CHAPTER 3

Sanitization and Visibility 1:
Operating Systems

“Dumpster diving” is a time-honored technique for stealing confidential information and breaking
into computer systems. The attacker simply waits until no one is looking then and rifles through
the target’s waste, seeking printouts, phone books, operations manuals, and any other kind of
information that might be usable to accomplish his or her nefarious aims.

Stories of dumpster diving go back decades. Hackers in the Legion of Doom literally obtained
telephone company manuals and passwords from dumpsters in the 1980s: with this information
they penetrated computer systems and telephone networks.[SQ95] Dumpster diving has also been
used by police to obtain information on suspects without the need to first obtain search warrants;
the legality of this investigative technique was upheld by the Supreme Court in 1988.[US88]

This dissertation uses the term sanitization to refer to the intentional destruction of information
on a computer system so that the information cannot be recovered by another party. The difficulty
of removing data from media before the media is discarded or repurposed is an important part
of the sanitization problem, but it is not the only part. There are many cases in which a user
wishes to remove specific data from a computer that is in use without decomissioning the entire
machine. For example, a person using a public computer at a library to access an Internet-banking
site might reasonably wish to remove the information downloaded during the course of their web
banking session. As we shall see in Chapter 4, today’s web browser developers are aware of the
need to provide tools for sanitizing information in such situations, but the tools that they provide
are inadequate.

This chapter starts with an exploration of the sanitization problem. It discusses specific cases in
which confidential information was compromised through sanitization failures, then presents the
results of the Remembrance of Data Passed study to argue that these failures are widespread but
hidden. The Data Passed Traceback study explores how the failures came about. The remaining
two sections discuss responses by businesses and government, and finally presents solutions for
resolving the data remanence problem.

101

102 CHAPTER 3. Sanitization and Visibility 1: Operating Systems

3.1 Background

Ten used computers were purchased from a small-town computer store for $20 In August 1998 for
the purpose of testing a telecommunications program under development. Most of the computers
had been sitting on a shelf for more than a year and the store’s owner didn’t know if they even
worked.

When the computers were turned on, it was discovered that the computer store had neglected to
sanitize the hard drives prior to selling the machines. An examination of the information contained
on the computers found the following:

e One of the larger machines, a 486-class system with a 40 gigabyte hard drive, had been a
Novell file server used by a law firm. The computer still had confidential client material on it,
including contracts, wills, and billing records.

e A second computer had been used by a community-based organization that delivered men-
tal health services to residents under contract with a state agency. The computer included a
FileMaker Pro database that had the names, addresses and diagnoses of several dozen indi-
viduals.

e A third machine apparently belonged to a writer who wrote for a national magazine and
was working on a novel. This machine contained unpublished works, works-in-progress, and
personal correspondence.

e A fourth machine had correspondence between a woman and her daughter in college. This
computer also had a copy of Quicken, a personal finance management system from Intuit,
which the woman apparently used to manage her finances.

All of this information was visible in plain view once the computers were turned on; no special
disk recovery software was needed. A telephone call to the store’s owner revealed that he knew
the systems had confidential information on them and that he had meant to sanitize the machines
before he sold them. The owner had simply neglected to do so.

At the request of the store’s owner, the hard drives of the computers were sanitized using FreeBSD
and the dd command.!

This experience was hardly unique. In recent years there have been repeated examples of such
cases, including:

e In April 1997, a woman in Pahrump, NV, purchased a used IBM PC and discovered records
from 2000 patients who had prescriptions filled at a Smitty’s Supermarkets pharmacy in
Tempe, AZ. [Mar97].

e In 2000, Sir Paul McCartney’s banking details were discovered on a computer that had been
discarded by the firm Morgan Grenfell Asset Management. The PC had been sold on the
secondary market without being properly sanitized. [Ley04b]

'To sanitize an IDE hard drive with FreeBSD, the hard drive is jumpered to be a “master” and then connected to
the computer’s secondary IDE interface. The following command is then typed as root on the computer’s console: dd
if=/dev/zero of=/dev/da3 bs=65536. The procedure writes ASCII NUL characters over every block on the disk,
making recovery of the original data impossible using techniques available in the open literature.[GS02a]

3.1. BACKGROUND 103

e In August 2001, more than 100 computers from the consulting firm Viant containing con-
fidential client data were sold at auction by Dovebid following the closure of Viant’s San
Francisco office. [LymO01]

e In Spring 2002, the Pennsylvania State Department of Labor and Industry sold computers
containing “thousands of files of information about state employees.” [Vil02]

e In August 2002, a Purdue student purchased used Macintosh computer at equipment ex-
change; the computer contained FileMaker database with names and demographic informa-
tion of 100 applicants to Entomology Department. [bBL02]

e Also in August 2002,the United States Veterans Administration Medical Center in Indianapolis
retired 139 computers. Some of these systems were donated to schools, others were sold on
the open market, and at least three ended up in a thrift shop where they were purchased by a
journalist. Examination of the computer hard drives revealed sensitive medical information,
including the names of veterans with AIDS and mental health problems. Also found were 44
credit card numbers used by the Indianapolis facility. [Has02]

e In May 2003 a reporter for PC World purchased 10 used hard drives in Massachusetts and
found sensitive business and personal data including credit card and social security numbers
on all but one. A hard drive sold by a computer store had been used by an accountant and
had four years’ worth of client payroll and tax information; the accountant’s nephew had
upgraded the computer and never told his uncle what became of the disk. A second disk pur-
chased at the Salvation Army Store in Cambridge had belonged to an attorney and contained
bank account numbers, draft legal documents, and an America Online installation with a
stored password. The firm’s IT consultant had promised the attorney that the information on
the drive would be destroyed, but it wasn’t.[Spr03]

e In June 2004, the UK computer security firm Pointsec purchased 100 hard disks on eBay
as part of a project on the “lifecycle of a lost laptop.” Although all of the hard drives had
“supposedly” been “wiped-clean” or “re-formatted,” the company was able to recover data
from approximately 70 of the drives. The company also purchased laptops at auction that
had been lost at airport terminals in the Germany, Sweeden, the UK and the US; it verified
that police did not sanitize the laptops prior to selling them. Reportedly the laptop recovered
from Sweden “contained sensitive information from a large food manufacturer. The info re-
covered included four Microsoft Access databases containing company and customer-related
information and 15 Microsoft PowerPoint presentations containing highly sensitive company
information.”[Ley04b, Tec04]

In addition to these cases, we have collected anecdotal information which we believe to be accurate,
but which has not appeared in previously published accounts:

e The Federal Witness Protection Program reportedly sold at auction a computer containing
the original identities and current aliases of several hundred protected witnesses. Reportedly
this snafu happened sometime during the 1980s. We learned of this incident in 1989 while
producing a video about computer security with Commonwealth Films, a training firm in
Boston.

e Sometime during the spring of 2000, employees of a Boston-based manufacturer of electronic
equipment sent a workstation RAID array back to the vendor for warranty repairs. The work-

104 CHAPTER 3. Sanitization and Visibility 1: Operating Systems

250000

200000 ——

150000
/ —-o— Shipped
-B- Retired
100000 /././

50000 ——

1997 1998 1999 2000 2001 2002

Figure 3-1: Hard drives shipped and retired between 1997 and 2002. Source: Dataquest.[Mon02].

station vendor sent the electronics firm a refurbished RAID array in return. Several months
later, the engineers at the company received a call from a system administrator at a Mas-
sachusetts university: apparently the electronic firm’s RAID array, repaired, had been sent to
the university in exchange for one of the university’s arrays (also, apparently, repaired under
warranty). The workstation vendor had not made any attempt to sanitize or otherwise re-
move the information from the array before sending it to the university. We learned of this
story from an employee at the electronics firm who received the phone call.

e After the publication of [GS02a], we received a telephone call from a woman who was pres-
ident of a company that purchased computer equipment from the federal government at
auction, refurbished the equipment, and sold it on the open market. She stated that she had
frequently purchased lots at auction that contained classified materials—an apparent viola-
tion of federal law. Many times, she said, classification stickers were still on the computer
systems that were packed into shipping containers and sold by weight to the highest bidder.

e In fall 2003, a student at the Harvard University Extension School purchased the hard disk
from a cannibalized Macintosh computer at a Goodwill store in Massachusetts for $10. Upon
copying the data off the disk the student discovered that it had been used at a small law firm
and contained hundreds of client documents.

The story of the electronics corporation is particularly troubling: because the RAID array had mal-
functioned, the company was not in a position of being able to sanitize the equipment before re-
turning it to Sun. Instead, the firm’s engineers had trusted the vendor, and this trust had apparently
been misplaced.

According to the market research firm Dataquest [Mon02], nearly 150 million disk drives were
retired in 2002—up from 130 million in 2001. Dataquest estimates that 7 disk drives will be
retired for every 10 drives that ship in the year 2002; this is up from a 3-for-10 rate of retirement
in 1997 (Figure 3-1).

3.2. THE PROBLEM OF DISCARDED DATA 105

Although many retired hard drives are in fact destroyed, the experience at the VA Hospital demon-
strates that many drives that are “retired” by one organization can appear elsewhere. Indeed, the
secondary market is rapidly growing as a supply source for even mainstream businesses, as evi-
denced by the cover story of the October 15th, 2002 issue of CIO Magazine, “Good Stuff Cheap:
How to Use the Secondary Market to Your Enterprise’s Advantage.” [Ber02]

The anecdotes reported here are interesting both because of their similarity and because of their
relative scarcity. Clearly, confidential information has been disclosed through computers sold on the
secondary market more than a few times. Why, then, have there been so few reports of unintended
disclosure?

[GS02a] proposes three possible answers to this question:

e Disclosure of so-called “Data Passed” information, while it occurs from time-to-time, is never-
theless exceedingly rare.

e Confidential information is disclosed so often on retired systems that such events are simply
not newsworthy:.

e Used equipment is awash with confidential information, but nobody is looking for it—or at
least, few people who are looking for this data are publicizing the fact.

This chapter argue that the third hypothesis is correct; this conclusion is supported with data from
the “Traceback study” presented in Section 3.4.

3.2 The Problem of Discarded Data

A fundamental goal of information security is to design systems that prevent the unauthorized
disclosure of information that has been declared confidential. Traditionally this property was im-
precisely referred to as privacy; in Section 2.3.1 we adapted the term disclosure control.

There are many ways for computer systems to provide disclosure control. One of the oldest and
most common is physical isolation or physical access control. Confidential data can be kept on
computers that are only accessible from authorized locations, and conventional security mecha-
nisms, such as doors, locks and keys, are used to secure these locations. Even today, many personal
computers use physical isolation as their primary means of disclosure control. On many small com-
puters, such as cell phones and PDAs, physical access control is the only means of disclosure control
that is employed.

Computer systems that can be used by more than one person typically rely on authentication and
access control lists to provide disclosure control. Much of information security research over the
past thirty years has centered upon improving techniques for authenticating users and then assuring
that those users do not overstep their predetermined privileges.

Cryptography is another tool that can be used to provide disclosure control. Data can be encrypted
as it is sent from one system and decrypted at its destination—for example, by using the SSL
encryption protocol. Information that is stored on a computer’s disk can be encrypted so that it will
be inaccessible to processes or individuals who do not possess the appropriate key. Cryptographic

106 CHAPTER 3. Sanitization and Visibility 1: Operating Systems

file systems [PGP98, Bla93, Mic02, Com05b, LKO1] ask for a password or key on startup, after
which they automatically encrypt data as it is written to the disk and decrypt the data as it is read;
if a disk is stolen the data will be inaccessible to the thief. A surprising amount of work has been
done on both academic and commercial file systems, and such file systems are widely available
today—they are built into Windows XP and MacOS 10.3, for example. Nevertheless, it is widely
believed that these tools are rarely used by the general public.

