CHAPTER 2

Prior Work

Many people believe that software developers have a hard time creating systems that are both
usable and that provide strong security. Many researchers in the newly emergent field of usability
and security (HCI-SEC) claim that security issues have been largely ignored by usability researchers,
and that usability issues having been largely ignored by security professionals.

Section 2.1 shows that HCI-SEC issues, while underplayed, have not been ignored entirely for
the past thirty years. Section 2.2 examines specific rules, techniques and principles that have
emerged in the field of HCI-SEC. Section 2.3 discusses properties, models, and principles that have
been developed for software that aligns security and usability. Section 2.4 discusses some of the
specific techniques that have been identified for creating systems that are both secure and usable.
Section 2.5 discusses prior work on the problem of media sanitization. Section 5.2.1 discusses
prior surveys on security attitudes and email usage. Section 2.6 discusses prior work on regulatory
and other non-technical approaches for aligning security and usability. Throughout this entire
discussion, the reader will note that what has been lacking has been a systematic approach for
taking research on security and usability and moving it into the marketplace. We argue that such
movement has been hampered by the lack of patterns that are specifically designed to aid this
transition.

2.1 Early Work in HCI-SEC

Whitten and Tygar observe in their 1999 paper “we have found very little published research to date
on the problem of usability for security.”[WT99, p.183] In her PhD thesis, Whitten observes that
the computer industry has had substantial success designing web browsers, email clients, and in-
stant messaging systems that are used daily by “people who have very little technical background.
But when similar user interfaces have been created for security, they have had little or no suc-
cess.” [WhiO4a, p.1]

This analysis is largely correct. A review of the history of both the security and usability literature
reveals that while many security researchers have long considered usability issues, and usability

37

38 CHAPTER 2. Prior Work
Saltzer & FIPS 112 Zurko & Simon Leeder
Schroeder Password Usage User-Centered Pitfalls
The Protection 1985 Security 2004
of Information 1996 —
in Computer DoD STD-002
Systems Password Guidelines
1975 1985
Adams & Sasse
R Users are Not The Enemy
Morris & Clark & Wilson 1999
Thompson Commercial vs. Military
Password 1987 l
Security: A Case
History
1979 Reid Whitten & Tygar
. el . Why Johnny Can't Encrypt
Reflections on Break-ins 1999
1987
Karat l
Iterative Usability X
Testing Perrig & Song
1989 Hash Visualization
1999
FIPS 181 i
Password Generator Yee
1993 User Interaction
Design for
Secure Systems
2002
y y y
Vi V V V ‘L V V \g >
1975 1980 1985 1990 1995 2000 2005
O— Diffie-Helman ——» m PEM |
O——RSA ——» m PGP >
O— Certificates ———» V% o0—— SMIME —MMMMMM»
Morris Worm o SSL >

Figure 2-1: A timeline showing some of the significant HCI-SEC literature from the security field.

researchers have long considered security issues, the topic has only rarely received significant at-
tention as a subject of primary study. Further hampering such research has been the fact that
HCI-SEC was not recognized as an independent field. Formal usability tools have rarely been used
to analyze security software in the open literature.

For example, Adams and Sasse correctly note that “[T]o date, research on password security has
focused on designing technical mechanisms to protect access to systems; the usability of those
mechanisms has rarely been investigated.”[AS99] But even though it is true that there were few
published user studies that had investigated the usability of password systems, the usability of such
systems had long been considered.

For example, the 1985 US Department of Defense Password Management Guideline noted that se-
curity was improved by adopting “user-friendly passwords that were easier to remember:”[DoD85,
p-15]

2.1. EARLY WORK IN HCI-SEC 39

A.4 “User-Friendly” Passwords

To assist users in remembering their passwords, the password generation algorithm
should generate passwords or passphrases that are “easy” to remember. Passwords
formed by randomly choosing characters are generally difficult to remember. Passwords
that are pronounceable are often easy to remember, as are passphrases that are formed
by concatenating real words into a phrase or sentence.[DoD85, p.15]

Certainly, work on HCI-SEC has been dwarfed by work in practically every other field of computer
science, computer security, or usability, but to say that there was no work between the time that
Saltzer and Schroeder identified the principle of “psychological acceptability” in 1975 and the
resurgence of interest in security and usability at the end of the 1990s is a vast exaggeration.

2.1.1 Early recognition of the HCI-SEC problem

As noted above, Saltzer and Schroeder identified the need to consider usability as a primary factor
in developing secure systems in their landmark 1975 paper.[SS75] That paper identified eight de-
sign principles for building systems that can protect information: Economy of mechanism; fail-safe
defaults; complete mediation; open design; separation of privilege; least privilege; least common
mechanism; and psychological acceptability. For the last principle, the authors wrote:

h) Psychological acceptability: It is essential that the human interface be designed for
ease of use, so that users routinely and automatically apply the protection mechanisms
correctly. Also, to the extent that the user’s mental image of his protection goals matches
the mechanisms he must use, mistakes will be minimized. If he must translate his image
of his protection needs into a radically different specification language, he will make
errors.[SS75]

