
CHAPTER 10

Design Principles and Patterns for
Aligning Security and Usability

Chapter 1 states: “It is widely believed that security and usability are two antagonistic goals in
system design. This thesis argues that there are many instances in which security and usability
can be synenergistically improved by revising the way that specific functionality is implemented in
many of today’s operating systems and applications.”[Gar05, p.13]

Indeed, it can be difficult to build systems that are both secure and usable. But the good news is
that there is no inherent conflict between these two properties. Certainly it takes more work to
build systems that are both secure and usable, but in many cases it only takes more work—it does
not require a miracle.

By systematically studying the release of confidential information through remnant data, by analyz-
ing the difficulties of secure messaging and PKI, and through an extensive review of the literature
and today’s consumer operating systems, this dissertation has shown that usability and security
can often be aligned by making changes to the underlying architecture or trust models on which
modern systems are based. To this end, the philosophy of this thesis has been to identify patterns
that can make systems that are actually secure, rather than the traditional goal of creating systems
that are theoretically securable.[Tog05] Frequently these changes required by these patterns are
relatively minor. Nevertheless, they can result in significant security improvements.

Chapter 1 introduced six principles for aligning security and usability. Other patterns have been
introduced throughout the remainder of this dissertation, each time in conjunction with supporting
research.

This chapter formally presents the “design principles and patterns” for aligning security and usa-
bility that are promised in the thesis title. The principles are presented first, followed by the

317

318 CHAPTER 10. Design Principles and Patterns for Aligning Security and Usability

patterns. Each pattern is presented is presented in a stylized format that consists of the following
elements:

Pattern name The pattern’s name
Intent What the pattern is designed to accomplish
Motivation Why this pattern is important
Image An image that shows a use of the pattern
Applicability The circumstances where the pattern is relevant
Participants If presented in italics, this lists the names of other patterns that this pattern

depends upon. Otherwise, “participants” indicates the individuals within an
organization that should be responsible for carrying applying the pattern

Implementation A rough sketch of how this pattern can be implemented
Results What happens when the pattern is implemented
Known Uses Examples of this pattern in use today

Many of the patterns are further accompanied by References either from inside this thesis or the
work of other researchers.

319

—General Principles—

Least Surprise / Least Astonishment . p. 320

Good Security Now (Don’t Wait for Perfect) . p. 320

Provide Standardized Security Policies (No Policy Kit) .p. 320

Consistent Meaningful Vocabulary . p. 321

Consistent Controls and Placement . p. 321

No External Burden . p. 322

—User Visibility and Sanitization Patterns—

Explicit User Audit . p. 324

Explicit Item Delete . p. 326

Reset to Installation . p. 326

Complete Delete . p. 327

Delayed Unrecoverable Action . p. 328

—Identification and Key Management Patterns—

Leverage Existing Identification. .p. 330

Email-Based Identification and Authentication . p. 331

Send S/MIME-Signed Email . p. 332

Create Keys When Needed. .p. 333

Key Continuity Management. .p. 334

Track Received Keys . p. 335

Track Recipients . p. 336

Migrate and Backup Keys . p. 337

Distinguish Internal Senders . p. 338

—Patterns for Promoting Overall Secure Operation—

Create a Security Lexicon .p. 340

Disclose Significant Deviations. .p. 341

Install Before Execute . p. 342

Distinguish Between Run and Open. .p. 343

Disable by Default . p. 344

Warn When Unsafe . p. 345

Distinguish Security Levels . p. 346

320 CHAPTER 10. Design Principles and Patterns for Aligning Security and Usability

Principle

Least Surprise / Least Astonishment

Intent

Ensure that the system acts in accordance with the user’s expectations.

Motivation

Saltzer and Schroeder introduced the principle of “psychological acceptability” in 1975. [SS75] Since then
the principle has generally been recast as a Principle (or rule) of “Least Surprise” or “Least Astonishment.”

The Principle of Least Surprise asserts that the system should match the user’s experience, expectations,
and mental models.

In the context of computer security, this principle means that the computer should not perform an
action in a manner that is not secure when the user expects the computer to be behaving in a secure
manner. For example, if the user fills out a form on a web page that was fetched with SSL (and therefore
has a lock in the browser’s status bar), the browser should warn if the form’s POST operation causes the
data to be sent without encryption to another web server. (Ideally, the browser would even warn the
user of this possibility before the user had invested time in filling out the web form.) Likewise, if the user
instructs the computer to delete a file and the file disappears from the computer’s list of files, then the
file should actually be deleted.

References: A version of this principle appears in the Portland Pattern Repository as the “Principle of Least Aston-
ishment.” [AB04] Raymond explains this as the “Rule of Least Surprise.” [Ray03]. Saltzer and Kaashoek have recently
adopted the term “Principle of Least Astonishment” in [SK05] to replace the term “Psychological Acceptability” in [SS75].

Principle

Good Security Now (Don’t Wait for Perfect)

Intent

Ensure that systems offering some security features are deployed now, rather than leaving these systems
sitting on the shelf while researchers try to develop “perfect” security systems for deployment later.

Motivation

All too often, security practitioners argue that security solutions that are good but not perfect should not
be deployed because people will come to rely on them, and then be misled when the systems fail. The
practitioners argue that it is better to deploy nothing. Deploying solutions with no security does not stop
these would-be users: instead, they assume that security is provided, they try to cobble together their
own solution, or else they choose to accept the risk and operate with no security solution at all.