In the absence of cryptographic protections, confidential information on a disk can be readily dis-
closed if the disk is retired in an improper manner. The National Computer Security Center notes
that this so-called data remanence problem has been recognized since the 1960s. [Gol91]

3.2.1 Historical basis for the data remanence problem

Although it is a common belief that operating system developers did not deploy a sanitizing file
deletion in the 1970s and 1980s so that accidentally deleted files could be recovered using special
tools, there are no references to support this claim. Indeed, had recoverability of accidentally
deleted data been a goal, companies like Microsoft and Apple would surely have distributed such
tools themselves—either as part of their operating system offerings or as after-market additions.
(Some versions of DOS were distributed with an “UNFORMAT” command-line utility that could, in
fact, unformat a disk, but this command appears to have been added relatively late in DOS history
to exploit the format command’s longstanding lack of sanitization; it is doubtful that the command
was made explicitly non-sanitizing so that the UNFORMAT command could be written.)

Instead, it seems that the lack of a sanitizing delete-file is an accident resulting from the way that
file systems evolved. Historically, multi-user computer systems did not need a sanitizing delete.
Although today’s computer users could benefit from the technology, this requirement was never
made part of any formal file system specification—specifications that were largely written after
hierarchical file systems were first developed, rather than before. Instead, today’s storage systems
are usually judged by other criteria, such as speed, reliability, availability, and compatibility.

The developers of the Compatible Time Sharing System (CTSS) at MIT in the 1960s did not consider
the problem of sanitizing disk blocks after deleting files because the computer system frequently ran
with disks that were full or nearly full: blocks that were freed were quickly overwritten with new
data.[Sal04] The CTSS disk drives were rented from IBM and were never offered for sale on the
secondary market. Indeed, the real data security problem was not that data on a disk returned for
service might be accidentally sent to another IBM customer—the real problem was trying to keep
data on the disks in the first place, as the drives were having head crashes every few days! In any
event, while there was a general belief that CTSS should prevent one user from crashing a program
being run by another user, overall the system did not have strong internal disclosure controls: the
developers did not believe that CTSS was secure enough to store sensitive information.

Internal security between users was a design goal of the Multics operating system, but once again
the designers never considered disk sanitization to be a priority. Multics did sanitize disk segments,
the Multics equivalent of files, but it did so when the segments were allocated to a new process, not
when they were released. Furthermore, early Multics systems were perennially short of disk space:
once a disk block was freed, it would be quickly allocated to another process and, as a result, it
would be quickly be sanitized.

3.2. THE PROBLEM OF DISCARDED DATA 107

It is widely acknowledged that Unix was developed in a research environment in which security
was not a priority. For example, early Unix had no protections against denial of service attacks
from authorized users. According to Ritchie, “In cases where denial of service attacks did occur, it
was either by accident or relatively easy to figure out who was responsible. The individual could
be disciplined outside the operating system by other means.”[GS91, p.329]

When Unix first transitioned into the commercial world, it existed on systems that were run by
trained system operators who would have been aware of the sanitization issue. Although Unix
provided no specific tools for sanitizing disks, the dd command could be used for this purpose.

In the world of PC operating systems, an overwriting delete would have caused significant perfor-
mance degradation on any operating system that did not have asynchronous access to the disk so
that the sanitizing writes could have been performed concurrently with other tasks. Windows did
not have such capabilities until 32-bit clean disk I/0 drivers were available under Windows 95 and
NT. Apple did not have such capabilities until it migrated to MacOS X.

3.2.2 The stability of hard disk data

In comparison with other mass storage media, hard disks pose special and significant problems in
assuring long-term data confidentiality. One reason is that physical and electronic standards for
other mass storage devices have evolved rapidly and in an incompatible fashion over the years,
while the IDE/ATA and SCSI interfaces have maintained both forwards and backwards compatibil-
ity. Hard drives more than 10 years old can be easily read with modern computer hardware simply
by plugging them in because these disks are both electrically and logically compatible. This high
level of compatibility is one of the key factors sustaining both the formal and informal secondary
markets for used hard drives.

Other kinds of storage media, including magnetic tapes, optical disks, and flash memory, have
not shown such long-term stability. In these media there is considerably more diversity and more
change: older media typically cannot be used with current readers due to physical changes. For
example, a DAT IV tape drive cannot read a DAT I tape; a 3.5” disk drive cannot read an 8” floppy.

A second factor contributing to the data remanence problem in hard drives is the long-term stability
of file system structures. Today’s Windows, Macintosh and Unix Operating systems can transpar-
ently use the FAT12, FAT16 and FAT32 file systems developed by Microsoft in the 1980s and 1990s.
Thus, not only are 10-year-old hard drives mechanically and electrically compatible with today’s
computers, but the data that they contain is readily accessible without special-purpose tools. This
is not true with old tapes, which are typically written using proprietary backup software that may
further employ proprietary compression and/or encryption algorithms.

3.2.3 Destroying information today
US DoD standard 5220.22-M[DoD95] specifies federally approved standards for sanitizing mag-
netic media that contain information that is sensitive but not classified:

e Physically destroy the drive, rendering the drive unusable.

e Degauss the drive, so that the magnetic domains are randomized—invariably rendering the
disk drive unusable in the process (Figure 3-2).

108 CHAPTER 3. Sanitization and Visibility 1: Operating Systems

Figure 3-2: A model HD-1TB disk and tape degausser manufactured by Data Security, Inc. One of the disadvantages
of using this machine is that there is no way to visually inspect a drive and determine if it has actually been sanitized or
not. Drives cannot be reused after they have been degaussed because the drive’s operating system has been wiped
and sensitive components on the drive’s circuit board have been destroyed. Photo courtesy Data Security Inc.

e Overwrite the data on the drive so that the data cannot be recovered.

The National Security Agency/Central Security Service Device Declassification Manual specifies pro-
cedures for “clearing, sanitization, [and] declassification” of information stored on information
storage devices ranging from Unclassified to Top Secret Codeword, including compartmented, sen-
sitive, and limited-distribution material. According to that manual, overwriting can only be used
for clearing a device; cleared devices cannot be declassified, but can be re-used within a secure
environment. Sanitization, required for disk declassifying, can only be accomplished through the
use of degaussing or incineration.[NC05]

Techniques for information destruction in an unclassified environment are complicated by social
norms. Clearly, the most straightforward way to ensure the protection of information that a drive
contains is to physically destroy the drive: this is the only technique that can be verified with casual
inspection (see Figure 3-3 and Figure 3-4). But many people feel moral indignation when IT equip-
ment is destroyed instead of being redirected towards schools, community organizations, religious
groups, or lesser-developed nations that could benefit. As a result of such moral indignation, there
now exist a plethora of organizations that help people find new homes for old computers[FTCO5]—
including some that ship these computers to rural villages in India.[Ass05]

3.2.4 The sanitization usability problem

The sanitization usability problem is one that pervades today’s computer systems: when the user
chooses a “delete” operation—for example, when deleting a file with Windows Explorer—often the
information is not actually erased from the computer’s recording media. Instead, the storage that is

3.2. THE PROBLEM OF DISCARDED DATA 109

Figure 3-3: Drive Slagging Following the publication of [GS02a], Dave Bullock, John Norman and “CHS” performed this
demonstration of melting a hard disk with gas-fired furnace that they had built in a back yard. The authors concluded:
“Drive slagging is a fool-proof method to prevent data recovery.” Photos used with permission.

associated with the information is marked “free” or “available for use” and the specified information
is rendered invisible and inaccessible from the user interface.

As a result of this efficient but non-intuitive behavior, today’s computers frequently contain sensitive
information that cannot be recovered using the tools that the computer itself provides. Frequently
this is information that the computer’s owner specified should be deleted, but which was not actu-
ally erased. This information can be recovered at a later point in time by an attacker who obtains
physical access to the disk or has the ability to run a program on the computer which can access
the raw device.

As a result of this sanitization usability problem, computer users have no readily apparent way
other than physical destruction to determine if disposing of a computer system will jeopardize the
security of information that was once stored on that system but was subsequently “deleted.”

Disks, hidden data, and file systems

Broadly speaking, modern disk drives have the ability to store two kinds of information. The major-
ity of information stored by the device is directly addressable user data—these are the actual blocks
that are written by the computer’s operating system onto the drive’s media in response to WRITE
commands and read back in response to READ commands. The second kind of information is hid-
den data that is used for the proper operation of the disk drive itself. This information includes the

CHAPTER 3. Sanitization and Visibility 1: Operating Systems

zmmrﬂu W"‘““U

quUBnU

NOlD |

Figure 3-4: A hard drive that was punched with a new machine that is being developed by Charles Smith of Greenville
SC as a result of having read [GS02a]. Although this approach is easy to audit, it is probably not sufficient for classified
material. Photo used with permission.

disk’s firmware and spare blocks that the drive will use when blocks containing directly addressable
user data begin to fail.

When a drive is sold by a manufacturer all the blocks that will be used to hold directly addressable
user data are, by convention, filled with the ASCII NUL character—that is, the blocks are zeroed.
(Many of the hidden blocks are not zeroed, but they cannot be accessed by the computer’s operating
system: for most practical purposes, these blocks do not exist.) Before the disk can be used, it must
be initialized for used with a particular file system.

A file system is the piece of a computer’s operating system that controls the allocation of disk blocks
to individual files. Popular file systems include FAT? (used by Windows 3.1, Windows 95, and

2FAT stands for File Allocation Table, a linked list of disk clusters that the DOS operating system used to manage space
on a random access device. The number 16 or 32 refers to whether the FAT uses sector numbers that are 16 bits or 32
bits in length. See [Mic00] for more details.

3.2. THE PROBLEM OF DISCARDED DATA 111

Windows 98), the NTFS? (used by Windows NT, 2000 and XP), FFS* (used by BSD Unix), and
EXT2FS (used by Linux). The following discussion is for the FAT file system, but it applies with
only minor changes to all modern file systems.

FORMAT doesn’t wipe clean

Microsoft operating systems use a command called FORMAT . EXE to establish a new file system
on recording media. When a disk is formatted with the FAT file system, the FORMAT .EXE scans
the entire disk, reading every block to make sure that the block is functioning. FORMAT . EXE next
writes the operating system’s boot blocks, the disk’s root directory, and finally a file allocation table
that is used to distinguish blocks that are in use by the file system from those that are not. This
process typically takes between 10 and 20 minutes, owing to the time required to read every block
on the drive. Modern versions of FORMAT . EXE also have the ability to perform a “quick format”
which omits the media scan (Figure 3-6). In this case, the entire disk can be formatted in just a few
seconds. Quick format appears to be the default when formatting removable USB drives.

And what if there was confidential information on the disk when it was formatted? Once the root
directory is written, any information that was previously on the disk is rendered inaccessible. Most
of the data is still present but it cannot be retrieved using the Windows file system because the files
and directories of the disk cannot be reached by starting at the disk’s now empty root directory.

The failure of FORMAT .EXE to zero or otherwise initialize a hard drive has an interesting history.
The first version of DOS, MSDOS 1.0, only worked with floppy disks. At the time floppies were
sold without any track or sector information on their magnetic surface and they needed to be
“formatted” before they could be used. In the process of formatting the disk any bad blocks were
detected and noted in the disk’s FAT so that they would not be used to store data. If a floppy disk
containing data was formatted, the information that it contained would necessarily be overwritten
when the new track and information was written. Thus the initial meaning of “format” to PC users
in 1981 was a process that initializes a piece of magnetic media, making it usable, and destroying
any data that the media might contain in the process.

DOS 2.0 was the first version of DOS to directly support hard disk drives. With this version of the
operating system, the behavior of FORMAT . EXE was subtly changed when a hard disk was being
initialized. Because hard drives were sold pre-formatted, it was only necessary for the FORMAT
command to literally write a set of properly formatted data structures onto the disk’s logical blocks
so that the disk could be used with the operating system. Because the disks of the time were
not extraordinarily reliable and lacked internal bad-block management, FORMAT .EXE continued
to scan the entire disk for bad blocks—a process that might take between 10 and 30 minutes. Thus,
the FORMAT command gave the impression that it was overwriting the entire disk because it took a
long time and because the resulting disk appeared to contain no data. But no such overwriting took
place! Thus, not only did the modified FORMAT . EXE turn visible data into invisible data, it did so
in a manner that was misleading. Equally misleading was the warning that the command displayed
which gave the impression that all of the data was in fact being destroyed. These misleading
operations have been faithfully replicated in each version of FORMAT . EXE and are present in the
contemporary versions (Figure 3-5).