In their seminal article on password security, Morris and Thompson wrote that the underlying goal
of passwords is to provide “security at minimal inconvenience to the users of the system.” The
authors conducted a study and found that 2,831 out of 3,289 examined passwords were easy to
find through a dictionary attack. The authors notes that “users could be urged (or forced) to use
either longer passwords or passwords chosen from a larger character set, or the system could itself
choose passwords for the users.”[MT79]

Perhaps the most important lesson of the Morris and Thompson article is contained in the last
paragraph of the paper’s introduction:

“Although the security of a password encryption algorithm is an interesting intellectual
and mathematical problem, it is only one tiny facet of a very large problem. In practice,
physical security of the computer, communications security of the communications link,
and physical control of the computer itself loom as far more important issues. Perhaps
most important of all is control over the action of ex-employees, since they are not
under any direct control and they may have intimate knowledge about the system, its
resources, and its methods of access. Good system security involves realistic evalua-
tion of the risks not only of deliberate attacks but also of casual authorized access and
accidental disclosure.”[MT79, p.594]

40 CHAPTER 2. Prior Work

That is, Morris and Thompson acknowledge that the most intellectually interesting problems to
solve in the area of computer security are not necessarily the questions that are the most relevant
to overall system security! (Of course, the authors then proceed to attack the tiny facet that they
find intellectually interesting.)

Reid considered the issue of security and usability in 1987 and concluded that “programmer con-
venience is the antithesis of security, because it is going to become intruder convenience if the
programmer’s account is ever compromised.”[Rei87] Implicitly assuming that usability and secu-
rity are antagonistic, Reid argued that Unix should be made less usable and more secure:

“UNIX was created as a laboratory research vehicle, not as a commercial operating
system. As it has become more widely used commercially, many of the properties that
made it attractive in the laboratory have created problems. For example, the permission
file mechanism described above lets me easily give my colleagues full access to the files
on my computer. When UNIX systems are installed in non-laboratory applications by
people who are not trained to think about operating system security, however, the same
mechanism that is convenient in the laboratory becomes dangerous in the field. There is
no way to assign fault or blame for these security problems, because if the UNIX system
is used as its designers intended, security is not a problem.”[Rei87, p.104]

Wood et al. relate a story in which a file containing two years worth of research data was inadver-
tently deleted because of a usability problem resulting from wildcard expansion.! Apparently the
research organization had neglected to back up this critical file onto another media. Attempts to re-
cover the file with an “unerase” command failed because the deleted file was so big that it had been
fragmented into many different locations on the disk. Fortunately, two local data recovery experts
working for 70 hours were able to recover the file’s fragments and restore most of the information.
The authors conclude that systems must include provisions for making backups of critical files and
that potentially dangerous commands should have protections.[WBG'87, pp.123-124]

Gong, Lomas, Needham and Saltzer discuss how poorly chosen passwords can be made resistant
to “guessing attacks” through the use of advanced cryptographic protocols. Although this perhaps
seems obvious now, it was not at the time. For example, as the authors note, Project Athena’s
Kerberos system does not have such protections: any client on the network can request a Kerberos
ticket and then mount a guessing attack against this ticket until the correct password is found. After
discussing this flaw, the authors go on to present a series of protocols that do not have this flaw and
are thus resistant against such attacks.[GLNS93] This paper is important because it shows how an
apparently secure protocol—in this case, Kerberos—might need to be hardened to protect against
the way that real systems are used by real people.

This sampling of security literature is not meant to imply that usability has been an ever-present
theme in the history of computer security research: clearly it has not. But it is also incorrect to
argue that the issues of usability have been generally ignored by security researchers.

In the case described, the computer operator had told the computer to erase the file specification “FAULTS* .DBS”
with the intent of erasing the files “FAULTS1.DBS” and “FAULTS2.DBS”, without realizing that the file “FAULTS.DBS”
would also be erased by the wildcard. On this system there was no confirmation for deletions and nor provisions for
easily undoing file system modifications.

2.1. EARLY WORK IN HCI-SEC 41

2.1.2 Work on HCI-SEC from usability researchers
Just as security researchers have long been aware of usability issues, usability researchers have
long drawn on examples from the world of computer security in their writings and research.

For example, Norman’s 1983 article discussing design rules to accommodate user error (see sec-
tion 2.2 below) specifically addresses the question of file deletion and the tension between the
desire to actually erase information to prevent malicious recovery and the techniques that allow
a user to recover a file in the event of accidentally deletion.[Nor83, p.258] (This topic will be
discussed at length in Section 3.6.1.)

