revision control system so that the same file could
be simultaneously edited on three different computers.

The decision to use pdfLATEX instead of LATEX was made after considering the capabilities of each
program. The advantage of pdfLATEX is that it can generate PDF files directly and, furthermore,
can accept input graphics files in JPEG, PNG, or PDF format. LATEX, by contrast, can only accept
input graphics as EPS files. It turns out that LATEX doesn’t really understand the EPS format, but
simply passes the files through to the dvi2ps program, where they are included in the PostScript
file. Rather than going through this entire process, it was deemed easier, simpler, faster, and safer
to dispense with PostScript entirely.

One problem with using LATEX or pdfLATEX is that these programs are not actually a document prepa-
ration system, but instead a construction kit that can be used to create a multiplicity of document
creation systems. The real power of pdfLATEX comes not from the Knuth/Lamport TEX/LATEX exe-
cution environment, but from the packages that contributors in the greater LATEX community have
created. Although many of these packages are documented in the various LATEX books that have
been published, a cheaper and more comprehensive way to understand these packages is to read
the excellent articles and reference papers that accompany them. This approach is highly recom-
mended:

titlesec is a complete replacement for the LATEX section titles. It was used, among other things, to
create the fancy headings at the beginning of each chapter. This package also let one tighten
up the spacing before and after the section titles.

titletoc allowed one to precisely control the table-of-contents entries.

graphicx to place graphics in the body of the text. This package is superior to the “graphics”

471



472 BIBLIOGRAPHY

package because it allows one to naturally specify the width and height of imported graphics
using easy-to-read commands like: width=4in or, more commonly, width=\textwidth .

ccaption allows control over the font and size of the Figure and Table captions.

epic allowed the use of the \drawline command in pictures.

tabularx allows the “X” column specifier in tabular environments, which causes that column to
expand to fill all available space. This produces nicer tables with less work!

longtable allows tables to span across multiple pages with running headers and footers. It sort of
combines the table and tabular environments.

fancyhdr allows the use of chapter names in the footers.

fancyvrb a marvelous environment for code samples.

afterpage allows one to specify that a command will be executed after the current page is finished.
It’s commonly used for controlling floats with the idiom \afterpage{\clearpage} .

xspace allows the use of the \xspace directive, which automatically adds space unless the next
character is a punctuation mark, in which case it doesn’t.

ulem provides strikeout.

The Roman text of this thesis was set in Bitstream Charter. The captions were set in Helvetica. The
code examples were set in Courier.

This thesis has many screen shots. The Windows screen shots were created with HyperSnap-DX,
while the Macintosh shots were created using the built-in Apple screen capture program. The Palm
screenshots were shot with a digital camera, and they look pretty crummy, don’t they? Adobe
Illustrator CS proved invaluable, thanks to its ability to extract diagrams, illustrations and images
from other PDF files; pdfLATEXcould then include these images directly.

The hard drives barchart was created with PyX, André Wobst’s Python Graphics Package.[LW04]
Most of the other diagrams were created with OmniGraffle.

This thesis was written and typset to the music of Tori Amos, Ani DiFranco, Dido, Madonna, Alanis
Morissette and Jill Sobule.

As of May 16th, the subversion repository for this dissertation and the related thesis projects totaled
1.6GB. The actual source consists of 28,757 lines of LaTeX code and 185 megabytes of images files.
The PDF file that was used to print this thesis is approximately 30.9 megabytes in length.


	Introduction
	Security vs. Usability: The Need for Design Patterns
	Computer Security at the Crossroads
	Why Have Security Specialists Failed to Address Usability?
	Why Have Usability Specialists Failed to Address Security Issues?
	Security Principles
	Original Contributions
	Thesis Roadmap

	Prior Work
	Early Work in HCI-SEC
	Rules and Principles for Designing Usable Systems
	Properties, Models and Principles for Usable Security
	Specific Techniques for Aligning Security and Usability
	Prior and Related Work on Sanitization
	A Brief Survey of Regulatory and Other Non-Technical Approaches
	Conclusion

	Sanitization and Visibility 1: Operating Systems
	Background
	The Problem of Discarded Data
	Case Study: Remembrance of Data Passed
	The Traceback Study
	Future Work: Cross-Drive Forensics
	Proposals for Addressing the Sanitization Problem
	Patterns for User Visibility and Sanitization
	The Policy Implications of ``Clean Delete''

	Sanitization and Visibility 2: Applications
	Case Study: Sanitizing Web Browser History 
	Case Study: Failed Document Sanitization in Word and Acrobat
	Conclusion

	Solving Secure Email's ``Grand Challenge'' with Signature-Only Email
	Background: Three Decades in Pursuit of Secure Messaging
	A Survey of Secure Email Capabilities and Attitudes
	Signatures Without Sealing
	Hidden Signatures
	Conclusions and Recommendations

	The Key Certification Problem: Rethinking PKI
	A Tale of Two Protocols
	Reinterpreting the History of PKI
	Alternatives to X.509
	Fundamental Problems with PKI
	Making PKI Usable

	Key Continuity Management
	Key Continuity Management
	Patterns for Improving Message Security
	Testing KCM with Johnny 2
	Walk-Through
	Results and Discussion
	Conclusion

	Regulatory Approaches
	Patterns for Regulation
	The Security Lexicon
	Spyware and the ``Pure Software'' Proposal
	RFID on Consumer Items: The ``RFID Bill of Rights''
	Conclusion

	Additional Techniques for Aligning Security and Usability
	Additional Patterns for Enhancing Secure Operations
	Other Applications of User Auditing
	Operating System Improvements
	Eliminating the Security Policy ``Construction Kit''

	Design Principles and Patterns for Aligning Security and Usability
	User Visibility and Sanitization Patterns
	Identification and Key Management Patterns
	Patterns for Promoting Overall Secure Operation

	Future Work: an HCI-SEC Research Agenda
	Short Term
	Long Term
	A Call for New Patterns
	In Conclusion

	Hard Drive Study Details
	Mail Security Survey Details
	Commercially Oriented Email
	Financial Communications
	Personal Email At Home and At Work
	Communication with Politicians

	Johnny 2 User Test Details
	Description of Test Participants
	Description of the Testing Process
	Summaries of Test Sessions
	OpenSSL Configuration

	Two Email Proxies
	Proxy Philosophy
	Stream: A PGP Proxy
	CoPilot: A Proxy or Plug-In that Implements KCM

	Specific Recommendations to Vendors
	Recommendations for Desktop Software
	Recommendations for Organizations that Send Bulk Email
	Recommendations for Webmail Providers

	Colophon