References: Chapters 5 and 6 argue that the decision to hold off on the use of public key cryptography until keys could
be certified resulted in a delay of many years. In practice, the system that was ultimately deployed offered privacy and
security guarantees that are very similar to a system that could have deployed without keys certified by third parties.

321

Principle

Provide Standardized Security Policies (No Policy Kit)

Intent

Provide a small number of standardized security configurations that can be audited, documented, and
taught to users.

Motivation

Today’s computer systems provide security policy “construction kits” that allow organizations and even
end-users to custom-tailor the security policy of their computers to meet their own exacting needs. But
most organizations and end-users are simply not qualified to make these decisions. The result is a prolif-
eration of policies and configurations which have fundamentally unknown (and frequently unknowable)
security properties. It is better to provide a few standardized policies that generally do not need to be
customized.

References: Section 9.4 explains why security construction kits have evolved and why they adversely impact both
security and usability.

Principle

Consistent Meaningful Vocabulary

Intent

Prevent confusion by using words consistently to convey the same idea or concept in different programs
and contexts. Likewise, prevent confusion by assigning consistent meanings to the same word in different
applications or contexts.

Motivation

Technologists in general and computer security practitioners in particular are generally loose with the
words used to represent terms and ideas. Different words used for the same idea confuse users, who
look for meaning in the differences and frequently create incorrect explanations for the sloppiness. The
sloppiness can negatively affect implementations when programmers become confused.

References: Section 8.2 gives examples of current vocabulary problems; Barry devotes an entire book to documenting
the problem of Technobabble. [Bar91]

322 CHAPTER 10. Design Principles and Patterns for Aligning Security and Usability

Principle

Consistent Controls and Placement

Intent

Structure applications so that similar functionality is located in similar positions on different
applications—especially if those applications are manufactured by competitors.

Motivation

Many people use different applications and systems on a regular basis. Functions that are located in
different places in different systems may be missed and, as a result, not used.

Over the past decade there has been a slow convergence of the GUI widgets used by many desktop and
handheld platforms. Given this experience, it seems reasonable that progress can be made on security
metaphors and controls as well.

The hardest part of following this principle is the task of reconciling conflicting implementations that
are already in the marketplace. Does one give presidence to the “first movers” and innovators who
developed a new interface, to the placement that is deployed to the largest number of people, to the
implementation that is actually used by the largest number of people, or to the design that user testing
implies is the best? Who conducts the user testing?

Although these are hard decisions with strong business implications, they are fundamentally no differ-
ent than similar decisions that have been made about protocols and message formats.

The single danger with the standardization process is that it tends to complicate the thing being stan-
dardized, rather than simplify it. If that happens with interface placement, the project is lost.

With a consistent set of controls and consistent placement in the user interface, training costs should
drop as information learned in context becomes useful in others. There will be more opportunities for
passive learning, and it will be easier for people to help each other in the workplace.

References: Browser sanitization discussed in Chapter 4

Principle

No External Burden

Intent

Design security systems to have minimal or no negative impact on the friends, associates and co-workers
of those using the technology, so that they do not push back on the users of the tools and ask that the use
be curtailed.
Motivation

Frequently the use of a security technology causes a negative usability impact not just on the user, but
also on those around the user. For example, when an OpenPGP user sends a digitally signed message,
that message is displayed in Microsoft Outlook and Outlook Express not as a message with an attached
signature, but as a blank message with two attachments. When the user’s friends and associates receive
this message, they ask the user to stop using PGP.

This principle holds that security technology—like all technology—exists in a social context. It is im-
portant to be concerned about the technology’s impact on its users, but it is also important to understand
the impact on the social group and the society in which the user exists. Social support can be an important
factor in having a new technology deployed, and push-back from the social group can cause otherwise
promising technologies to be discarded.

323

References: Chapter 6

324 CHAPTER 10. Design Principles and Patterns for Aligning Security and Usability

10.1 User Visibility and Sanitization Patterns
Users cannot know if a computer contains personal or confidential information unless that infor-
mation is visible. Systems that give the appearance of removing information when it is deleted but
do not actually erase that information inherently compromise secure operation. Fortunately the
techniques for addressing these problems are widely known. The design patterns described in this
section dissect the sanitization problem, addressing its causes and presenting a unified solution.

Although aspects of these patterns are implemented in some systems today, there is no single system
that implements them in a consistent fashion. While many systems today implement EXPLICIT ITEM
DELETE and RESET TO INSTALLATION, the failure to link these patterns to COMPLETE DELETE means
that information that the user attempts to delete from the system is not actually deleted from the
system: the information is simply made invisible.

In other cases, systems do not even implement the RESET TO INSTALLATION pattern—giving users
of multi-user computer systems the difficult choice of either painstakingly deleting items one at a
time, or else leaving personal information on these shared systems with the hope that no future
user will retrieve and exploit the information.

The five sanitization patterns are presented on the following pages; Figure 10-1 shows how they
interrelate.

User
Audit

Visibility

Users

Sanitization

Document Files, Applications, and Media

Users

Complete
Delete

Delayed

Unrecoverable

Action

Reset to
Installation

Explicit Item
Delete

Figure 10-1: A graphical representation of the five patterns involved in visibility and sanitization, showing how they
relate to each other and to the user

10.1. USER VISIBILITY AND SANITIZATION PATTERNS 325

Explicit User Audit

Intent

Allow the user to inspect all user-generated information
stored in the system to see if information is present and
verify that it is accurate. There should be no hidden data.