In Usability Engineering, Nielsen notes in a somewhat resigned tone that security realities frequently
require that systems be made less helpful than they might otherwise be. His example is password
authentication: it is widely accepted that systems requesting a username and a password should
give users the same feedback whether the username is valid or not. Otherwise, an attacker could
probe the system to determine a list of valid usernames, and then target those usernames for a
password-guessing attack.[Nie93b, p.42]

Nielsen also addresses the issue of file deletion in his book, arguing that operating systems should
not use icons such as a paper shredder to represent file deletion because these icons imply that the
file contents are actually destroyed:

“Users with sensitive data on their disks can therefore not rely on file deletion to safe-
guard their data in cases where others have access to the disk—for example, because
it is sold or sent in for repair. The paper-shredder icon may give users a false sense of
security due to the connotations of physical paper shredders with respect to the destruc-
tion of confidential paper documents. In contrast, the trash-can icon at least implicitly
suggests that others might look through the discarded documents.”[Nie93b, p.128]

Johnson holds up security-related user interfaces as objects of scorn and ridicule in his collection of
the 82 common usability failings that are common in programs with graphical user interfaces.[Joh00]
For example, Johnson describes an application that he oversaw in which the user was presented
with a dialogue that appeared if the session was idle for too long:

Your session has expired. Please reauthenticate.

Johnson commented:

“When users acknowledge the message by clicking OK, they would be returned to the
‘User Authentication’ page. I advised the developers to get rid of the word ‘user,” change
all uses of the term ‘authenticate’ to ‘login,” and increase the automatic timeout of the
servers (since they didn’t want to eliminate it altogether).” [Joh0O, p.206]

But despite this obvious attention to security-related issues both in his book and in his consulting
practice (from which many examples in the book were drawn), the word “security” does not even
appear in the book’s index.

42 CHAPTER 2. Prior Work

Johnson and other usability specialists have long delighted in making fun of the poor interfaces
surrounding the security-relevant parts of systems. The fact that such interfaces are jeered at,
rather than simply ignored, shows that the specialists were frequently thinking about HCI-SEC.

2.1.3 HCI-SEC emerges as a distinct field

While HCI-SEC is not a new field, there is certainly truth to the notion that HCI-SEC has only
recently emerged as an independent discipline. One reason is likely the late emergence of usability
as an academic discipline itself.

Although humans have interacted with computers since the first machines were created, it was
only in the 1980s that the field of Computer Human Interaction emerged as one that was distinct
from other fields of computer science research. The Association for Computing Machinery’s Special
Interest Group on Computer Human Interaction (SIGCHI) traces its history to the ACM’s Special
Interest Group on Social and Behavioral Computing (SIGSOC).

SIGSOC started in 1969, when ACM members who were using computers to further professional
interests in the social and behavioral sciences decided to start their own special interest group.
The first panel presentation on the computer-human interface was probably at the December 1978
ACM Conference in Washington DC entitled “People-oriented Systems: When and How?” The
following year Communications of the ACM appointed an Editor for Human Aspects of Computing.
In February 1982 Allen Newell was an invited speaker at the Computer Science Conference with
the topic: “Human Interaction with Computers: The Requirements for Progress.”[Bor96, p.4]

In 1982 “a conference on human factors in computer systems was planned and conducted by volun-
teers” in Gaithersburg, MD, without support of the parent organization.[Bor96] That year SIGSOC
changed its name to SIGCHI. The first SIGCHI Conference on Human Factors in Computing Sys-
tems, CHI’83, took place in December 1983, with SIG GRAPHICS providing assistance.

Nevertheless, researcher interest in formally studying the interaction of security and usability was
slow to mature. It wasn’t until 1989 that Karat presented her paper “Iterative Usability Testing
of a Security Application” at the 33rd Annual Meeting of the Human Factors Society. [Kar89] Ten
years passed before Whitten conducted her Johnny experiment in 1998. [WT98] The following year
Adams and Sasse published their study of password behavior, Users Are Not The Enemy. [AS99]

Whitten created the “hcisec” mailing list of Yahoo! Groups in May 2000.[Whi00] Andrew Patrick, A.
Chris Long, and Scott Flinn organized a “Workshop on Human-Computer Interaction and Security
Systems” at CHI2003. [PLF03]

In 2004 IEEE Security and Privacy Magazine published a special issue on the topic of Security and
Usability, with contributions by 13 researchers in the field. [BDSG04, YBAG04, Jus04, PKW04,
YeeO4]. Later this year, O'Reilly will publish a volume of edited papers entitled Usability and Secu-
rity, with contributions from more than 50 researchers in the field.[CGO5] So while it is true that
usability issues have long been important to security researchers, and vice versa, it is also true that
the field of HCI-SEC is now well on its way to being a recognized specialty all its own.

2.2. RULES AND PRINCIPLES FOR DESIGNING USABLE SYSTEMS 43

2.2 Rules and Principles for Designing Usable Systems

There are of course no set of rules, principles or formalisms that, when followed, are guaranteed
to produce usable computer systems. If such rules existed, we would almost certainly all be using
them, and the usability problem would be solved.