3NTFS stands for New Technology File System. This is a journaling file system developed by Microsoft in the 1990s.
*FFS is the Fast File System, developed by the University of California at Berkeley in the 1980s.

112 CHAPTER 3. Sanitization and Visibility 1: Operating Systems

C:\>format d: /fs:fat32

WARNING, ALL DATA ON NON-REMOVABLE DISK

DRIVE D: WILL BE LOST!

Proceed with Format (Y/N)?y

Verifying 8056M

Initializing the File Allocation Table (FAT)...
Volume label (11 characters, ENTER for none)? test
Format complete.

8,233,244 KB total disk space.
8,233,244 KB are available.

4,096 bytes in each allocation unit.
2,058,310 allocation units available on disk.

32 bits in each FAT entry.
Volume Serial Number is 7C74-AB16

C:\>

Figure 3-5: Format of an 8 gigabyte hard drive using the Windows XP format command. After the computer prints
“Verifying 8056M” the computers spends 5 minutes reading every block of the hard drive. After the computer prints
“Initializing the File Allocation Table” the computer spends 15 seconds writing out a new FAT and performing a few
write tests throughout the disk to ensure drive integrity. Notice that the command asserts that “ALL DATA ON NON-
REMOVABLE DISK DRIVE D: WILL BE LOST” In fact, the data is only “lost” to users who do not have copies of
“unformat” utilities.

One possible explanation for the revised behavior of FORMAT . EXE in DOS 2.0’s was that the non-
overwriting format was a usability optimization: overwriting each block of the hard disk would
have made the already time-consuming FORMAT operating take twice as long, because every block
would have first had to have been written, then read. Besides, disk drives at the time came with
a separate “disk utilities” floppy which could perform an operation called a “low level format”
on the physical disk. The details of the “low level format” actually varied from manufacturer
to manufacturer and from drive to drive, which would have made it difficult for the operating
system to perform such an operation. Mueller’s 1991 book Que’s Guide to Data Recovery discusses
the difference between the low-level format performed by these utilities and FORMAT . EXE’s so-
called “high-level format.” Mueller notes: “You can recover data—unformat—from a high-level
format.”[ME91, p.99] But despite the fact that such information was available to the technical
community, it does not seem to have been readily disseminated among the general population of
computer users.

Another possible explanation for the behavior of DOS 2.0 FORMAT.EXE is that it was industry
practice at the time for programs that initialized file systems to not overwrite all directly addressable
user data blocks. The Unix newfs command writes an inode table, a root directory, and a collection
of “superblocks,” but it does not sanitize the disk—behavior that remains present to this day. [RT78,
MJLF84] Likewise, the Linux mk fs command which creates Linux ext2fs and ext3fs file systems
does not overwrite the entire disk. All of these commands write metadata and a clean root directory
to the disk, but they do not perform a systematic overwriting of all of the disk’s remaining blocks.

3.2. THE PROBLEM OF DISCARDED DATA

Format Local Disk (C:) E|g|
Capacity:
37.2GE b
File system
NTFS b

Allocation unit size
4096 bytes w

Yolume label

Format options

[Quick Format
[]Enable Compression

Start] [Close]

113

Confirm Multiple File Delete

Figure 3-6: The Windows XP format panel
has a “Quick Format” option which causes the
program to just write a new file allocation table
and a root directory on the media being for-
matted. If “Quick Format” is not selected the
program takes considerably longer to format
the disk because it is reading every block on
the media to create a bad block table. It would
be a simple matter for Microsoft to modify the
format command so that every block on the
disk is zeroed if “Quick Format” is unchecked.

Figure 3-7: Microsoft Windows XP allows the user to confirm
the deletion of files in the Recycle Bin; confirming the operation
simply unlinks the files from the Recycle Bin directory; it does
not actually remove the contents of the files from the computer’s
hard disk.

It is incredibly misleading for an operating system to give the impression that all of the information
has been removed from a disk, when in fact the information has merely been made inaccessible
to users who have not obtained special data recovery tools. Such a situation is an invitation for
mishap: given a freshly formatted hard disk, there is no way for a user to audit the disk and
determine if it is in fact clean, or if it has a treasure-trove of hidden, confidential information. Ob-
servations of this behavior and an analysis of resulting problems that it has caused are responsible
for the USER AUDIT and COMPLETE DELETE design patterns discussed in Chapter 10.

Delete Doesn’t Erase Information

Just as today’s FORMAT command doesn’t actually format disks, the commands for deleting indi-
vidual files provided by today’s computers do not actually perform that function, either. User-level
commands such as DEL, ERASE and rm are implemented with calls to the Win32 DeleteFile ()

114 CHAPTER 3. Sanitization and Visibility 1: Operating Systems

or the POSIX unlink () system calls. But the DeleteFile () and unlink () system calls don’t
actually delete information—instead, they literally remove the link between the file’s name in the
containing directory and the disk blocks that the file occupies. Under the FAT and NTFS file sys-
tems, which support but a single link between directories and file contents, this results in the file’s
blocks being immediately returned to the free list. On Unix the unlink () system call decrements
the file’s link count; if the link count drops to 0, the blocks are returned to the free list.[RT78] But
the blocks are not actually overwritten until they are needed again. System simulations done by
Chow et al. indicate that such data may never be overwritten on a typical computer.[CPGT04]

Once again, the usability problem is that the operating system gives the user the appearance that the
data has been removed from the computer, when it fact the data has merely been made inaccessible
by ordinary means.

The usability problem for end-users is compounded by the fact that there is no mention of this
behavior in either the end-user or developer documentation that is provided by either Microsoft or
the Unix operating system. Developer documentation might be a particularly effective technique to
get this information into the community of computer users, as developers are probably more likely
to read documentation than users, and they are better poised to create work-arounds. But the
Microsoft Developer Network documentation for DeleteFile () merely states that the function
“deletes an existing file.”[Net0O5b] The Unix documentation for the unlink () system call notes “If
that decrement reduces the link count of the file to zero, and no process has the file open, then
all resources associated with the file are reclaimed.”[BSD93] In both cases, developers would be
well-served by even a sentence mentioning the data remanence problem.

As with FORMAT, there was no conspiracy to keep secret the fact that DELETE doesn’t actually erase
the data that the user has targeted for destruction—a 1987 advertisement for the Mace Utilities
appearing in The New York Times noted that the $59.95 program’s functions included the ability to
“Unformat, Undelete, Diagnose & Remedy.”[Adv87, p.57] Users reading this advertisement in 1987
could have reasonably inferred that erased files could be recovered. But mention that files could
be undeleted did not appear in a feature article in The New York Times until 1990, and then only in
Peter Lewis’ “Executive Computer” column on the 11*" page of the Business section. [Lew90]

Commands that claim to overwrite don’t actually overwrite

Many modern applications support a so-called document-based framework in which opened docu-
ments can be saved under their original names (“Save...”) or different file names (“Save As...”)
When a file is saved under the name of an existing file, the end result is that the existing file is
deleted and the file being edited appears to have replaced it.

7

There are many ways to implement the “Save As...” command. One standard approach is to save
the new file to the disk under a temporary name. The original file is then renamed to a second
temporary name. The new file is then renamed to the name of the first file, and finally the first
file is unlinked. This multi-step sequence ensure that the original file is not removed from the file
system until the new file is safely in its place with the correct name. (The procedure is slightly more
complicated when one or more backup files are kept.)

Despite the fact that most applications appear to follow the sequence outlined above, both the Mac-
intosh and Windows operating systems have user interface elements that imply otherwise. The doc-

3.2. THE PROBLEM OF DISCARDED DATA 115

The file icky data already exists. Do you

want to replace it?
An item named “icky data.doc” already exists in this

A file with the same name already exists in simsong. location. Do you want to replace it with the one you
Replacing it will overwrite its current contents. m. are saving?

' C I \

[ancel | —_—

T —

Figure 3-8: MacOS 10.3’s Save As panel promises that saving a file with a name that is currently in use will result in
the existing file being overwritten. In fact, the blocks of the second file will not be overwritten, but will be specifically
preserved using the algorithm that the operating system implements. Interestingly, attempts to save a file named
“icky data” over another file by the same name produced somewhat different responses in Apple’s Text Edit (left) and
Microsoft Word (right) applications.

Microsoft Office Word gl

The file confused.doc already exists.

E C:\Documents and Settings'\simsong'My Documents'jicky data.rtf already exists.
-

Do you want to replace it?

() Merge changes into existing file.

[OK][Cancel]

Figure 3-9: The Save As... panels in Windows Wordpad (left) and Word (right) also strongly imply that the data on the
disk will be overwritten or merged into. In fact, the original documents are deleted but left on the disk, and a new file is
created for the new document.

ument framework that is part of Apple’s Cocoa environment specifically states that the “Save As...”
command will “replace” the original file with the new file, and that “Replacing it will overwrite its
current contents.” (Figure 3-8, left) Microsoft Word on the Macintosh uses different terminology
(Figure 3-8, right), but the implication is similar. The Wordpad program on Microsoft Windows
makes a similar promise (Figure 3-9, left). Microsoft Word 2003 takes a different approach: the
program offers to either replace the existing file or merge the changes from the current file into the
existing file. It appears that the command is implemented by creating a new file and then deleting
the old, so the original file’s contents nevertheless remain accessible to those who are willing to
perform a forensic analysis.

3.2.5 The overwriting question
In the previous section, the term “overwrite” was used without qualification. This section discusses
what kind of overwriting might be sufficient for proper sanitization.

It has long been hypothesized that data stored on a magnetic media that is overwritten with a
single pass of new information can be recovered by a determined and well-funded individual or
organization. For example, it is commonly asserted that the National Security Agency has the
capability to recover overwritten information.

The DoD sanitization standard specifies the following procedure for overwriting:

“Overwrite all addressable locations with a character, its complement, then a random

116 CHAPTER 3. Sanitization and Visibility 1: Operating Systems

character and verify. THIS METHOD IS NOT APPROVED FOR SANITIZING MEDIA
THAT CONTAINS TOP SECRET INFORMATION.”[DoD95, Capitalization in original]

The verification step is important to ensure that the hard drive is actually writing the random data
to the recording surface. This is to protect against hostile drives that claim to be sanitizing, but in
fact are not.

Gutmann considers the question of recovering overwriting data at length:

“In conventional terms, when a one is written to disk the media records a one, and
when a zero is written the media records a zero. However the actual effect is closer
to obtaining a 0.95 when a zero is overwritten with a one, and a 1.05 when a one is
overwritten with a one. Normal disk circuitry is set up so that both these values are
read as ones, but using specialized circuitry it is possible to work out what previous
“layers” contained. The recovery of at least one or two layers of overwritten data isn’t
too hard to perform by reading the signal from the analog head electronics with a
high-quality digital sampling oscilloscope, downloading the sampled waveform to a
PC, and analyzing it in software to recover the previously recorded signal. What the
software does is generate an “ideal” read signal and subtract it from what was actually
read, leaving as the difference the remnant of the previous signal. Since the analog
circuitry in a commercial hard drive is nowhere near the quality of the circuitry in
the oscilloscope used to sample the signal, the ability exists to recover a lot of extra
information which isn’t exploited by the hard drive electronics (although with newer
channel coding techniques such as PRML (explained further on) which require extensive
amounts of signal processing, the use of simple tools such as an oscilloscope to directly
recover the data is no longer possible).”[Gut96]

PRML stands for Partial-Response Maximume-Likelihood encoding, a technique that is similar to
the encoding done by V.32 modems. According to Gutmann, this technique allowed the hard
drive industry to increase drive capacities by 30—40%. The higher density is believed to make the
recovery of overwritten data significantly harder. EPRML is Extended PRML, which included aerial
density of recorded data between 20% and 70% above existing PRML.[Koz04]

Gutmann goes on to present a series of patterns which, when written to a magnetic drive, should
dramatically decrease the chances that overwritten data could be recovered. Different patterns
are presented for different recording technologies. Gutmann notes that it is theoretically harder
to recover data as the density of magnetic media has increased and encoding has become more
complicated. An epilogue added to online version of the 1996 paper concludes:

“For any modern PRML/EPRML drive, a few passes of random scrubbing is the best you
can do. As the paper says, “A good scrubbing with random data will do about as well as
can be expected. This was true in 1996, and is still true now.”[Gut96]

3.3. CASE STUDY: REMEMBRANCE OF DATA PASSED 117

OVERWRITE-FILE (filename) :
len = LENGTH-OF-FILE (filename)
OPEN filename FOR WRITING
SEEK TO THE BEGINNING OF filename
WRITE len RANDOM BYTES TO filename
CLOSE filename

Figure 3-10: Pseudocode for overwriting the contents of a file.