Motivation

This is an application of the first and second Fair Infor-
mation Practice principles to computer systems:

1. There must be no personal data record-keeping
systems whose very existence is secret.

2. There must be a way for a person to find out what
information about him- or herself is in a record
and how it is used.[UDoHoAPDS73]

Without EXPLICIT USER AUDIT, there is no way for the
user to determine if the system contains confidential in-
formation.

Applicability

Can be applied to a data file (e.g., a word processor document), an application (e.g., a web browser),
or an entire computer system. Should display both information directly entered by the user as well as
information derived from user actions, such as log files.

Participants

EXPLICIT ITEM DELETE; RESET TO INSTALLATION; COMPLETE DELETE.

Implementation

Ensure that all content can be readily reached using the navigational tools provided by the system. All
information on the disk should reside in the file system, not in the free list. All information in documents
should be visible when the document is displayed. Ideally, information should be tagged to indicate when

the information was acquired; this tag should also be displayed.
If the amount of information in the system is large, a search facility should be provided.
This pattern can be implemented either by never throwing out any information, or else by making sure

that information deleted by the user is actually removed from the system using COMPLETE DELETE.

Results

The user can determine if confidential information is present inside the system. In the case of cookies,
EXPLICIT USER AUDIT on the local computer may reveal the need for EXPLICIT USER AUDIT at remote web
sites, as discussed in Section 9.2.2.

Known Uses

The “View Saved Passwords” button in Firefox allows the user to see both the saved Username and the

password, although showing passwords requires that the user click a second button and enter the Firefox
“master password” (if one has been set).

References: Section 4.1, Section 9.2.

326 CHAPTER 10. Design Principles and Patterns for Aligning Security and Usability

Explicit Item Delete

Intent

Give the user a way to delete what is shown, where it is
shown.

Motivation

This is a combination of the fourth Fair Information Prac-
tice principle [UDoHoAPDS73] and the concept of “di-
rect manipulation”[Shn82] to personal information in
computer systems.

Applicability

Web history; search history; log files; revision tracking within documents.

Participants

COMPLETE DELETE; DELAYED UNRECOVERABLE ACTION.

Implementation

Where the user is shown personal information in the computer interface, the user should be given a con-
trol for removing that information. For example, the last item in the menu should read “clear history.” If
the user is not authorized to delete a log file, the system should provide contact information for a respon-
sible party that can perform the action (an application of the OECD “Accountability Principle.”[Org80]

Results

Once a user sees information that they want removed, they don’t have to hunt around and try to figure
out how to do it.

Known Uses

Safari has a “Clear History” menu item in “History” and a “Clear Search History” menu item in the “Recent
Searches” menu. Apple’s NSSearchFieldCell automatically implements this functionality for recent
searches. Internet Explorer allows the user to right-click on a history item and select “Delete,” although
this functionality is not obvious.

References: Section 4.1 discusses sanitization in the browser.

10.1. USER VISIBILITY AND SANITIZATION PATTERNS 327

Reset to Installation

Intent

Provide a means for removing all personal or private in-
formation associated with an application or operating
system in a single, confirmed, and ideally delayed op-
eration.
Motivation

There should be a simple way to remove personal infor-
mation from a computer before ownership is transferred.
Computers set up for use by the public (e.g., in libraries)
should have a simple way to be sanitized on a regular
basis.

Sadly, many computer systems do not provide com-
plete reset. For example, the GPS systems and cell
phones rented with many cars do not, making it possi-
ble for later renters to learn personal information about
previous renters.[Nor97]

Applicability

Web history, cache & cookies; document files; application preferences; log files; email history; contact
lists; cell phones; in-car GPS navigation systems.

Participants

DELAYED UNRECOVERABLE ACTION; COMPLETE DELETE

Implementation

The system needs to distinguish between user-created data and operating system information. When
RESET TO INSTALLATION is invoked, information that is not user-created is deleted.

Systems may offer different kinds of RESET TO INSTALLATION: user reset within an application; user
reset for all applications; and user reset of the system, which removes both user-data and application
programs that are not part of the base system.

Results

This pattern vastly simplifies the process of removing personal information from a computer system when
a person is finished using it—either in a kiosk situation, or because a piece of equipment is being sold.
This pattern also makes it easy to comply with copyright law and software license restrictions.

Known Uses

Apple Safari has a “Reset Safari” feature, although Safari does not perform COMPLETE DELETE when the
files are deleted.

References: Section 4.1 discusses sanitization in the browser.

328 CHAPTER 10. Design Principles and Patterns for Aligning Security and Usability

Complete Delete

Intent

Ensure that when the user deletes the visible repre-
sentation of something, the hidden representations are
deleted as well.

Motivation

Frequently deleting information does not erase all of
the copies in the computer: hidden data remains from
which the user’s desire to erase information can be sub-
verted. COMPLETE DELETE ensures that information that
is deleted cannot be recovered.