The most common methodology for building usable systems appears to be a combination of task
analysis followed by an iterative process involving interface redesign and user testing. It is com-
monly accepted that paper prototypes should be employed early in the process because they are
easier to change than code; as a result, test subjects confronted with these prototypes are more
likely to suggest big changes that could represent usability breakthroughs. This is the methodology
described at length by Karat, Brodie and Karat, who argue that the iterative approach dramatically
cut the post-release technical support costs for the application, resulting in a return-on-investment
of at least 10:1.[KBKO5]

But as Cooper points out, simply “iterating until something works” can be wasteful without un-
derstanding the flaws in the current system and having some idea of where you want to be
going.[C0099, p.50] Ideally this kind of navigation is informed through a user-centered design pro-
cess, which evaluates software from the user’s point of view. Zurko and Simon introduced the
phrase “user-centered security” to describe this process applied to security problems.[ZS96]

2.2.1 Norman’s design rules and error analysis

Norman observed in 1983 that many users new to a computer system will make the same com-
mon errors. “Experienced users ... often smiled tolerantly as new users repeated well-known
errors.” [Nor83]

Arguing that errors were probably the result of design flaws, rather than poor training or user
ineptitude, Norman classified errors as being either mistakes or slips. A mistake occurred when a
user’s intended action (the intention) was itself in error. A slip, on the other hand, occurred when
the user’s intention was correct but an error was made in the intention’s execution.

Because mistakes are frequently the result of poor training, Norman’s analysis concentrated on
slips. He classified slips into three categories, each of which he divided into further subcategories.
He argued that many slips with computers arise from either the existence of modes or the inability
of people to correct their errors—that is, actions that cannot be undone.

“People will make errors, so make the system insensitive to them,” wrote Norman. What’s needed,
he argued, is software “safeties” that make irreversible actions difficult, and improved undo systems
so that fewer actions are in fact irreversible.

In applying Norman’s work to the subject of this thesis, one of Norman’s most important observa-
tions is that so-called activation errors can be overcome through the use of memory aids. As Norman
defined the term, an activation error is an inappropriate action being performed or an inappropri-
ate action being activated. Memory aids in the form of on-screen notices, status indicators, or
pop-up warnings can overcome activation errors by activating the correct response. “In many ways
the old saying, out of sight, out of mind, is apt,” writes Norman, who argues that “a good system
design” will give the user visual reminders of actions that need the user’s attention (e.g., partially

44 CHAPTER 2. Prior Work

@ Working Online

VirusScan Enterprise is turned off

<

I
@ Your computer might be at risk |*]

Click this balloon to fix this problem. GP

[#2 Adobe Acroba... i -SecureCRT | g Untitled batch. .. A) 1 v 3:39FPM

s 5 Saturday
st CAWINDOWS... | & Untitled - Hyp... 2/12/2005

Figure 2-2: Microsoft Windows XP SP2 warns the user if their antivirus system has been disabled, an example of a
memory aid.

completed tasks that need to be finished.)

An example of such a memory aid is the task bar status indicator in Windows XP SP2, indicating
that the computer’s antivirus system has been disabled and needs to be re-enabled (Figure 2-2).
In this case the computer’s antivirus system was disabled in order to work with a disk image that
contained several viruses. A few hours later, with the task completed and the antivirus still disabled,
Windows XP displayed a pop-up message to warn of the potential risk.

2.2.2 Nielsen’s heuristics for usability engineering

Nielsen has developed a technique he calls “Discount Usability Engineering” that he argues can dra-
matically improve the return on investment when applied to product development.[Nie89, Nie90,
Nie94] The approach includes a set of “Usability Heuristics” that he employs for evaluating the
usability of interfaces:

e Simple and natural dialogue: Dialogues should not contain information that is irrelevant
or rarely needed. Every extra unit of information in a dialogue competes with the relevant
units of information and diminishes their relative visibility. All information should appear in
a natural and logical order.

e Speak the users’ language: The dialogue should be expressed clearly in words, phrases, and
concepts familiar to the user, rather than in system-oriented terms.

e Minimize the user’s memory load: The user should not have to remember information from
one part of the dialogue to another. Instructions for use of the system should be visible or
easily retrievable whenever appropriate.

e Consistency: Users should not have to wonder whether different words, situations, or actions
mean the same thing.

e Feedback: The system should always keep users informed about what is going on, through
appropriate feedback within reasonable time.

e Clearly marked exits: Users often choose system functions by mistake and will need a clearly

2.2. RULES AND PRINCIPLES FOR DESIGNING USABLE SYSTEMS 45

marked “emergency exit” to leave the unwanted state without having to go through an ex-
tended dialogue.

e Shortcuts: Accelerators—unseen by the novice user—may often speed up the interaction for
the expert user such that the system can cater to both inexperienced and experienced users.

e Good error messages: They should be expressed in plain language (no codes), precisely
indicate the problem, and constructively suggest a solution.

e Prevent errors: Even better than good error messages is a careful design that prevents a
problem from occurring in the first place.

e Help and documentation: Even though it is better if the system can be used without doc-
umentation, it may be necessary to provide help and documentation. Any such information
should be easy to search, be focused on the user’s task, list concrete steps to be carried out,
and not be too large.

Nielsen’s recommendations on “language” and “consistency” are especially critical in HCI-SEC,
where it is common for developers to use terminology that is complex and inconsistent. This is
discussed in Section 8.2. The security-relevance of his “feedback” recommendation was made clear
during the Johnny 2 study (see Chapter 7), in which many users wanted some kind of feedback
from Outlook Express that email sent when the “encrypt” button was pressed would actually be
encrypted.