Required support for overwriting individual files

Overwriting requires underlying software and hardware support to ensure that the intended data
is actually overwritten. When trying to sanitize an entire drive, for example, it is important that
the disk makes all of the directly addressable blocks available for writing. Modern ATA disk drives
have the ability to create a password-protected “host protected area.” If such an area is created,
attempts to sanitize the disk drive using overwriting may miss key areas.

Sanitizing individual files through overwriting will only be successful if the underlying operating
system is rather literal in its implementation of the seek () and write () system calls. Overwriting
an individual file is commonly implemented with an algorithm similar to the one presented in
Figure 3-10. The problem with this approach is that it implicitly assumes that when the contents
of a file are overwritten the operating system overwrites the physical blocks that hold the file’s
contents. Although this is the case with most implementations of the FAT, FFS and EXT2FS file
systems, it is not the case with other file systems. For example, file systems that provide the
appearance of read-write access to write-once media can do so by writing data to new blocks,
then rewriting metadata, and finally by rewriting a new root directory.[GL85, Gar91] Attempts to
sanitize files on these systems through overwriting will fail.

Even file systems for rewritable media may not provide the necessary guarantees to reliably pro-
vide sanitization through overwriting. A journaling file system such as Microsoft’s NTFS or Apple’s
HFS+ with journaling enabled may intentionally avoid overwriting old information with new in-
formation in order to provide reliability guarantees. A high-performance file system might further
take advantage of a data write as a chance to unfragment a fragmented file, if consecutive blank
blocks are available at the time of update. This argues that the functionality for sanitizing should
be provided directly by the file system, and not through the manipulation of other system calls with
the hope that sanitization will result as a side-effect.

3.3 Case Study: Remembrance of Data Passed

An important aspect of the sanitization problem that had not previously been subject to academic
study is the prevailance of confidential information on hard drives that are sold by consolidators,
resellers and other kinds of commercial scavengers on the secondary market.

118 CHAPTER 3. Sanitization and Visibility 1: Operating Systems

3.3.1 Acquisition of hard drives and data

A total of 217 hard drives were purchased on the secondary market between January 1999 and
April 2002. Primary sources for these drives were in-person visits to used computer stores, the MIT
“Swapfest,” and by winning bids on the eBay online auction web site. Efforts were made not to
purchase more than 10 drives from a single reseller at any time. Most lots consisted of between 2
and 5 drives.

Upon receipt, each drive was given an accession number. This number was then used as the drive’s
identifier for all further work. An additional 20 drives (#99—#110, #112-#114, #116-#118 and
#120-#121) were purchased on the secondary market by another researcher for an unrelated
project. Those drives were imaged and then returned to that researcher.

A list of the hard drives involved in this study appears in Appendix A.

3.3.2 Drive imaging

Once a drive was cataloged, the next step was to image the drive. Imaging is a process that involves
copying all of the drive’s data into a single file, not surprisingly called an image file. Once the image
file is created, all subsequent analysis can be done with the image file and the drive itself can be
put in storage.

There are many advantages to working with image files instead of the actual disk drives:

e Modern disk drives are considerably faster than older drives. Once an image is made, it is
dramatically faster to work with the image than to continually refer back to the original file.

e Modern disk drives are considerably more reliable than older drives. Many of the drives were
in fact failing as they were imaged: in several cases the disk’s internal mechanism was not
entirely operational when the imaging operation was concluded.

e It is possible to have only a few ATA drives connected to a computer at once. On the other
hand, it was possible to have all of the disk images resident on multiple computers at the
same time.

Imaging was performed on a PC workstation running the FreeBSD operating system and using the
Unix dd command to copy data from the raw ATA device (in the case of IDE/ATA disks) and from
the raw SCSI partition (in the case of SCSI disks) into a single file. The dd options “noerror” and
“sync” were specified; “noerror” tells the dd command to continue even if an error is detected.
The “sync” option tells the command to keep the output file in sync with the input file by padding
the output file with NULs when read errors are detected. The blocksize was set to 65536 bytes to
speed transfer. The image was saved in a file called driveid.img. Figure 3-11 shows a typical dd
command.

One way that the imaging process could be improved would be to modify the dd command so that
sync error blocks, instead of being filled with NULs, would be filled with some specific and unusual
pattern so that it would be possible for forensic analysis tools to tell the difference between blocks
that had been read as all NULs and blocks that could not be read.

After the image was created, the FreeBSD £disk command was used to create a human-readable

3.3. CASE STUDY: REMEMBRANCE OF DATA PASSED 119

dd if=/dev/ad2 of=/project/images/100.img conv=noerror,sync bs=65536

Figure 3-11: The “dd” command used to image drive #100.

mdconfig -a -t vnode -f /big3/project/images/img/100.img -u 1
mount -t msdos /dev/mdlsl /mnt

Figure 3-12: The FreeBSD commands to mount disk image #100 with the MSDOS file system.

umount /mnt
mdconfig -d -u 1

Figure 3-13: The FreeBSD commands to umount disk image #100.

printout of the disk’s partition table. This image was saved in a file called driveid.fdisk. (This wasn’t
strictly necessary, as the fdisk command should have been able to use the raw disk image.)

At this point, the disk image was attached to the FreeBSD memory disk device and attempts were
made to mount the image read-only using the FreeBSD FAT, NTFS, UFS, and Novell file system
implementations (Figure 3-12). If the drive image could be successfully mounted, the files on
the image were copied off using the Unix tar command. Finally, the disk file was unmounted
(Figure 3-13).

Not surprisingly, a significant fraction of the drives were physically damaged, contained unreadable
sectors, or were completely inoperable. These drives took substantially longer to image, as the drive
electronics would repeatedly attempt to re-read the bad sectors and/or reset the drive’s internal
electronics. Where possible, partial drive images were collected.

In many cases disks were imaged but the filesystem could not be mounted. This may have been the
result of a file system that was not supported by the FreeBSD operating system, a drive that was
properly sanitized, or a drive that was physically damaged.

3.3.3 The Garfinkel/Shelat sanitization taxonomy

In order to facilitate the discussion of sanitization practices, Table 3-14 presents a sanitization tax-
onomy. This taxonomy can be used both to describe data found on recovered disk drives, and also
to describe sanitization procedures. We have found this taxonomy extremely useful in describing
matters relating to sanitization and forensic analysis.

3.3.4 Analysis of “data passed”
Analysis of the data imaged from the drives was performed using a variety of tools, including
several written specifically for this project.

120 CHAPTER 3. Sanitization and Visibility 1: Operating Systems

Level Where Found Description

Level 0 Regular Files Information contained within the file system. Includes file names, file attributes, and file con-
tents. The disk drive in the stolen laptop contains many Level O files.? No special tools are
required to retrieve Level 0 data.

Level 1 Temporary Files Temporary files, including print spooler files, browser cache files, files for “helper” applications,
files in “recycle bins.” Most users either expect that these will be automatically deleted in time
or they are not even aware that these files exist. In fact, sometimes these files are automatically
deleted over time. No special tools are required to retrieve Level 1 data, although special training
is required so that the operator knows where to look.

Level 1 files are a subset of Level O files. Experience has shown that it is useful to distin-
guish this subset, since many naive users will overlook Level 1 files when they are browsing a
computer’s hard drive to see if it contains sensitive information.

Level 2 Deleted Files When a file is deleted from a file system, most operating systems do not overwrite the blocks on
the hard disk on which the file is written. Instead, they simply remove the reference to the file
from the containing directory. The file’s blocks are then placed on the free list. These files can be
recovered using traditional “undelete” tools such as Norton Utilities.

Level 3 Retained Data Blocks Data that can be recovered from a disk but which does not obviously belong to a named file.
Level 3 data includes information in slack space, backing store for virtual memory, and Level 2
data that has been partially overwritten so that an entire file cannot be recovered.

One common source of Level 3 data is disks that have been formatted with Windows “Format”
command or the Unix “newfs” command. Even though these commands give the impression that
they overwrite the entire hard drive, in fact they do not, and the vast majority of the information
on a formatted disk can be recovered with Level 3 tools.

Level 3 data can be recovered using advanced data recovery tools that can “unformat” a disk
drive, and using special-purpose forensics tools.

Level 4 Vendor-Hidden Data This level consists of data blocks on the drive that can only be accessed using vendor-specific
commands. This level includes the ATA “Host Protected Area” as well as the drive’s controlling
program and blocks used for bad-block management.

Level 5 Overwritten Data Many individuals maintain that information can be recovered from a hard drive even after it is
overwritten. Level 5 is reserved for such information.

“By definition, there has been no attempt to sanitize the information that is contained within Level O files. Level 0 also
includes information that is written to the disk as part of any sanitization attempt. For example, if a copy of Windows
95 is installed on a hard drive in an attempt to sanitize the drive, then the files contained within the C:\WINDOWS
directory would be considered Level O files.

Figure 3-14: A Sanitization Taxonomy, from [GS02a]

Block level analysis
For every drive image a program was run that computed the following information and stored the
results in the database:

e Number of image blocks.
e Number of image blocks that were filled with NULs.
e The MD5 hash code of the image.

The count of blocks and zeroed blocks made it easy to find the disks that had been properly sanitized
by zeroing all of the drive blocks. A list of these drives appears in Appendix A.

The MD5 hash code of the image was useful for integrity checking on the disk images from time-to-
time. (Ghemawat et al. report that the error rates of consumer disk drives become significant when
large amounts of information are copied, and recommend that applications or file systems perform

3.3. CASE STUDY: REMEMBRANCE OF DATA PASSED 121

Invalid partition table

Error loading operating system
Missing operating system

MS-DOS_6 FAT16

Non-System disk or disk error
Replace and press any key when ready

Figure 3-15: Phrases that are commonly found in the boot blocks or partition table of disks formatted with the DOS or
Windows operating systems.

their own integrity checks in these situations.[GGL03])

Disks that had been sanitized by writing random data on them from start to finish could be readily
identified by the fact that these disks would contain no blocks consisting entirely of ASCII NUL
characters. No such disks were found in the collection—that is, every disk was found to contain a
significant number of completely blank blocks.

File level analysis: levels 0 and 1
Analysis of Level 0 and Level 1 files was performed exclusively using the information in the disk tar
files (see Section 3.3.2).

For each of these files, an automated process unpacked the archive in a clean directory. Each of the
files was then examined and the following information was stored in the database:

File name and complete path name.

File length
File MD5 hash code

File type (extension)

Output of the Unix file command when run over the file.?

Information such as “file type” made it possible to rapidly find all of the Microsoft Word files in the
collection, while the MD5 codes made it possible to rapidly distinguish the Word files that were on
many disks (for example, template and tutorial files) from Word files that had been created by end
users. This proved to be important in the Traceback study, discussed in Section 3.4.

In this study, the concept of a “unique file” proved to be useful. A unique file was defined to be a file
whose MD5 was not seen in any other file or any other collection of MD5 codes that was obtained
from any source. The hypothesis is that such unique files correspond to content that was created by
the computer that used the hard drive in question, and is unlikely to have been part of a standard
distribution of files from an external source—for example, a list of tutorial files that were delivered
as part of a Microsoft Word installation.

>The Unix file command reports file type by an examination of the file’s name and file contents. For certain kinds
of files it can report additional information—for example, the width and height of various image formats.

122 CHAPTER 3. Sanitization and Visibility 1: Operating Systems

File Type # of unique files
GIF files 10,012

GIF in web browser cache 8,262
Dynamic Linked Library 7,751
Program Files (COM & EXE) 4,548
JPG files 2,958

JPG in web browser cache 2,345
Microsoft Word 783
Microsoft Excel Worksheets 184
Microsoft Outlook 69
Microsoft PowerPoint 30

Table 3.1: The number of unique Level 0 and Level 1 files found on the hard drives in the study. Although large numbers
of unique images files were found, they were mostly confined to the web browser caches. The large number of program
files found indicates that programs were generally not deleted before the drives were sold on the secondary market.
But the fact that so few numbers of Microsoft Word, Excel, and Outlook files were found indicates that these files were
intentionally deleted before the drives were sold.