Delete
History

Delete
www.ebay.com

in history

Delete
Cache

Delete
Cookies

Overwrite
History
Files

Overwrite
Cache
Files

Overwrite
Cookie
FIles

Applicability

• Removal of text from within documents
• Removal of records from databases
• File deletion
• Erasure of passwords and cryptographic keys in memory

Participants

DELAYED UNRECOVERABLE ACTION

Implementation

COMPLETE DELETE is implemented by determining what information stored in the computer system cor-
responds to the user’s notion of the object being deleted, then overwriting the storage media that holds
that information so that the data cannot be recovered. While COMPLETE DELETE cannot be implemented
for information that is stored offline, the results of COMPLETE DELETE can be achieved by encrypting
offline information and then using COMPLETE DELETE to erase the encryption key.

Results

Prevents forensic analysis from being able to recover information that has been intentionally deleted.
Forces designers and organizations to clearly articulate their strategy for maintaining backups and who
has access to that information.

Known Uses

Apple implements COMPLETE DELETE, albeit poorly, in the MacOS 10.3 “Secure Empty Trash” command.
Microsoft’s Cipher.exe command can be used to overwrite slack space. Both of these implementations
have profound implementation flaws and usability problems (see Chapter 3).

References: Chapter 3 discusses how the failure of COMPLETE DELETE at the file level has frequently exposed
confidential information; Section 4.2 on page 155 shows how problems in Microsoft Word and Adobe Acrobat have
resulted in similar disclosures.

10.1. USER VISIBILITY AND SANITIZATION PATTERNS 329

Delayed Unrecoverable Action

Intent

Give users a chance to change their minds after executing
an unrecoverable action.

Motivation

Although confirmation boxes allow users to recover from
typos or accidentally-clicked buttons, they are signifi-
cantly less effective in protecting against errors that are
the result of intentional but mistaken actions.

Applicability

Any procedure that is designed to be irreversable: e.g., destruction of documents and key material;
removal of licensed applications; transmission of sensitive information to archive facilities; printing on
remote printers; sending email.

Participants

COMPLETE DELETE

Implementation

When the user chooses an unrecoverable action, the action is scheduled to take place at some point in the
future—for example, in 5 minutes, or at 5pm. The action can be terminated before the execution time
arrives. Another control allows a scheduled action to be executed immediately.

Results

The user has a chance to change his or her mind after committing an error.

Known Uses

Putting physical trash in the kitchen trash can, and taking the trash can out to the curb the following day.
Some operating systems institute a “countdown” after reboot is triggered, during which time the reboot
can be aborted.

References: As discussed in Section 3.6.1 on page 134, proposals for this pattern that were previously made by
Norman[Nor83] and Cooper.[Coo99, p.167]

330 CHAPTER 10. Design Principles and Patterns for Aligning Security and Usability

10.2 Identification and Key Management Patterns
The patterns that are introduced in this section are based on the analysis presented in Chapters 5
through 7, as well as those in the article Email-Based Identification and Authentication: An Alter-

native to PKI?[Gar03a], which provides guidelines and recommended best practices to using the
ability to receive email as an authentication strategy.

Fundamentally, the principles and patterns in this section are designed to advance the goal of
secure messaging for all users. One approach for achieving this goal is by laying the groundwork
for increased use of PKI and simultaneously expanding the use of other identification regimes.
The underlying belief motivating this section is that stronger authentication systems than those
currently in use can be developed through the conglomeration of independent weak solutions.

Leverage
Existing

Authentication

Email Based
Identification

&

Authorization

Send
Signed

Key
Continuity

Management

Track
Keys

Track
Recipients

Distinguish
Internal
Senders

Create
Keys When

Needed

Web-based Services

Users

Migrate and
Backup Keys

Mail correspondents

Figure 10-2: A graphical representation of the five patterns proposed for assisting with key management

10.2. IDENTIFICATION AND KEY MANAGEMENT PATTERNS 331

Leverage Existing Identification

Intent

Use existing identification schemes, rather than trying to
create new ones.

Motivation

Digital identification systems based on biometrics and
public key infrastructure (PKI) are easier to deploy when
the technology affirms a pre-existing relationship, rather
than having a relationship created for the purpose of us-
ing the identification system.

Applicability

Deployment of strong authentication systems such as client-side PKI, tokens, or biometrics—especially
when these systems are used to verify authorization for information or services within an organization.

Participants

EMAIL-BASED IDENTIFICATION AND AUTHENTICATION; Certificate Authorities.

Implementation

Organizations issue certificates to their own employees. Banks in Europe send Transaction Authorisation
Numbers (TANs—essentially one-time passwords) to many customers with their monthly statements,
leveraging the existing authentication provided by the postal system.

Results

It is easier to deploy the strong systems because all users understand what kinds of security guarantees are
provided. Inevitable errors can be corrected using the tools already present in the existing identification
systems.

Known Uses

Zurko reports that there are 100 million Lotus Notes client licenses currently deployed; [Zur05b] the US
Department of Defense has successfully deployed its PKI to more than 2 million employees, contractors,
and active duty personnel. In both of these cases, PKI technology was used to certify identities that had
been established through other channels; that is, it extended a pre-existing local identity determination
into the digital domain. MIT’s certificate authority issues personal certificates to individuals who know
their Kerberos username, Kerberos password, and MIT ID number (see graphic).

References: Chapter 5 discusses the difficulty of deploying certificate infrastructures designed to convey identity to
third parties in the absence of pre-existing relationships.

332 CHAPTER 10. Design Principles and Patterns for Aligning Security and Usability

Email-Based Identification and Authentication

Intent

Use the ability to receive mail at a pre-determined email
address to establish one’s identity or authorization to
modify account parameters.