2.2.3 The Apple Human Interface Guidelines

The Apple Human Interface Guidelines [AppO4a] and Apple Software Design Guidelines [App04d]
stand alone in the computer industry as a single comprehensive document describing a wide va-
riety of aspects of computer-human interaction in a desktop environment. In addition to detailed
chapters on the working of user interface elements such as buttons, scrollers and windows, the
Guidelines has chapters on human interface design principles and philosophy; the development
process; and the importance of guiding the user’s attention through a complex system.

Apple’s guidelines are important because of their breadth of coverage, their quality, and because of
Apple’s longstanding commitment to both usability and “friendliness” towards novice users.

Interviews conducted at Apple Computer on January 12, 2004 with Apple’s security group, the
developers of its Mail application (which includes support for S/MIME), and its Vice President of
Software Technology revealed that Apple places a priority on security that is either invisible or, at
very least, exceedingly easy-to-use. The developers, for example, were particularly pleased with
their work on Apple’s keychain and its authentication panels—two subsystems that are designed to
provide protection against an array of automated attacks while simultaneously conveying benefits
to the user. The developers explained how they had struggled hard with HCI-SEC issues, looking
for ways to align the two apparently disparate fields.

Given such statements on the part of Apple employees, it is surprising that so little of the com-
pany’s user interface guidelines specifically address security issues. For example, the word “secu-
rity” does not appear in the 255-page Human Interface Guidelines at all! The 81-page Software
Design Guidelines has one page discussing security issues—mostly advice to factor out code that

46 CHAPTER 2. Prior Work

requires privileges, to use the Apple Keychain Services to store passwords, and to use the Apple-
provided authentication interfaces. In contrast, searching for the word “usability” in the Human
Interface Guidelines brings the reader to three different sections on the importance of keyboard
shortcuts, icon design, and menu design for improving usability. Searching the Software Design
Guidelines brings the reader to a page on the importance of conducting user testing (with step-
by-step instructions), a section explaining that “aesthetic integrity” can either enhance or detract
from usability, and a plea to use the standard interface elements and only create new ones when
necessary. “Usability testing is essential for determining whether a new element works.”[App04d,
p-29]

Apple does spend some time discussing its security Keychain, a single encrypted storage area for
passwords and other secrets:

“The keychain mechanism in MacOS X adds value because:

e It provides a secure, predictable, consistent experience for users to deal with pass-
words.

e Users can modify settings for all of the passwords as a group (the default behavior)
or set up different keychains for different activities with unique activation settings.

e The Keychain Access application provides a simple user interface for users to man-
age their keychains and their settings, relieving you of this task.”[App04b, p.67]

A more detailed discussion of the Apple keychain can be found in Enabling Secure Storage With
Keychain Services.[AppO4e]

Despite this lack of emphasis on HCI-SEC, the topic appears several times in Apple’s Human Inter-
face Guidelines—even when the examples in the guidelines inadvertently contradict the philosophy
of usability that Apple is trying to convey:

e The triangular disclosure button is used by Apple as an example of helping the user to manage
complexity by hiding information. Interestingly, the example used in the discussion of the
disclosure button is Apple’s Authenticate panel—a system that allows the user to perform
tasks that require privilege without having the user “su” to root or having setuid programs.

The information hidden inside the disclosure triangle apparently has a lower standard of usa-
bility than information that is prominently displayed. In both [App04b, p.37] and [AppO4c,
p.192], the information revealed by clicking on the disclosure panel, shown in Figure 2-3 is
quite cryptic.

e In its description of Alert panels, Apple notes that “In dangerous situations, the default button
may be Cancel but, it should not be the action button and it should not be located in the action
button position.”[AppO4c, p.212]. Interestingly, the illustration that Apple uses to illustrate
this point (Apple’s Figure 11-10) is a screen shot from the Safari Web Browser’s dialogue,
“Are you sure you want to empty the cache storing the contents of web pages.” As will be
discussed in Chapter 4, there are many HCI-SEC problems with this panel, including both its
language and its failure to actually sanitize the web pages that are “emptied” from the cache.

e Apple recommends that when passwords are entered into a text field, “each typed character
s should appear as a bullet, matching the number of characters typed by the user.”[App04b,

2.2. RULES AND PRINCIPLES FOR DESIGNING USABLE SYSTEMS 47

Requested right: system.preferences

Application: /Applications/System Preferences.app

Figure 2-3: The information revealed by the Apple Authenticate panel when the disclosure triangle is clicked. This
means that the program “System Preferences.app” has requested the right to modify the database of system-wide
preferences. The value here to a Macintosh security expert is that a trusted channel is indicating that an application
installed in the /Applications directory is asking for more privileges—rather than some other application, such as
one in the browser’s cache directory. Although this highly granular information is presented to the user, its interpretation
is not discussed in Apple’s documentation.

p.971[AppO4c, p.41] Pressing the Delete key should delete a single bullet. Finally, “when the
user leaves the text field . . ., the number of bullets in the text field should be modified so that
the field does not reflect the actual number of characters in the password.”