Table 3.1 provides the number of unique files of various file types that were found on each drive, by
document file type. We were surprised that so few drives appeared to contain unique files. When
the study was started, it was expected that the majority of the drives obtained on the secondary
market would be completely unsanitized. But this wasn’t what we found. We found roughly 10,012
unique GIF files, but 8,262 were in web browser caches—making them actually hidden Level 1 files,
files that were not obvious to most users. We found 7,751 unique DLL files and 4,548 unique COM
and EXE files, indicating that a wide variety of programs had been installed on these systems. But
when focusing on Microsoft Word files, we found only 783 unique files on all of the drives—and
484 of those were contained on just four drives of the sample.

The only reasonable explanation fitting this data is that many of the disks were manually purged
before they were sold. That is, some person manually went in and deleted the Microsoft document
files but left behind the program files. As we shall see shortly, the deleted document files were
nevertheless recoverable, as they had been deleted with the Windows “DEL” command,

File Level Analysis: Levels 2 and 3

There are many programs on the market for doing analysis of Level 2 and 3 data. One such product
category consists of data recovery programs that are sold to consumers and businesses to recover
accidentally deleted information. A second category are the forensic analysis tools that are typically
sold to law enforcement agencies for the purpose of performing detailed analyses of seized hard
drives. Although many of these tools are beloved by their target audience, they were deemed
inappropriate for the purpose of this project: all of these tools have an interaction model that
assumes a practitioner has a lot of time to spend with a single hard drive image. What was needed
for this project was a batch tool that could rapidly analyze and assess hundreds of disk images.

The program fatdump provides this functionality in the form of a Forensic File System (FFS). A
forensic file system is a kind of semantic file system[GJSJ91] that is specially tailored to ease in the
retrieval of forensic information.

3.3. CASE STUDY: REMEMBRANCE OF DATA PASSED 123

For example, the FFS allows any block on the disk to be accessed as if it were a file by using the path
name /b:nnnn, where nnnn is the number of the block to be accessed. The notation /c:nnnn
allows the contents of cluster nnnn to be accessed in a similar manner. (Clusters are collections of
blocks referenced by the FAT file system; the mapping of cluster numbers to block numbers requires
first decoding information stored in the disk’s BIOS Parameter Block (BPB).)

The FFS also makes it possible to interpret any block as if it were a directory. In traditional file
systems it is only possible to resolve path names that start at the root directory. The forensic file
system allows the use of the /dir:nnnn notation. If cluster #50000 is believed to contain a
directory, it is possible to list the files referenced from that block by requesting a listing of the
directory /dir:50000. Figure 3-16 illustrates this terminology. In this example, fatdump was
used to list the contents of cluster #15 of image #113; the cluster probably was a directory that
held an application. One of the directory entries, ?TEMP . 000:de17111, was deleted. Frequently
entries that have been deleted nevertheless point to valid directory contents—which themselves
have also been deleted. Figure 3-17 shows that the directory a cluster #411 of disk #113 was a
directory that contained a significant part of data files used by the Microsoft Office Shortcut Bar.

fatdump allows the forensic notation to be used as both an input to commands and in directory
lists. If a disconnected directory is listed by specifying its starting block number, for example, the
file names that are displayed will themselves be reported with the disconnected form. The notation
makes it easy to reference Level 2 or 3 data that is on the disk’s surface. fatdump uses this feature
extensively: the program has a “-IR” option which generates a recursive list of all directories on the
disk. Unlike the standard Unix 1s -1R command, the fatdump version of this command results
in a scan of the entire disk image.

Finally, fatdump has the ability to tag each block of a hard drive image as “reachable” or “not
reachable” from the image’s root directory.

What the forensic analysis shows
Using fatdump, it is possible to answer both the question posed on page 105 and to relate this
entire study to the topic of security and usability.

An analysis of the hard drives contained in the sample shows that the majority of operational
drives contained data that had been deleted but that was nevertheless recoverable. The output of
fatdump shown in Figure 3-18 is typical. This information, from image #182, shows that the disk
contained resumes, letters to an admissions counselor, and other highly sensitive information.

However, when disk #182 is mounted on a Unix computer and examined using standard tools, none
of this information is visible. Instead, all that is apparent are three files: 10.SYS, MSDOS.SYS and
COMMAND . COM. This reason is that disk #182 was formatted before it was sold.

Disk #182 is a 2 gigabyte hard drive that contained approximately 1.8GB of information. None
of this information would be seen by a person who had purchased the drive unless that person
used a low-level disk editor or a forensic tool to recover “deleted” files. In this case, it appears
that the third answer the question on page 105 is the correct answer. Disk #182 was awash with
information, but the information was invisible.

124 CHAPTER 3. Sanitization and Visibility 1: Operating Systems

cluster 15 looks like a directory...
03/18/1999 00:00 /:dirl5/URL.DLL
09/01/1998 11:17 /:dirl5/COMPOBJ.DLL
08/24/1996 12:11 /:dirl5/MSVCRT20.DLL
08/24/1996 12:11 /:dirl5/WIN32S16.DLL
08/24/1996 12:11 /:dirl5/TYPELIB.DLL
08/24/1996 12:11 /:dirl5/STDOLE.TLB
08/24/1996 12:11 /:dirl5/0OLE2CONV.DLL
08/24/1996 12:11 /:dirl5/0LE2NLS.DLL
08/24/1996 12:11 /:dirl5/0OLE2DISP.DLL
09/01/1998 11:18 /:dirl5/0LE2.DLL
09/01/1998 11:17 /:dirl5/STORAGE.DLL
08/24/1996 12:11 /:dirl5/?EMP.000:del7111
08/24/1996 12:11 /:dirl5/DDEML.DLL
08/24/1996 12:11 /:dirl5/0LESVR.DLL
08/24/1996 12:11 /:dirl5/0OLECLI.DLL

Figure 3-16: The output of fatdump on #113 reveals that cluster 15 was probably a directory that was part of a Windows
installation.

04/04/2000 09:52 /:dir441/Application Data/Microsoft/Office/Shortcut Bar/Of£f7290s.tmp

04/04/2000 09:52 /:dir441/Application Data/Microsoft/Office/Shortcut Bar/Of£f7290h.tmp

04/10/2000 10:16 /:dir441/Application Data/Microsoft/Office/Shortcut Bar/OffA042s.tmp

04/10/2000 10:16 /:dir441/Application Data/Microsoft/Office/Shortcut Bar/OffA042h.tmp

05/12/2000 10:15 /:dir441/Application Data/Microsoft/Office/Shortcut Bar/OffA042.tmp

07/30/1999 15:08 /:dir441/Application Data/Microsoft/Office/Shortcut Bar/Office/Microsoft Access.lnk
04/03/2000 14:56 /:dird441/Application Data/Microsoft/Office/Shortcut Bar/Office/Microsoft Excel.lnk
07/30/1999 15:08 /:dird441/Application Data/Microsoft/Office/Shortcut Bar/Office/Microsoft FrontPage.lnk
07/30/1999 15:08 /:dird441/Application Data/Microsoft/Office/Shortcut Bar/Office/New Appointment.lnk
07/30/1999 15:08 /:dir441/Application Data/Microsoft/Office/Shortcut Bar/Office/New Contact.lnk

Figure 3-17: Cluster #441 of disk #113 appears to have been a deleted directory that contained an entry for a directory
named “Application Data.” That directory appeared to contain data from a Microsoft Office installation. This figure
shows how the forensic file system allows a Level 3 directory to be followed to a Level 2 directory hierarchy.

Using fatdump’s ability to tag blocks, it is evident that Disk #182 is representative of many hard
drives that were acquired for this study. In figrefsanitize/all-drives, each drive that has been prop-
erly sanitized or that contains file system structures that can be interpreted by fatdump are repre-
sented by a vertical bar. The top of each bar (light green) represents blocks on the drive that were
cleared or properly sanitized. The brown section in the middle represents data, like the data on
Disk #182, that existed but could not be seen with the operating system’s tools. The bottom part
of each bar (light gray) represents the data that was accessible from the file system.

The bars that are mostly white represent disks that were removed from service and sold without
much attempt at all to delete confidential files. The bars that are entirely green are disks that were
properly sanitized. But the bars that are mostly brown are disks that someone tried to sanitize—but
the sanitization tools failed them. Enough of the pointers to the data was removed such that the
data would not be visible on casual inspection. But the data was still there—and could compromise
security or privacy if the disk were in the hands of a suitably skilled individual.

3.3. CASE STUDY: REMEMBRANCE OF DATA PASSED 125

06/19/1999 01:36
03/31/1999 12:41
03/29/1999 18:14
08/27/1999 16:39
03/31/1999 13:11
03/31/1999 16:56
08/27/1999 16:36
03/31/1999 13:40
03/31/1999 13:42
08/27/1999 16:35
03/31/1999 17:14
03/31/1999 21:51
03/31/1999 23:27
04/01/1999 12:51
04/01/1999 13:06
04/05/1999 22:38
04/06/1999 23:53
04/07/1999 18:43
04/08/1999 13:44
04/09/1999 15:57

:dir210216/Four H Resume.doc

:dir210216/U.M. Markets & Society Advisor.doc
:dir210216/UM Activities & Academic Coordinators.doc
:dir222270/Resume-Deb.doc

:dir222270/Deb-Marymount Letter.doc

:dir222270/Links App. Ltr..doc
:dir222270/Resume=Marymount U..doc

:dir222270/NCR App. Ltr..doc

:dir222270/Admissions counselor, NCR.doc
:dir222270/Resume, Deb.doc

:dir222270/UMUC App. Ltr..doc

:dir222270/Ed. Coordinator Ltr..doc
:dir222270/American College Advisory Svc. Ltr..doc
:dir222270/Am. U. Admin. Dir..doc

:dir222270/Project Assoc.,School Health Policies.doc
:dir222270/IR Unknown Lab.doc

:dir222270/Admit Slip for Modernism.doc
:dir222270/Your Honor.doc

:dir222270/Air & Space Ltr..doc

:dir222270/AIU0 App. Ltr..doc

NN TN TN TN TN TN TN T T T T T T T T N S

Figure 3-18: Deleted documents that could be recovered from Disk Image #182

% 1ls -1 /mnt

drwxr-xr-x 1 root wheel 0 Dec 31 1979

-r-xr-xr-x 0 root wheel 222390 May 11 1998 IO.SYS
-r-xr-xr-x 0 root wheel 9 May 11 1998 MSDOS.SYS
-rwxr-xr-x 0 root wheel 93880 May 11 1998 COMMAND.COM

o
°

Automatic identification of disk owners through statistical means

There are a variety of statistical techniques that can be applied to the data in the disk image without
regard to the structure of the disk’s metadata. Such techniques are useful in cases where large
portions of the disk are unreadable or where the disk’s file system is not supported by available
forensic tools.

Two very useful statistical techniques were created during the course of this research: a Credit Card
Number Detector and an Email Histogram Tool.

The Credit Card Number Detector, developed with Abhi Shelat, scans the disk image for strings of
ASCII digits that match the Credit Card Verification (CCV) algorithm.[Sti97] Because the CCV is a
single digit checksum designed primarily to catch digit transpositions, 10% of all randomly chosen
15-digit numbers will pass the verification. This proved to be a problem: because many TIF images
are coded as hexadecimal binary data, such blocks of data have many cases of 15-digit numeric
strings that satisfy the CCV. Shelat was able to obtain significantly higher accuracy by coding into
his detector a set of valid credit card number prefixes that he was able to find on the Web. The

126 CHAPTER 3. Sanitization and Visibility 1: Operating Systems

2,500
2,000 |
@ No Data (blocks cleared)
HE Data not in the file system (level 2 and 3)
1.500 L 1 Data in the file system (level 0)
%)
=S
2
<
20
)
=
1,000
500 | ‘ |
0 | Il LI |I _ln I h ‘ IR |I‘ | INNNARRNA “‘ ‘ LI

Figure 3-19: This graph depicts all of the remnant data found on the 114 hard drives that contained mountable FAT32
filesystems. Each bar has three parts: the bottom (light grey) part indicates the number of megabytes on the drive that
could be reached starting at the root of the FAT32 file system—that is, the Level 0 data. The top of each bar (light green)
indicates the number of megabytes of sectors that were all NULs that were found on the drive. The middle section (dark
red) indicates the data that was on the drive but not reachable from the root directory—that is, the Level 2 and Level 3
data. As can be seen, while there are some drives that were completely erased, the majority of the drives contained
large quantities of deleted-but-recoverable data, and some drives contained significant quantity of data that had not
even been deleted!

resulting program can reliably find disk images that contain credit card numbers with only the
occasional false positive.