Motivation

Provide a simple, self-service means for people to reset
or recover credentials on systems that are less frequently
used by leveraging authentication from systems that are
more frequently used.

Applicability

Web sites that allow users to create accounts protected by username/password combinations.

Participants

LEVERAGE EXISTING IDENTIFICATION; web site authentication systems; user database; email subsystem.

Implementation

The web site should email a URL with an embedded token to the registered account; clicking on the URL
takes the user to a web page that allows the password to be changed. The URL should expire after a
short period of time and should not be usable more than once. Cookies can be used to require that the
password be reset on the same browser that asked for the URL be sent. SEND S/MIME-SIGNED EMAIL
should be used to decrease vulnerability to phishing attacks.

EMAIL-BASED IDENTIFICATION AND AUTHENTICATION can even be used with desktop applications that
use password to unlock encrypted data. When the encryption key is created, the user’s password is split
and a share with a registered email address are stored with a trusted third party. If the user loses his or
her local password, the second split can be sent to the web site, which can send a link to the registered
email address that, when clicked, will cause the password to be reassembled and displayed.

Results

In addition to allowing for easy password reset, EMAIL-BASED IDENTIFICATION AND AUTHENTICATION

systems make it easy for those who have acceess to email systems to compromise additional accounts.
This risk can be mitigated through the use of challenge questions.[Jus05]

Known Uses

Amazon.com; expedia.com; ual.com; gmail.com; many other web sites.

References: Email-Based Identification and Authorization is discussed in detail in [Gar03a].

10.2. IDENTIFICATION AND KEY MANAGEMENT PATTERNS 333

Send S/MIME-Signed Email

Intent

Send email signed with S/MIME signatures to increase
confidence in email, allow recipients to detect mail with
forged From: headers, increase familarity with secure
email through causal exposure and the resulting“passive
learning,” and give web-mail providers incentive to sup-
port S/MIME.

Motivation

S/MIME signatures provide sender authentication which
can be useful protection against spam and “phishing”
attacks. Today’s most widely used mail clients sup-
port S/MIME signatures; programs that do not support
S/MIME do not have significant usability problems when
they receive signed mail.

Applicability

Automatically generated email from e-commerce systems (order confirmations; order status; invoices; re-
ceipts). Press releases. Official messages from professors or administration. Any program or organization
that sends mail.
Participants

TRACK RECIPIENTS; KEY CONTINUITY MANAGEMENT; CREATE KEYS WHEN NEEDED

Implementation

Start with messages that are automatically-generated and sent with “do-not-reply” return addresses. Ob-
tain a Digital ID from VeriSign or Thawte; use it with OpenSSL to write S/MIME signatures on all mes-
sages that are sent out automatically. Renew the key every year.

Additional usability can be obtained by maintaining a database of the email client used by each user
and only sending S/MIME-signed mail to those users who have support for S/MIME. Companies that
receive email from customers can determine mail clients by examining the headers of incoming customer
e-mail.

Mail programs such as Outlook Express should not offer to send signed mail unless they can deliver on
the promise—that is, unless the user has obtained and installed a Digital ID.

Results

S/MIME Digital ID’s for organizations sending signed mail will be distributed, allowing them to receive
mail that is sealed with cryptography from their customers.

Some mail systems damage signed messages; these systems will only be fixed if they are exercised and
the bugs are found.

Known Uses

Amazon.com sends digitally signed VAT invoices to its merchants in Europe.

References: Chapter 6 discusses Amazon.com’s success in sending S/MIME-signed mail.

334 CHAPTER 10. Design Principles and Patterns for Aligning Security and Usability

Create Keys When Needed

Intent

Ensure that cryptographic protocols that can use keys
will have access to keys, even if those keys were not
signed by the private key of a well-known Certificate Au-
thority.

Motivation

The use of encryption between unauthenticated end-
points protects the data from passive eavesdropping.
These attacks are easier than active man-in-the-middle
attacks, so it makes sense to defend against them by de-
fault.

Applicability

All TCP servers, including servers for HTTP, POP, IMAP, and SMTP protocols. SSL client-side certificates.
Do not deploy for S/MIME until mainstream mail clients support KEY CONTINUITY MANAGEMENT.

Participants

Application programs; network servers; KEY CONTINUITY MANAGEMENT.

Implementation

When a program that can use an X.509 certificate for authentication discovers that it does not have an
X.509 certificate, a self-signed certificate should be made for default use.

Results

Systems that require cryptographic keys can be immediately used without the need to obtain certification
from third-parties. This allows for both confidentiality and integrity protection without authentication
control, which is better than no cryptographic protection at all.

Known Uses

Most SSH distributions are configured to automatically create host keys when the server starts if no keys
are found.

References: Chapter 6 and Appendix D discuss systems that automatically create keys when needed. Ylonen
discusses the SSH approach to key generation and management.[Ylo96]

10.2. IDENTIFICATION AND KEY MANAGEMENT PATTERNS 335

Key Continuity Management

Intent

Use digital certificates that are self-signed or signed by
unknown CAs for some purpose that furthers secure usa-
bility, rather than ignoring them entirely. This, in turns,
makes possible the use of automatically created self-
signed certificates created by individuals or organiza-
tions that are unable or unwilling to obtain certificates
from well-known Certification Authorities.
Motivation

Many SSL and S/MIME certificates in use today are not
signed by well-known Certificate Authorities. As a result,
SSL clients such as Internet Explorer and S/MIME clients
such as Outlook Express display errors.