Overall, it seems, the usability community has generally done a better job is establishing guidelines,
methodologies, and procedures for achieving their goals than the security community has. Security
practitioners and researchers are well advised to consider the body of usability work—not just to
explore ways that the usability guidelines can be reworked to integrate more secure operations, but
also to look for ways that the specific developer education techniques can be adopted to security.

2.2.4 Federal Information Processing Standards

“Federal Information Processing Standards Publications (FIPS PUBS) are issued by the National
Institute of Standards and Technology after approval by the Secretary of Commerce pursuant to
Section 111(d) of the Federal Property and Administrative Services Act of 1949, as amended by the
Computer Security Act of 1987, Public Law 100-235.”[NIS85]

Two FIPS directly relate to the interaction of usability and security. FIPS PUB 112, Password Usage
Standard,[NIS85] specifies standards for password composition, length and lifetime. The pass-
words specified by this standard are not strong: the standard specifies that passwords shall have a
minimum range of 4 characters and a minimum of 10 possible symbols per character, for a mini-
mum number of 10* (10,000) possible passwords. The standard specifies that passwords should be
changed once a year, passwords for “medium protection requirements” should be changed every
six months, and passwords for “high protection” should be changed every month.

FIPS PUB 181, Automated Password Generator (APG),[NIS93] specifies an algorithm in C based
on the Data Encryption Standard (DES), for creating pronounceable and therefore more easily
remembered passwords. FIPS PUB 181 actually specifies the algorithm in C, but because of export
restrictions in place at the time of the publication and the algorithm’s use of DES, the algorithm
was not distributed in electronic form.

Porter has reimplemented the FIPS PUB 181 algorithm in the Perl programming language.[PorOOb]
Instead of using DES, Porter uses Perl’s built-in random number generator (Figure 2-4).

In general, although the FIPS have been very successful in standardizing encryption algorithms,
it appears that they have not been successful in helping to secure the adoption of usable security
technology.

/Applications

48 CHAPTER 2. Prior Work

o)

% perl RandPasswd.pm —--count 10< /dev/null
ghepevef (ghep-ev-ef)
anckye (anck-ye)
inkilj (ink-il7)
Jjeerea (Jjeer-ea)
fijisung (fij-is-ung)
ciebyegu (cieb-yeg-u)
ojexuno (oj—-ex—-un-o)
hiedilva (hied-ilv-a)
garnufa (garn-uf-a)
rokukiks (rok-uk-iks)

o

o

o

Figure 2-4: Ten randomly generated passwords using a modified version of FIPS 181[NIS93] that appears in [Por00a].

“Definition: Security software is usable if the people who are expected to use it:
e are reliably made aware of the security tasks they need to perform;

e are able to figure out how to successfully perform those tasks;

e don’t make dangerous errors; and

e are sufficiently comfortable with the interface to continue using it.”

Figure 2-5: Whitten and Tygar’s definition of usable security software.[p.170][WT99]

2.3 Properties, Models and Principles for Usable Security

Is there something about security software that makes it fundamentally more difficult to make
usable? This section reviews recent work in the emerging HCI-SEC community that seeks to see if
there are particular properties, models or principles that can be used to understand the interaction
of usability and security.

2.3.1 Whitten and Tygar’s properties of security software
Whitten and Tygar have argued that software with security-related features is somehow different
from other kinds of software. They call such software security software.

Although the researchers do not define what usable software is, they do create a definition for
usable security software. That definition appears in Figure 2-5.

Using this definition, the pair argue that inherent properties in security software make such soft-
ware inherently difficult for user interface design. The names and definitions of these properties,
first presented in [WT99], are renamed and subtly modified in [WhiO4a] and are summarized in
Figure 2-6.

Taken together, these properties can argue for either removing the user from security-critical deci-
sions whenever possible, software modifications to increase the usability of this security software,
or increased user training to make errors and mishaps less likely. After raising and then discarding

2.3. PROPERTIES, MODELS AND PRINCIPLES FOR USABLE SECURITY 49

Property Explanation

The secondary goal property Security is (at best) a secondary goal of users. “People do not

(previously “The unmotivated generally sit down at their computers wanting to manage their

user property”[WT99]) security; rather, they want to send email, browse web pages, or
download software.” [WhiO4a, p.7] “If security is too difficult
or annoying, users may give up on it altogether.”[WT99, p.3]

The hidden failure property It is difficult to provide good feedback for security management

(previously “The lack of feed- and configuration because configurations are complex and not

back property”[WT99]) easy to summarize.

The abstraction property Security policies are usually phrased as abstract rules that are
easily understood by programmers but “alien and unintuitive to
many members of the wider user population.”*[WT99]

The barn door property Once a secret gets out, it’s out. Information disclosure cannot
be reversed. Even worse, there is no way to know if an un-
protected secret has been compromised is being privately circu-
lated by others. “Because of this, user interface design for se-
curity needs to place a very high priority on making sure users
understand their security well enough to keep from making po-
tentially high-cost mistakes.”[WhiO4a, p.8]

The weakest link property The security of a system is like a chain: it is only as strong as the
weakest link. “If a cracker can exploit a single error, the game
is up.”[WT99, WhiO4a]

“Although Whitten and Tygar do not provide an example of the abstraction property, Straub and Baier argue that
“Especially in the field of public-key cryptography and PKI, it is a difficult task to find intelligible yet precise (real world)
metaphors for abstract mathematical objects like key pairs or certificates.[SB04]

Figure 2-6: Whitten and Tygar’s properties that make usability for security software fundamentally different than usability
for non-security software.

the possibility of “making security invisible,” Whitten introduces her two techniques for “making
security usable:” Safe Staging and Metaphor Tailoring.