The list of hard drives that contained large numbers of credit card numbers proved to be incredibly
useful when conducting the Traceback study. Several organizations that probably would never
have returned telephone calls became positively receptive and eager to help in the study when they
were told that their old hard drives had been recovered and that the disks contained hundreds or
thousands of customer credit card numbers.

The Email Histogram Tool, developed with Ben Gelb, scans the disk image for strings that appear
to be email addresses. Each email address is then tabulated, and the top most common email
addresses are displayed for the operator. We hypothesized that the most common email address on
a hard drive would correspond to the individual who was the primary user of the computer from
which the hard drive was removed. This is because this individual’s email address would be present
in messages sent both to the individual and those email messages sent by the individual.

Being able to rapidly identify the hard drive’s primary user was also incredibly useful in the Trace-

3.4. THE TRACEBACK STUDY 127

back study. With this information we could quickly distinguish personal documents pertaining
directly to that individual from the multitude of other information present in the disk image.

3.4 The Traceback Study
Several possible explanations for the large number of drives found to contain passed data were
proposed in [GS02a]:

1. Lack of knowledge. The person disposing of the device simply fails to consider the problem.
2. Lack of concern. The person knows about the problem, but just doesn’t care.

3. Lack of concern for the data. The person is aware of the problem, but is not concerned by
the possibility that the data might be revealed.

4. Failure to properly estimate the risk. Although aware that data might be recovered, the
person thinks that it is very unlikely that their particular data will be recovered.

5. Despair. The person disposing of the device is aware of the problem, but thinks that it cannot
be solved.

6. Lack of tools. The person is aware of the problem, but doesn’t have tools that will properly
sanitize the device.

7. Lack of training or incompetence. The person takes measures to sanitize the device, but
those measures are ineffectual.

8. Tool error. The tool does not behave as advertised. As most sanitization tools have not been
evaluated and certified, this is actually a significant risk.

9. Hardware failure. The computer in which the hard drive resides may be broken, making it
impossible to sanitize the hard drive without removing it from the computer and installing it
in another one—a time-consuming process. (Hardware failure was apparently the case in the
case of the Massachusetts electronics corporation discussed on page 103.)

Among non-expert users—especially those using the DOS or Windows operating system—it was
hypothesized that “a lack of training” was “the primary factor responsible for poor sanitization
practices.”[GS02a]

There was, of course, only one way to actually test this belief: by contacting the individuals whose
data we had recovered and asking them to reconstruct for us what had happened. Permission
to contact these individuals was obtained in April 2003 from the MIT Committee on the Use of
Humans as Experimental Subjects; work on this project began shortly thereafter.

3.4.1 Traceback results

Between April 2003 and April 2005 a total of 15 interviews were conducted with individuals and
corporations located throughout the United States, corresponding to the data recovered on 19
drives. Substantial attempts were made to contact the owners of another 13 drives; in three of those
cases, individuals contacted at the organizations were unresponsive to phone calls and follow-up
attempts.

128 CHAPTER 3. Sanitization and Visibility 1: Operating Systems

Because the drives that were traced were chosen based on their ability to be traced, rather than
being randomly chosen, no statistical conclusions can be drawn from this sampling. Nevertheless,
the individual cases are qualitatively revealing.

The hypothesis that poor training was responsible for the recovered information was not confirmed
by the Traceback study. Although a lack of training did play some role in the poor sanitization
practices, organization failure and misplaced trust were far more common causes in the cases that
were investigated.

Trust Failures (8)

Eight drives from a total of four resellers were not sanitized because of a trust failure—the individ-
ual or organization that owned the drive had entrusted it to another party, and that second party
had sold it without first sanitizing its contents:

ID Trust Failure Notes

#54 This disk contained the List Will and Testament and detailed financial information of a
50-year old woman in Kirkland, WA. The computer had been taken to the “PC Recycle”
store in Bellevue by the woman’s son, who is employed as a researcher by one of the
nation’s national labs. The son paid PC Recycle either $5 or $10 to recycle the hard
drive. PC Recycle “recycled” the hard drive by putting it on a table and selling it to
another customer for $5.

#73 This disk belonged to a community college in Washington State. Information found
includes student grades, final exams, email, and other information. The school did
not have a procedure in place for wiping information from computers before they were
disposed, but has one now.

#74 Another disk from the Washington State community college.

#75 Another disk from the Washington State community college.

#77 Another disk from the Washington State community college.

#128 This disk was in the computer used by the administrator of a church in South Dakota.
That administrator left and the new administrator did not know the circumstances by
which the disk was conveyed to the reseller, a firm called “PC Junkyard.” The cur-
rent administrator said that the previous administrator “was kind of crazy” and that the
previous administrator probably sold the equipment. Other drives purchased from PC
Junkyard were properly sanitized, but this one was not.

#193 This disk belonged to an automobile dealership in Maryland. The disk contained internal
dealership documents, address books, email, and other materials. The individual who
supplied computers to the dealership apparently took the dealership’s old computers as
part of a trade in; the machines were stripped and the parts sold on eBay without being
sanitized.

#205 This disk was from the home computer of a Maryland family whose father is the owner
of the automobile dealership that previously owned drive #193. This disk contained
email and a mortgage application containing detailed personal financial information.
This drive was also part of a computer that was traded-in to a trusted computer seller,
who sold the family a new computer.

3.4. THE TRACEBACK STUDY 129

The case of drives #73 through #78 are particularly interesting. These drives were purchased as a
lot of six from an individual in Washington State. While drives #73, #74, #75 and #77 contained
federally protected confidential information that had not even been deleted with the Windows DEL
command, the other two drives in the lot had little or no confidential information at all. Drive #76
had been formatted but an analysis with FATDUMP found no Microsoft Word or Excel files that
could have contained confidential information. (We did find four copies of the LOVE-LETTER-FOR-
YOU worm, however.) Drive #78 found 39 links to Word files in the /Windows/Recent directory,
but the files themselves were not on the drive—instead, they appeared to be on a file server. Thus,
it is entirely possible that the person who was disposing of the drives thought that none of them
had confidential information on them, and that drives #73, #74, #75 and #77 contained the
information because of an unanticipated violation of school policy, rather than a failure to sanitize.

In interviews with the former owner of drive #193 and #205, the individual expressed profound
frustration that his computer consultant had removed the drives from the computers and there had
been no way to audit whether or not the information had been deleted. The owner had trusted his
consultant, and that trust was betrayed.

Tool failures or lack of training (3)

In three cases the organization attempted to sanitize the disks itself but the tool that was used—the
DOS or Windows FORMAT command—did not actually overwrite the blocks of the disk in question.
This can be thought of as either a “tool failure” or a “lack of training:”

ID Tool Failure Notes

#7 This disk belonged to the California office of a major electronics manufacturer. The disk
contained internal documents and source code. The system was declared obsolete by the
manufacturer, inadequately sanitized with the FORMAT command, and sold to a surplus
vendor.

#21 From a computer that did credit-card processing for a supermarket belonging to a major
supermarket chain. The disk included 3,722 credit card numbers and supermarket bank
information. At the time the disk was retired the supermarket chain was using Norton
Disk Wipe to sanitize old hard drives, but the company believes that the tool was not
used consistently in every case. In 2000 the company formalized its disk sanitization
procedures as a result of HIPPA and VISA CISP regulations (see Section 2.6.5).

#134 This disk was the primary drive of an ATM machine that belonged to a major Chicago
area bank. The bank was aware of the sanitization problem and had hired an outside
firm to upgrade its ATM’s: the contract specified that the removed disks needed to be
sanitized, but failed to specify how. The contractor had hired a subcontractor to perform
the actual drive removal and sanitization; the subcontract had specified that the drives
should be sanitized, but failed to mention how. Although both the bank and the contrac-
tor were aware that the DOS FORMAT command did not properly sanitize hard drives,
the subcontractor was not aware of this fact. As a result of being contacted for this sur-
vey, the financial institution revised its privacy policies and contracts: all contracts now
specify not only that removed disks should be sanitized, but they also specify how the
disks should be sanitized.

130

CHAPTER 3. Sanitization and Visibility 1: Operating Systems

Lack of Concern (2)

In two cases the organizations that owned the disks simply did not care if the information on them
was sanitized or not. In each case the company was going bankrupt or having significant layoffs;
in interviews after-the-fact, the individuals responsible for disposing of the property reported that
they simply didn’t care whether or not the data the computers contained confidential data:

ID Lack of Concern Notes

#15 This disk belonged to an Internet software developer. The disk contained a database
of 1240 sales contacts and other corporate information. The company was going
bankrupt and the computers were sold to a used computer vendor that would pick up
the equipment and pay a minimal fee.

#44 This disk was in a computer used by a “publishing specialist” at a computer maga-

zine in the San Francisco Bay Area. Although the company had an informal policy
of sanitizing disk drives when employees left the company and computers were re-
purposed within the organization, in the summer of 2000 the company experienced
a two-thirds reduction in force. At that time the company decided to sell as many
of its computers as possible in order to recoup some of its investment; sanitizing the
computers was not a priority.

Unknown Reasons (7)
In seven cases the original owner was determined but the reason for the sanitization failure could
not be discovered:

ID

Unknown Failure Notes

#6

#11

#42

#70

#94

This disk was used by a biotech startup in the San Francisco Bay Area. The drive con-
tained proprietary research documents for an HIV test that was under development. The
systems were sold to equipment consolidators when the company was shut down. It is
unknown if the company wished to have the contents of the disks sanitized or not.

This disk belonged to the Greensboro, NC, office of a major electronics manufacturer.
It contained internal documents. The company did not respond to repeated contact
attempts.

This disk was in a computer used by the assistant principal of a San Francisco Bay Area
primary school. The computer contained grades and disciplinary letters sent home to
parents by assistant principal. The school’s staff said that they did not know how the
computer had left the school.

This disk had medical information which indicated that it was used by a mail order
pharmacy. No attempt was made to determine if the disk contained patient records. The
pharmacy claimed that it understood the seriousness of the situation, but subsequently
did not return phone calls.

This disk was in a computer used by consultants of a regional telephone company. A
document found on the computer stated “This PC is infected with a virus. Call helpdesk
at #XXX-7838.” When contacted, the company said that too much time had elapsed to
determine why the disk was not properly sanitized prior to its being sold as surplus.

3.4. THE TRACEBACK STUDY 131

ID Unknown Failure Notes (cont.)

#96 This disk came from the computer used by the vice president of a Minnesota-based food
company. Information on the disk included corporate records and details of an em-
ployee’s “loan repayment plan” schedule. The organization did not respond to repeated
contact attempts.

#214 This disk belonged to the Corporation Commission of a US state. The disk contained
credit card numbers and other information associated with the filing of various state
forms, as well as internal correspondence belonging to the state office. The state’s IT
division requested that a copy of the disk’s image be uploaded to an FTP server. After
the upload, no further communication was received from the IT division.

3.4.2 Traceback conclusions

The picture of American businesses and non-profit organizations that emerged from the Traceback
study is a frightening picture indeed. It is a picture of organizations that are fundamentally not in
control of their information technology. It is a picture of people who can do email and run a few
applications but just didn’t think about the implications of their actions.

There may be a sampling bias in this study: the Traceback study could only trace data to organiza-
tions that, by definition, had leaked their own personal or confidential information. But this isn’t
a comforting thought, when one considers that disks were traced to a major Chicago bank, to a
major grocery store chain, to the headquarters of a public school system, and to a number of small
businesses that held confidential customer information.