Applicability

S/MIME mail clients; web browsers; other programs that accept X.509 certificates.

Participants

Developers of email clients; web mail providers; TRACK RECEIVED KEYS.

Implementation

When certificates are received in the course of authentication and the certificates are not signed by a
recognized CA, the system verifies the signature, then consults a local database of identities. If the identity
is not present, the identity and the certificate are added. If the identity is present and the certificate on
file for that identity is different, a warning is issued.

When an identity is received that is not digitally certified and the identity is on file with a matching
certificate, a warning is issued.

Results

Allows certificates that are self-signed or signed by unknown Certificate Authority to be used in a way
that proves continuity of identity.

Known Uses

Tracking of server keys in SSH clients.

References: Chapter 7.

336 CHAPTER 10. Design Principles and Patterns for Aligning Security and Usability

Track Received Keys

Intent

Make it possible for the user to know if this is the first
time that a key has been received, if the key has been
used just a few times, or if it is used frequently.

Motivation

Tracking the use of keys is one of the techniques that
security professionals use to determine how much cred-
ibility to put in a key—the theory being that a key that
has been seen a lot for a long time is more likely to be
legitimate than a key that has been seen just once before.
It makes sense to automate this process.

KeyID First Seen Times Seen
0x1123 2004-01-02 32
0x3344 2004-03-10 3432
0x9933 2004-03-11 1

Applicability

All programs that accept keys or certificates—e.g., web browsers, email clients, SSH servers and clients.

Participants

Application software and servers.

Implementation

Maintain a key or certificate database that tracks the number of uses or frequency of use, in addition to
tracking whether or not keys have been seen in the past. TRACK RECEIVED KEYS could be implemented
in a cryptographic toolkit or certificate store to provide the functionality in a uniform manner.

Results

Users can readily distinguish between keys that they have seen many times in the past and those that are
new or relatively green.

Known Uses

The CoPilot system described in Chapter 7 simulated a key tracking database; users found the tracking
to be helpful.

References: See Appendices C and D for a discussion of how two databases for tracking received keys were designed.

10.2. IDENTIFICATION AND KEY MANAGEMENT PATTERNS 337

Track Recipients

Intent

Ensure that cryptographically protected email can be ap-
propriately processed by the intended recipient.

Motivation

Although most Internet users can receive and properly
decode S/MIME-signed mail, not all of them can.

@

AOL.COM?

Send

Signed with

S/MIME

Don't send

signed

NO

YES

Applicability

All e-mail, but especially do-not-reply email sent in conjunction with e-commerce activities.

Participants

SEND S/MIME-SIGNED EMAIL.

Implementation

Keep a database of each mail recipient and the cryptographic capabilities of their mail clients. This
database should include what was observed about each recipient, rather than the conclusions drawn from
those observations. (i.e., retain the mail header that established the user had Outlook Express, rather than
a database entry that says “Outlook Express.”) Give mail recipients the ability override these settings with
per-user mail preferences.

Results

Using rules and a database of exceptions, it is possible to dramatically reduce the chance of sending
signed mail to an individual who cannot decode it.

Known Uses

Many organizations already keep a database of “mail preferences” stating whether customers wish to
receive no mail, ASCII email, or HTML email. These databases can be extended to include other security
properties.

338 CHAPTER 10. Design Principles and Patterns for Aligning Security and Usability

Migrate and Backup Keys

Intent

Prevent users from losing their valuable secret keys.

Motivation

Today it is extremely difficult to move secret keys and
other authentication tokens from one device to another.
As a result, some users do not use the security features
that these systems provide for fear of losing control of
their assets. Other users are not aware of the danger and
live with the risk without realization. If keys are going
to be automatically created, they must be automatically
migrated to all of a user’s relevant devices and backed up
in a systematic fashion.

Applicability

S/MIME private keys; username/password databases; authentication tokens used in digital rights man-
agement systems.

Participants

CREATE KEYS WHEN NEEDED.

Implementation

One way to migrate keys is by storing them inside the mail repository itself—for example, they can be
stored in a hidden directory on the IMAP server. Alternatively, keys created on a POP/SMTP client can
be sent to the user’s own email address, so that they will automatically be made available to other POP
clients that share the same inbox. Such keys can be protected by a password to achive security from the
administrators of the mail system.

Results

Important information is distributed to where it is needed and backed up so that it will not be lost.

Known Uses

Apple’s iSync 2.0 in MacOS 10.4 automatically synchronizes KeyChain databases between mulitple Mac-
intosh computers.

10.2. IDENTIFICATION AND KEY MANAGEMENT PATTERNS 339

Distinguish Internal Senders

Intent

Allow users to readily distinguish between mail that was
generated from within an email system and mail that was
injected from the outside but which claims to have an
internal address.
Motivation

In many cases the system has used some kind of authenti-
cation procedure to ascertain the identity of the service’s
user—for example, requiring a username and password.
It makes sense to distinguishes messages sent from these
authenticated users from messages that originated from
outside the system for which no authentication was per-
formed.

Applicability

Email “walled gardens;” web-mail systems; instant messaging; Short Message Service (SMS) messages.