Several critiques with this part of Whitten’s otherwise excellent contribution will be described in
the remainder of this section.

Critique #1: the term “security software”

The first problem is the use of the phrase “security software.” What is it? Much of Whitten’s
research focuses on email encryption software such as PGP. Clearly PGP is “security software.”
The Johnny study used PGP to manage cryptographic keys and perform cryptographic functions.
But the Johnny study also used the popular Eudora program to actually send and receive email.
Users received a five-minute tutorial in the use of Eudora in an effort to minimize the chances that
usability problems with Eudora would affect her results. So Eudora must not be security software,
at least not for the purpose of Johnny.

But what about Microsoft’s Outlook Express (OE)—is Outlook Express security software? Like PGP,
OE provides facilities for managing S/MIME certificates (called “Digital IDs”) and for sending email

50 CHAPTER 2. Prior Work

that is digitally signed and sealed.

Are Microsoft Internet Explorer and Microsoft Word examples of “security software?” Given the
orientation of Whitten’s research, it is hard to imagine that IE and Word could be considered
security software. But given the number of security problems that have plagued both IE and Word—
including remote attacks and the release of confidential information—it is hard to imagine that they
are not. What’s more, Word has provisions for both encrypting and digitally signing documents.
What about the Palm operating system? In 2001, researchers at the security firm @Stake found
a way to bypass the Palm’s password lockout feature and allow attackers to expose information
that the Palm’s owner had declared “private.”[Kin01] A fundamental flaw such as this in the Palm
system is certainly an example of the “hidden failure property” and “weakest link property.” The
fact that the flaw is the result of a fundamental design error on the part of the Palm’s designers
might be an example of the “secondary goal property” on the part of the designers—when these
designers set out to create a revolutionary handheld computer, security was not their primary goal.

One way to save this term “security software” would be to reinterpret it to apply to the components
of any system that provides security services. Alas, much of the last 15 years of research in the
field of computer security has been aimed at showing that a flaw in practically any part of any
program can have a devastating impact on overall system security. Consider a hypothetical bug in the
Microsoft Windows operating which would cause the string “-R” on a button to be displayed as “-I”,
but only on the first Tuesday in November of each year. Such a bug could have a significant impact
on voting software built on top of Windows and would almost certainly be considered a security
bug. On the other hand, if the term “security software” needs to be expanded to include the entire
graphical user interface library, then it is a hard to imagine what would not be part of the security
system.

It appears that the Whitten/Tygar properties are general properties should not be restricted to
“security software,” but instead should be applied to software in general. As developers have
repeatedly learned in recent years, security suffers when security is not a primary concern—of
developers or users.

Critique #2: the emphasis on disclosure control
Textbooks on computer security typically use terms such as Confidentiality, Integrity, Availabil-

ity and Audit to describe the discipline’s goals.[GS91] The second major problem with the Whit-
ten/Tygar contribution is that the “properties of security software” emphasize disclosure control—
the goal of “confidentiality”— above all others.

Disclosure control is a goal that is fundamentally different from the other goals of computer security
and, in many ways, a goal that is significantly harder to achieve. Disclosure control is indeed hard
for all of the reasons that Whitten and Tygar identify: it is hard to know if a system is properly
configured to prevent private information from being disclosed, it is impossible to know when
information is stolen, and once information is stolen, closing the barn door is no longer relevant—
the data is out.

But is disclosure control the most important goal of computer security? Clark and Wilson argue
that the emphasis on disclosure control comes from the role that military users have played in the
development of computer security requirements. The researchers argue that commercial users have

2.3. PROPERTIES, MODELS AND PRINCIPLES FOR USABLE SECURITY 51

different priorities and requirements, giving goals such as integrity management a higher priority
than disclosure control.[CW87]

It’s easy to understand why the military has focused so heavily on disclosure control. Although
there are surprisingly few areas in which the disclosure of information is an unrecoverable event,
military intelligence is one such an area. If a Russian operative learns the name of a person in the
Kremlin who is on the payroll of the US Central Intelligence Agency, that person will probably be
killed. It is better for a computer system that contains such powerful information to destroy itself
rather than to release this information to an adversary.