If anything, the Traceback study confirms the importance of security measures that are either auto-
matic or else extraordinarily easy-to-use: the computer users encountered in this study simply can’t
handle anything else.

The Traceback study was significantly harder to perform than anticipated. The reason was not the
difficulty of identifying the data subjects—the reason was the difficulty of identifying the person
within the target organization who either had both knowledge of what had happened and was
interested in participating in the study.

Finding a responsible individual for what can only be described as a significant security or privacy
violation shouldn’t have been a problem, but it was. Under Canadian and European data privacy
laws, organizations must identify a specific individual who is responsible for communicating with
the public on issues of data privacy. But US law has no such requirement. Once the organization
name was determined, it should have been possible to go to that organization’s web site, click on a
“privacy” link, and immediately have contact information for the responsible individual. But many
of the organizations that were contacted for the Traceback study didn’t have privacy policy on their
web sites. Instead, they had generic “contact” links on their web sites that invited visitors to send
email to their web master or their press offices—mail that generally did not engender a response.
Instead, contacts were made with responsible parties by repeated calling the organization’s switch-
board and asking to speak with the organization’s network security group. This is not a strategy
that should be recommended to the general public.

132 CHAPTER 3. Sanitization and Visibility 1: Operating Systems

o

=

Figure 3-20: A map of the United States showing the locations of the organizations that were responsible for the data
on the drives that were successfully traced.

3.5 Future Work: Cross-Drive Forensics
This section has only scratched the surface of a new branch of forensic analysis that we have chosen
to call cross-drive forensics.

Computer forensics is a fast-emerging field that consists of many sub-specialties. Major areas of
research and practice include disk forensics, discussed here; network forensics, which involves the
collection and analysis of information traveling over a network; and document forensics, which
involves the analysis of printed and digital documents to learn hidden details of their authorship,
creation, or modification.

A growing number of tools have been created to aid the forensic examiner. But today’s tools
tend to assist in the clerical tasks and visualization associated with forensic analysis: they do not
automate the forensic process. Today’s interactive forensic tools were created in an era when
forensics investigations were relatively rare and disk drives were generally small: a practitioner
might have had 20 hours to spend analyzing a 10 gigabyte disk drive. The tools serve this purpose
well and have provided a treasure-trove of information.

Given the success of these early investigations, many more disk drives are now routinely captured
as part of police work or intelligence operations. As a result, there is a growing backlog of hard
disks awaiting forensic analysis. There are stories of “rooms full of hard drives” that have been

3.6. PROPOSALS FOR ADDRESSING THE SANITIZATION PROBLEM 133

captured in the course of drug and organized crime investigations and during the course of US
military operations in Iraq and Afghanistan. We simply do not have enough analysts to analyze
these drives.

Complicating matters is the fact that drive capacities are growing geometrically. Whereas programs
like Encase[Kei03] and FTK[AccO5] were developed in an era of 2 and 4 gigabyte hard drives,
today’s drives range in size from 20 GB to 200 GB or more. Even a simple “string search” can take
nearly an hour.

The current generation of forensic tools is simply not up to the task of analyzing massive quantities
of information. What’s more, their creators will find it difficult to modify them for today’s foren-
sic problems because the underlying approach that these tools take is incompatible with today’s
forensic problems. These tools use visualization to augment the intellect of the analyst.

The forensic techniques presented in this section do not follow the pattern of existing tools. Instead
of allowing the detailed assessment of a single drive, they are designed for the rapid assessment
of several hundred. This approach is likely to find increasing favor in the coming years, as both
law enforcement investigations and US intelligence activities overseas have resulted in backlogs of
drives that far exceed the capabilities of trained forensic investigators to analyze. At very least,
some cross-drive approach must be used to determine which drives should be targeted for human
analysis. At best, these new techniques can find patterns in the forest of drive data that are simply
not visible when drives are examined one-at-a-time.

There are many ways that the techniques presented in this section could be readily expanded:

e The Unix dd command should be modified, as discussed above, so that read errors are copied
over as specially tagged blocks, and not blocks of NULs. Further, when a 64k block cannot be
read, an attempt should be made to read blocks of a smaller size.

e The Forensic File System should be finished and implemented as a user-level NFS or SMB
redirector so that the full array of Unix tools can be used for forensic analysis.

e In addition to using hash codes to find identical files, we should explore using hash codes to
find identical blocks. The theory here would be to effectively characterize Level 3 data. This
approach could determine, for example, that a stretch of 50 blocks on the disk are actually
two-thirds of a DLL that shipped with a copy of WordPerfect 4.2. Such information might be
useful in its own right, or else might be used to eliminate these blocks from further analysis.
Erik Nordlander at MIT is working on this technique as part of his masters’ thesis.

3.6 Proposals for Addressing the Sanitization Problem

Although the need for proper sanitization of magnetic recording media has been long recognized
as a serious issue for computer security practitioners, the problem has traditionally been addressed
through the use of add-on software or physical destruction of the media itself. Only recently has
the question of sanitization been addressed by computer operating system vendors themselves, and
in the cases that we have considered, both Microsoft and Apple and have addressed it poorly.

What'’s needed, then, is some straightforward way to add a usable sanitizing delete-file function to

134 CHAPTER 3. Sanitization and Visibility 1: Operating Systems

existing system.

Although a simple approach would be to resurrect Bauer and Priyantha’s Linux implementation,
such an approach would be incomplete. Bringing truth to the phrase “rm is forever” is not a
particularly user friendly approach for moving forwards. Many usability experts have noted that
humans make frequent mistakes; simply adding a warning box saying something to the effect that
“rm deletes all of your files” is not a particularly strong barrier to improper use.

The remainder of this section considers two proposals for better addressing the problem of creating
a safe sanitizing delete on modern desktop operating systems, and one proposal for solving the
data remanence problem through a regulation on computer resellers.

3.6.1 Shredder and delayed irreversible actions

Norman suggested in 1983 that simple confirmation is an inappropriate response for actions that
cannot be reversed: a more appropriate approach, he argued, is to accept the command but defer
execution for a short period of time:

“It is not sufficient to ask the user to confirm that a particular action sequence is wanted,
because if confirmation is routinely asked for (and if the usual response is “yes”), the
confirmation itself becomes an automatically invoked component of the command se-
quence. Thus, if the command is given in error, it is likely to have the confirmation
invoked as part of the same error; in our experience, the confirmation is as apt to be in
error as much as the original command. As Newman points out in his discussion of the
paper by Schneider et al. , the normal response to requests for confirmation is some-
thing like this: “Yes, yes, yes, yes. Oh dear!” The point is that disastrous commands
should be difficult to carry out; confirmations of the validity of the command may not
offer sufficient difficulty to be a satisfactory safeguard.

“Sometimes the command can act as if it were actually executed, when in fact, it has
only been deferred. Consider the command to delete files from the system; the system
could claim that it has removed the file, but has actually put it away on some temporary
location so that it can be recovered later if its “deletion” was discovered to have been
an error. (Real deletion can be done on an infrequent basis, say after a lapse of several
hours or days.) In Interlisp® operations may be “undone,” even operations such as
writing on or destroying files.”[Nor83]

Cooper makes a similar observation:

“If I tell the computer to discard a file, I don’t want it to come back to me and ask, Are
you Sure?’ Of course I'm sure, otherwise I wouldn’t have asked. I want it to have the
course of its convictions and go ahead and delete the file. ”

“On the other hand, if the computer has any suspicion that I might be wrong (which,
of course, is always), it should anticipate my changing my mind and be fully prepare to

®Teitelman, W. and Masinter, L. “The Interlisp programming environment.” Computer 14, 4 (April 1981), 25-33.

3.6. PROPOSALS FOR ADDRESSING THE SANITIZATION PROBLEM 135

undelete the file. In either case, the product should have confidence in its own actions,
and not weasel and whine passing the responsibility onto me.”[C0099, p.167]

“A confirmation dialog box is a convenient solution for the programmer because it ab-
solves him from the responsibility of being the agent of an inadvertent erasure. But that
is a misunderstanding of the real issues. The erasure is the user’s responsibility, and
she has already given the command. Now is not the time for the program to waiver.
It should go ahead and perform the requested task. The responsibility that is actually
being dodged is the program’s responsibility to be prepared to undo its actions, even
though the user requested them.

“Humans generally don’t make decisions in the same way that computers do, and it is
quote normal and typical for a person to change his mind or what to undo a decision
made earlier. In the real world outside of computers, most actions can be deferred,
changed, or reversed. There is no reason that this can’t also be true for software-based
products, except that the programmers who create them don’t think that way. ”[C0099,
p.68]

The insight of these suggestions is matched only by the shortsightedness of the industry in its failure
to adopt them.

The Shredder

One design for such an implementation would be to build upon the Recycler metaphor. Instead of
having a set of “Empty Trash” and “Secure Empty Trash” commands, the revised implementation
would have a single command: “Shred Trash.” Choosing this command would move the contents
of the Trash to the Shredder, where the blocks corresponding to the documents would be automat-
ically sanitized and the files unlinked according to a policy: either at a particular time of day, or
after the documents had been in the Shredder after a specified period of time. A typical set of rules
might be:

e Shred any file that has been in the Shredder for more than 30 days.
e Shred all files in the Shredder when the user clicks the “Shred all files now” button.

e Shred all files in the Shredder at 7am every day.

e If a file is selected and the user chooses the “Shred” command from the File menu, move the
file to the Shredder and schedule it for shredding in 5 minutes.

If a file that is in the Shredder is selected and the user chooses the “Shred Now” command
from the File menu, shred the file immediately.

These rules give users a chance to change their minds, but nevertheless provide for the possibility
of immediate shredding, should such actions be necessary. Figure 2-28 shows a hypothetical user
interface to implement this rule set. A suggested implementation is diagramed in Figure 3-21.

The name “Shredder” is superior to “Secure Empty Trash” because most people know what a paper
shredder does; most people do not know what it means to securely empty trash. Thus, less initial

136

CHAPTER 3. Sanitization and Visibility 1: Operating Systems

IO (2] (3] [s] [o]

Disk blocks Blocks of data used

containing no dat to hold file content
9 a@ and metadata “

Blocks overwritten
with NULs and
returned to free
pool when hard
drive is idle or
when "Shred now"

file system
new block
allocator

"Trash" (user visible)

9] [(o) [

s selected. @ Drag out of shredder
Empty Trash
Dirty blocks @
scheduled for @
overwritin
(not visiug) "Shredder" (user visible)

2] (0] (o] (o) [

© b by /
"Shred Now/
/
Scheduled s/hred
sk full

unlink()

Figure 3-21: The proposed design for a unified trash and shredder system which incorporates the design patterns
put forth in this section. @Blocks of data used to hold file content are visible and in the file system. @®Files deleted
with the unlink () system call are moved to ®the list of dirty blocks that are scheduled for overwriting. @When
the hard drive is otherwise idle, the system overwrites these blocks with NULs and returns them to ®the pool of
disk blocks containing no data. ®When the file system block allocator needs a new block, it can draw first from the
dirty blocks, automatically sanitizing them when they are used, and second from the reserve of sanitized blocks.
Files can also be deleted if the user @drags a file to the ®“Trash.” To undelete a file that is accidentally dragged to
the Trash, @the user drags the file out. ®Select “Empty Trash” to move the files to the ®“Shredder.” @As with the
Trash, files can be dragged out of the Shredder. ®Alternatively, the files will be unlinked and their blocks scheduled for
overwriting if the user presses the “Shred Now” button, if there is a scheduled shred, or if the disk is full. In the case of
“Shred Now,” the overwriting operation takes place immediately, even if the disk is otherwise occupied.

3.6. PROPOSALS FOR ADDRESSING THE SANITIZATION PROBLEM 137

user education would be required. And because shredding would be performed asynchronously,
there would be no perceived penalty for using the feature. This is an application of the Whit-
ten’s metaphor tailoring approach, showing that the approach can be used for verbal metaphors in
addition to visual ones.