Participants

Web mail designers; system architects; authentication subsystems.

Implementation

Messages that originate from within the system need to be specially tagged in a manner that cannot be
forged by outsiders.

Results

Users can distinguish email that was sent after the user was authenticated, versus email that was delivered
over the Internet.

Known Uses

AOL distinguishes between mail that is sent from within AOL and mail that was sent from outside AOL
but with an @aol.com domain name. In the first case, the From: address is displayed accompanied by
the AOL logo (), while in the second case the AOL logo is not displayed. AOL also distinguishes official
AOL mail from mail that is sent by users.

References: Section 5.5.2.

340 CHAPTER 10. Design Principles and Patterns for Aligning Security and Usability

10.3 Patterns for Promoting Overall Secure Operation
These patterns are designed to enhance secure operation while simultaneously providing for in-
creased usability. Some of them are based on the work of Yee.[Yee02]

Create a
Security
Lexicon

Distinguish
Between Run

and Open

Install Before
Execute

Disable by
Default

Warn When
Unsafe

Distinguish
Security
Levels

Disclose
Significant
Deviations

Figure 10-3: A graphical representation of the seven patterns proposed for enhancing secure operations.

10.3. PATTERNS FOR PROMOTING OVERALL SECURE OPERATION 341

Create a Security Lexicon

Intent

Provide a single location where security-releated words
are defined, allowing the use of these words to be stan-
dardized within and between systems. The single lexicon
should be consistent across vendors as well.
Motivation

Without a readily accessible lexicon, it is difficult to
implement the CONSISTENT MEANINGFUL VOCABULARY

principle.

Applicability

Words used in user interfaces and documentation need to be screened for consistency. Inside programs,
words used in source code need to be consistent as well, since semantic drift on the part of programmers
is frequently responsible for the proliferation of new and conflicting terminology.

Participants

Programmers; user interface designers; technical writers; project managers.

Implementation

Use a lexicon that is consistent and meaningful. The industry as a whole needs to adopt a freely available
“style book” that will present a standardized terminology. Words and terms that specifically need to be
addressed are key, public key, private key, secret key, certificate (with no private key), certificate file (that
includes a private key), Digital ID, delete, erase, purge, clear and wipe.

Results

A single lexicon makes it possible for less sophisticated users to learn security concepts because the
concept that underlies the word is constant.

Known Uses

The Mozilla Organization has created a “Jargon File”[The04] that includes the definitions of many terms.

References: Section 8.2 discusses the need to standardize the security lexicon.

342 CHAPTER 10. Design Principles and Patterns for Aligning Security and Usability

Disclose Significant Deviations

Intent

Inform the user when an object (software or physical) is
likely to behave in a manner that is significantly different
than expected. Ideally the disclosure should be made by
the object’s creator.

Motivation

Many programs have features that are both non-obvious
and that are fundamentally different than the mental
model of the person using the object. For example,
the program Precision Time by Gain Publishing is avail-
able in two versions: a version that is “free,” but which
shows advertisements from the Gain Network, and a ver-
sion that costs $30 but which does not display advertise-
ments. Although these differences are made clear on the
program’s home page, they are not made clear in the
program’s interface once it is installed.

Applicability

Software; physical objects.

Participants

Regulators or industry groups to define what functionality must be disclosed and institute sanctions for
those who do not. Designers, developers and manufacturers to perform the actual disclosures.

Implementation

An agreed-upon list of specific functionality that needs to be disclosed. Ideally, the functionality should
be functions that make a program or object act in a manner that would be surprising. Standardized
disclosures need to be developed. Ideally, such disclosures would include both standardized images and
text.
Results

Users are alerted that there may be hidden functionality included within a program or physical object,
helping to bring their mental models into alignment with reality and thereby allowing them to make
decisions that are better informed. Researchers can use disclosure to gather information in the event that
further regulation needs to be enacted.

Known Uses

EPCglobal has created an EPC Seal for display on products that contain certain kinds of RFID tags.

References: Design for traditional safety and warning labels is discussed in Section 2.6.3. The specific proposals for
software and RFID disclosures are discussed in Section 8.3 and Section 8.4.

10.3. PATTERNS FOR PROMOTING OVERALL SECURE OPERATION 343

Install Before Execute

Intent

Ensure that programs cannot run unless they have been
properly installed.

Motivation

Many worms, viruses and other programs are inadver-
tently run by users who are trying to open them. Oth-
ers take advantage of operating system bugs and run au-
tonomously. Some kinds of “malware” attacks use fea-
tures in browsers to download executables to the user’s
desktop; these executables are sometimes inadvertently
run by a user who is trying to “open” them.

Applicability

Operating systems.

Participants

Installers; operating systems.

Implementation

A permission-based system simply prohibits code from running that is not located in the correct directory
or without having the correct permission bits set; such directories and bits could only be written through
the installation process. Other approaches are possible.

Results

Viruses and worms delivered by email cannot be run unless they can trick the user into installing them.
Some implementations of INSTALL BEFORE EXECUTE will foil binary exploits.

Known Uses

PalmOS will not run an application unless it is installed, but the installation process is trivial.

References: Restrictions on operating systems that may improve usability and security are discussed in Section 9.3.1.
Reid discusses the need to properly install applications before allowing them to run.[Rei87] Kirovski et al. discuss
techniques for achieving INSTALL BEFORE EXECUTE.[KDP02]

344 CHAPTER 10. Design Principles and Patterns for Aligning Security and Usability

Distinguish Between Run and Open

Intent

Distinguish the act of running a program from the open-
ing of a data file.