If Shredder is implemented inside the file system, rather than within an application such as the
MacOS Finder and the Windows Explorer, then it would be possible to tightly couple the deletion
and sanitization. The unlink () system call could then be modified to put files into the Shredder
and schedule them for sanitization; the file system’s block allocator would be modified to obtain
blocks from the Shredder that are scheduled for sanitization, since overwriting such blocks with
new data would accomplish the same goal. Such modifications would have minimal impact on
desktop operating systems, which spend a great deal of their time idle. Such policy could be
disabled on operating systems on servers, if proper sanitization could be administratively ensure
prior to disposal; alternatively, the policy could be selectively implemented on some directories
but not others, as did Bauer and Priyantha. But it might not be necessary to do either, if the
shredder only runs when the disk is not otherwise serving requests from the operating system. A
schematic for such an integration between the file system, the Trash and the Shredder is presented
in Figure 3-21

3.6.2 Data Hauler: a regulatory proposal for addressing the data passed problem
The last proposal in this chapter is for federal and state governments to pass legislation that would
require hard drives to be properly sanitized before being resold on the secondary market. Saniti-
zation can easily be accomplished as part of the testing procedure, as was the case for roughly a
dozen of the 236 drives that were purchased for this study. Although it seems that a substantial
number of drives are sold without testing, perhaps they shouldn’t be. It’s not obvious that the
sale of untested used hard drives represents a substantial contribution to the nation’s economy:
although it would be silly to outlaw the sale of a few used hard drives, it is completely feasible to
regulate organizations that sell more than a hundred per month.

Unfortunately, the FTC Rule implementing the Fair and Accurate Credit Transactions Act of 2003
(see Section 2.6.5 on page 92) completely exempts so-called “service providers” from compliance
with the Rule if the service providers are not specifically told that computers being disposed of
contain consumer reports. The Commission specifically deleted an example of a “garbage collector”
from its Proposed Rule when it published its Final Rule. It appears that ignorance is indeed bliss:
any scavenger or dealer in used computer systems that does not look for consumer reports on its
systems and is not notified the reports exist is not be responsible for destroying those reports before
selling the systems. This is a significant loophole that could easily be addressed.

Microsoft has an incentive to create a sanitization process that removes all user data and applica-
tions but leaves the operating system intact. Such a process would help users to manage licenses
for software applications and help end the illegal practice of selling used computers with all of
their applications. Although some computers have in the past been sold with “system restore disks”
that return the computer to the configuration that it was in on the day that it was sold, these disks
present a significant security problem themselves: they return the computer to its unpatched con-
figuration. Experience has shown that such a system will be compromised within a few minutes of

138 CHAPTER 3. Sanitization and Visibility 1: Operating Systems

being placed on the Internet.[Pro04]

Federal regulations cover the management of hazardous waste in the United States. Organizations
that generate as little as 100 kilograms of hazardous waste per month are covered by the EPA
regulations and must employ a federally licensed Hazardous Waste Hauler.[Age05] In California,
haulers must also be registered with the State of California and have a a Certificate of Compli-
ance by the California Highway Patrol. The California regulations are quite stringent, requiring
that any organization generating more than 100 kilograms of hazardous waste in any calendar
month “must ship the waste off-site within 90 days after the first drop of waste enters the storage
container.”[Bus05] Such regulations help protect communities and workers by preventing the ac-
cumulation of hazardous waste in facilities that are not suitable for long-term storage. Shipments
must be tracked using the EPA's Hazardous Waste Manifest System, which can help inform first
responders as to the nature of a hazardous waste shipment in the event of an accident.[Age05]

In many ways remnant data is the hazardous waste of the information age and needs to be treated
as such. The fact that some of the hard drives containing personal information belonged to com-
panies that had gone bankrupt is a very close analog to the so-called Superfund and “brown field”
sites of the 1980s, where companies had failed, leaving contaminated land and ground water. Reg-
ulatory responses are appropriate. Currently there is no one who is responsible for sanitizing the
collected personal information on the hard drives of a corporation when that corporation fails. It
makes sense to place this burden on those who benefit from trafficking in the corporation’s elec-
tronic equipment.

3.7 Patterns for User Visibility and Sanitization

Based on the careful consideration of the information presented in this chapter, this thesis presents
five patterns for aligning usability and security in the realm of data sanitization are proposed herein.
The patterns are introduced here and presented in detail in Chapter 10.

These patterns were chosen based on Alexander’s pattern selection criteria. That criteria holds that
patterns should be chosen based on their moral value.[Ale96] Speaking before the 1996 OOPSLA
conference in San Jose, Alexander stated that patterns should be chosen which “actually make
human life better as a result of their injection into the system.”

Although at first glance this may appear to be a subjective criteria that is not easily measured or
repeated, Alexander insisted that “there is striking agreement” between professionals when asked
whether or not a specific pattern makes human life better.

Addressing the computer scientists at OOPSLA, Alexander said that in his field of architecture, the
idea of making human life better actually means something. He wasn’t sure if there was an analog
in computer science—he said he didn’t know if the scientists at OOPSLA were merely looking for
technical performance that is good, or something that was profoundly good from a moral point of
view.

In the case of giving people tools to sanitize their computers, there is a clear moral good that can
be achieved. Each of these patterns are designed to make computers safer, more enjoyable, better,

3.7. PATTERNS FOR USER VISIBILITY AND SANITIZATION 139

and promote more secure operation. The question is simple: would you rather have a computer
that incorporated these patterns, or one which did not?

Given that goal, the technical question is whether this is a minimal set of patterns, of if there is
additional functionality that can only be captured through the introduction of additional patterns.
It does not appear that this set of patterns can be reduced any further. On the other hand, additional
requirements could certainly create the need for additional patterns.

e EXPLICIT USER AUDIT (page 324)
This pattern holds simply that users should be able to see all of the information that they
are responsible for in the system that they are using. The pattern refers to such information
as “user-generated information.” This is a broad term which includes information directly
generated by the user, documents they type, and information that is collected about the user
during the operation of the machine—for example, the information contained in logfiles and
web browser caches.

The ExpLICIT USER AUDIT pattern is a direct application for Fair Information Practice (see
Section 2.6.1) to computer systems. It views the software that is running on the computer
not only as a tool of the user, but also as an agent of the software’s creator. That creator has a
moral obligation to make sure that there are no secret databases—no information that could
harm the user, but of which the user is unaware.

In other words, computer systems should not lie to users. They should not give the user the
impression that information is not present in the system, when it fact it is.

There are two simple ways to implement this pattern: either the computer can never allow
the user to delete any information at all, or else the computer must ensure that the specific
memory used to store that information is sanitized when the user asks that the information
be deleted.

e EXxpLICIT ITEM DELETE (page 326)
There are two paradigms for deleting information in a computer system: the information can
be deleted item-by-item, or else a region of the computer (or the entire computer) can be
wiped clean. EXPLICIT ITEM DELETE is the first data deleting pattern.

This is the pattern implemented by the DOS DEL and ERASE commands, by the Unix rm
command, and by the graphical interaction metaphor of dragging an item to the trash. This
pattern holds that the tools for deleting information should be made available to the user
where the information is displayed in the user interface.

This pattern relies upon the COMPLETE DELETE pattern to actually remove the information.

e RESET TO INSTALLATION (page 326)

The second way to delete information on a computer system is to reset the system to an in-
stallation state. This is analogous to the action of running the Windows FORMAT command or
performing a “hard” reset on a PalmOS a computer.[pal05] It’s a useful function that should be
exposed to users whenever possible. (Norman writes how the navigation system in a rented
car was not equipped with any simple way to erase all of the previous destinations.[Nor97]
As a result, each renter tended to leave their destinations in the computer, where they could
be easily reviewed by future renters.)

140 CHAPTER 3. Sanitization and Visibility 1: Operating Systems

As we have learned in this chapter, many computer systems that do provide a RESET TO
INSTALLATION feature do not implement that feature properly. In Section 3.3, we saw that the
data on many disks that had been formatted could be trivially recovered. That is because the
Windows FORMAT command does not implement the COMPLETE DELETE pattern, described
next.

e COMPLETE DELETE (page 327)
Providing deletion functionality is not enough. The system must also ensure that information
is completely deleted so that it cannot be recovered. This is the idea behind the COMPLETE
DELETE pattern.

A simple way to implement COMPLETE DELETE on a computer system is to overwrite the data
that is being deleted. Most computer systems, as we have discussed, do not do this. Instead
they merely remove the link between the data and the memory containing the data, then
mark the memory as “free” and available for re-use.

e DELAYED UNRECOVERABLE ACTION (page 328)
As discussed in Section 3.6, if computer systems are going to have the ability to perform
unrecoverable actions, one way to prevent these actions from being performed in error is to
institute a delay between the time that the action is invoked and the time that the action is
performed. This specific interaction pattern is referred to as the DELAYED UNRECOVERABLE
AcCTION. It can be implemented with a timer and a mechanism for aborting the requested
action.

3.8 The Policy Implications of “Complete Delete”

The information presented in this chapter establishes the fact that there is a widespread problem of
confidential information being left behind on discarded systems. Although some of this information
is obsolete, much of it is not. During the time that this work has been performed, the problem of
data remanence has become the subject of considerable debate. This chapter establishes that the
data remanence problem on consumer computer systems it the result of historical accident, rather
than the result of intentional design. Finally, the chapter proposes solutions to the problem.

In an eloquent article, The Honorable James M. Rosenbaum, chief district judge of the federal
district of Minnesota, argues that the legal profession’s current obsession with the ability to recover
deleted information from computer systems is unhealthy to our system of law and, ultimately, our
humanity. But he ultimately doesn’t blame the lawyers—he blames computer systems: “The real
flaw is that the computer lies when it says DELETE. This mechanical lie ought not to debase and
degrade the humans who are, and ought to be, its master.”[Ros00]

Rosenbaum argues that there should be some kind of “cyber statute of limitations” which would
hold deleted information off limits in many cases:

“I suggest that, barring a pattern of egregious behavior, or an objective record of system-
atic conduct—absent, if you will, a real ‘second set of books'—that the courts recognize
the existence of cyber trash. This is the stuff, which, in less electronic times, would have
been wadded up and thrown into the wastebasket. This is what the DELETE button was
meant for, and why pencils still have erasers.”[Ros00]

3.8. THE POLICY IMPLICATIONS OF “COMPLETE DELETE” 141

The ability exists to correct this great technological lie. We don’t need to create a new statute of
limitations—all we need to do is to fix the un1ink () and DeleteFile () system calls. But such a
change would not merely protect businesses and individuals: it would also dramatically complicate
the work of investigators trying to uncover wrongdoing. Oliver North’s violations of federal law
came to light because investigators were able to recover North’s deleted PROFS messages. Like-
wise, much of the Enron bankruptcy case was unraveled through the use of deleted Lotus Notes
messages.[DiS02] If complete delete is built into operating systems, similar evidence of wrongdoing
in the future might be unavailable to investigators.

It is possible that more harm is being done by the failure of our operating systems to sanitize deleted
files than good is resulting from the ability of forensic investigators to recover deleted information.
It is also possible that criminals will increasingly use readily available programs to remove infor-
mation of wrongdoing from their computer systems as knowledge of forensic capabilities spreads
through the criminal world.

But even if criminals make more use of sanitization technology than upstanding citizens, this should
not the ruler by which the desirability of the feature is measured. Ultimately, whether or not
computers should create covert records of their users’ activities is a question that should be the
subject of public discussion. Judge Rosenbaum’s article is a beginning of that discussion. More
voices need to take part.

142 CHAPTER 3. Sanitization and Visibility 1: Operating Systems

Visibility Sanitization
T ¥ T A
Users Users

User Explicit Item Reset to
Audit Delete Installation

Delayed
Unrecoverable
Action

v

! !
2 = @ S HEH®

Document Files, Applications, and Media

Figure 3-22: A graphical representation of the five patterns involved in visibility and sanitization, showing how they
relate to each other and to the user

	Sanitization and Visibility 1: Operating Systems
	Background
	The Problem of Discarded Data
	Case Study: Remembrance of Data Passed
	The Traceback Study
	Future Work: Cross-Drive Forensics
	Proposals for Addressing the Sanitization Problem
	Patterns for User Visibility and Sanitization
	The Policy Implications of ``Complete Delete''