Motivation

Many worms pose as application documents; victims try
to “open” the document to see what it says, and instead
end up running the hostile program. Distinguishing be-
tween these two acts with different gestures prevents the
attack.

% emacs myletter.tex

prompt command
(run)

filename argument
(open)

Applicability

Windows, MacOS and Linux desktop interfaces.

Participants

EXPLICIT INSTALL.

Implementation

On operating systems with a desktop metaphor, the double-click on an icon gesture can be changed so
that double-clicking on an installed application runs the program, while double-clicking on an application
that has not been installed causes the display of a warning message or suitable dialogue.

Results

Worms like the Love Letter[CER00] and Melissa[CER99] should be less likely to propagate. Spyware that
is downloaded to the user’s desktop that masquerades as a document will be less likely to be installed.

Known Uses

DOS and the Unix command-line shells distinguish between running a program and opening a docu-
ment by explicitly requiring that the name of the application be provided when a document is opened:
e.g., % emacs myletter.tex. Although this pattern does not recommend returning to the days of
command-line interfaces, the fact that such interfaces were widely used and continue to be used indi-
cates that such interfaces are in fact workable.

References: Section 9.3.2. [Yee02]; [Yee04]

10.3. PATTERNS FOR PROMOTING OVERALL SECURE OPERATION 345

Disable by Default

Intent

Ensure that systems does not enable services, servers,
and other significant but potentially surprising and
security-relevant functionality unless there is a need to
do so.
Motivation

Today’s operating systems are incredibly rich in the fea-
tures and services that they offer. Without DISABLE SER-
VICES BY DEFAULT, these services are enabled and present
a security risk. The risk is magnified when new services
are added as a result of installing new software or up-
grading an operating system. In these cases, the new
services should be disabled by default so that an upgrade
does not create a new security vulnerability.

Applicability

Operating system upgrades; application upgrades; new application installs.

Participants

Operating system startup scripts; firewall configurations.

Implementation

Defaults need to be specified so that servers are off by default, rather than on.

Results

Systems have a smaller “attack surface,” since servers are only enabled if they are needed.[How04] Users
are more likely to be aware of the servers that are running.

Known Uses

Windows Advanced Server 2003 implements DISABLE SERVICES BY DEFAULT with a role-based system
which disables network servers by default that are not needed for the particular role specified when the
operating system is installed. MacOS implements DISABLE SERVICES BY DEFAULT and provides the user
with a control panel that both verifies if the server is running or not, and allows the server to be started.

References: LEAST SURPRISE; Microsoft discusses the Windows 2003 role-based approach in [Mic03c]. Apple boasts
that “All the communication ports are closed and all native services ... are turned off by default” on MacOS X.[App05]

346 CHAPTER 10. Design Principles and Patterns for Aligning Security and Usability

Warn When Unsafe

Intent

Periodically warn of unsafe configurations or actions.

Motivation

Some systems arrive in an unsafe configuration and must
be made safe. Sometimes a configuration is made inten-
tionally unsafe in order to perform a specific operation.
WARN WHEN UNSAFE periodically reminds the user to
restore the safe configuration.

Applicability

Operating systems; application programs.

Participants

STANDARDIZED SECURITY POLICIES determine what is “safe” and “unsafe.”

Implementation

Systems that currently implement WARN WHEN UNSAFE appear to have each unsafe condition specially
coded and monitored. A more systematic approach would allow each subsystem to register unsafe con-
ditions with a system-wide monitor that notifies the user in a systematic fashion.

It is important to limit the frequency of warnings so that the user does not become habituated to them.

Results

Users who forget about unsafe conditions are reminded to correct them.

Known Uses

The Windows XP SP2 Security Center reminds users when antivirus has been disabled. Clicking on the
reminder brings up the antivirus control panel. Intuit’s Quicken warns users when the database has not
been backed in several days and provides a button which, if clicked, will perform the backup.

References: See the discussion of activation errors in Section 2.2.1.

10.3. PATTERNS FOR PROMOTING OVERALL SECURE OPERATION 347

Distinguish Security Levels

Intent

Give the user a simple way to distinguish between simi-
lar operations that are more-secure and less-secure. The
visual indications should be consistent across products,
packages and vendors.

Motivation

Users can only make informed decisions about security if
they are in fact informed.

Applicability

Any situation in which there is more than one mode of operation which can accomplish similar if not iden-
tical results. For example, file deletion (sanitizing vs. simple unlinking; wireless access (WEP vs. without
WEP); Web browsing (with SSL vs. without SSL);

Participants

Applications; web browsers; operating systems.

Implementation

Web browsers display a “lock” icon when a web page is received over SSL. (They should also indicate if
data sent back to the server will be sent over an encrypted channel.) Email clients can indicate whether
or not mail is downloaded using SSL.

Results

The user can readily determine whether or not security features are enabled.

Known Uses

The SSL “lock” icon; the icons to indicate if email is “signed” or “encrypted.” The Windows Security
Center indicates if anti-virus protection is enabled or not.

	Design Principles and Patterns for Aligning Security and Usability
	User Visibility and Sanitization Patterns
	Identification and Key Management Patterns
	Patterns for Promoting Overall Secure Operation