On the other hand, few personal or commercial operations require such drastic means to prevent
the disclosure of information. Leder et al. describe Faces, a cellphone-based system that provides
location information to friends and family. The Faces system keeps a log of what kinds of disclosures
are made—for example, telling Tina’s mother that Tina and her friends went to the mall after
school—and then gives the user a control for blocking such disclosures from happening again in
the future:

“Some might object to the Faces disclosure log by claiming that informing the user about
a disagreeable disclosure after the fact is too late to be useful. While this may apply to
highly sensitive disclosures, a significant component of privacy maintenance is the reg-
ulation of mundane disclosures over time to influence observers’ historical, evolving
impressions of one’s self. People are remarkably capable of finessing the consequences
of the occasional—and inevitable—disagreeable disclosure, and they learn to minimize
repeat occurrences. The Faces disclosure log was intended to help users transfer such
iterative behavior refinement to the domain of the sensed environment.”[LHDL0O5] (em-
phasis in original)

Although it is unfortunate and costly if a database containing thousands or millions of credit card
numbers is stolen, many opportunities exist to recover from such an event. For example, the stolen
credit card numbers can be monitored with increased vigilance for evidence of fraud. Alternatively,
the credit-card numbers can be canceled, for instance, and new credit cards can be issued to the
affected consumers. The disclosure of RSA Security’s RC2 and RC4 algorithms in the 1990s did
not stop the company from successfully asserting trade secret status of the algorithms and stopping
their incorporation into the products of companies that had not obtained licenses for them—at
least for a period of time until there was no longer an incentive for RSA to be licensing proprietary
encryption algorithms.

Whitten argues: “As with safeware, computer security users must avoid making a variety of dan-
gerous errors, because once those errors are made, it is difficult or impossible to reverse their
effects.”[WhiO4a, p.6] This statement is hard to reconcile with Matt Bishop’s statistic that “configu-
ration errors are the probable cause of more than 90% of all computer security failures”[Bis96]—a
statistic that Whitten cites. Configuration errors, when they are made, can persist for many weeks
or months without being exploited. Yet once discovered, they can be readily corrected.

Configuration errors can result in a number of different kinds of security problems. Some, like
disclosure, can be exploited without detection. But others, such as assaults on integrity, can be

52 CHAPTER 2. Prior Work

readily detected through integrity management tools such as Tripwire.[KS94] Sometimes reversing
a configuration error is as simple as re-enabling one’s own antivirus protection.

Although the discussion of disclosure control is interesting and important, by ignoring other impor-
tant goals of computer security, Whitten and Tygar miss the opportunity to identify other properties
of software that make it difficult to align security and usability.

Critique #3: the case against making security invisible
Before she can discuss techniques for “Making Security Usable” (the title of her dissertation) Whit-
ten briefly discusses and then discards another approach: “Making Security Invisible.”

To the uninitiated, making security invisible certainly sounds like an attractive approach. Program-
mers should work hard to make the system always do the right thing, and eliminate the possibility
of any security problem. Unfortunately, she writes, making security invisible is a tempting but un-
workable proposal. “In practice, making a particular component of security invisible will often lead
to a different set of security risks, equally as serious as any that were prevented.”[WhiO4a, p.8]

Instead of making security invisible, Whitten argues that it is better to teach users to manage their
own security. Her thesis contains four such arguments supporting this cause:

1. The argument for making security invisible is “self-perpetuating: if security is hidden from
users, then users will remain ignorant about security technology, and their continuing igno-
rance will be used to justify continuing to hide security from them.”

2. The argument for making security invisible contains a conflict-of-interest on the part of man-
ufacturers: “to argue that users cannot manage their own security is to argue that software
manufacturers must manage users’ security for them. Those same software manufacturers of-
ten have a strong financial interest in collecting data on users’ habits, actions and preferences,
and in privileging their own software over that of competitors in matters of access control. To
put them in control of the very security policies that are intended to guard user privacy and
resources is thus to put the fox in charge of the henhouse.”

3. Telling users that security should be invisible because visible security will annoy users is both
a self-perpetuating and “risky” argument “in which software manufacturers make security
invisible, despite the risks that creates, market their products as protecting user security,
and thus generate and support a widespread user expectation that security can be provided
invisibly.”

A telling footnote in her thesis elaborates on this point:

“This phenomenon was frequently observed during the software user testing that will be
described later in this dissertation; when presented with a software program incorporating
visible public key cryptography, users often complained during the first 10-15 minutes of the
testing that they would expect “that kind of thing” to be handled invisibly. As their exposure
to the software continued and their understanding of the security mechanisms grew, they
generally ceased to make that complaint.”[WhiO4a, p.11, footnote]

4. Security should not be made invisible until there are better tools for assessing the success
of such designs. “We need to be wary of assuming success based on a lack of negative
feedback.”[WhiO4a, pp.10-11]

2.3. PROPERTIES, MODELS AND PRINCIPLES FOR USABLE SECURITY 53

1. If a user action in the application depends on a particular security function for protection, and
there is any possibility that the security function may sometimes not be able to be executed,
then, in the case that the security function cannot be executed, one of the following clauses
MUST be met:

a. The user action MUST be completely disallowed, both inside and outside the application.

b. Or, the lack of protection for the user action MUST be made visible to the user, and tools
for remedying the problem that prevents the execution of the security function SHOULD
be made available to the user.

2. If a security policy in the application determines who is granted access to resources that the
user owns, then both of the following clauses apply:

a. That security policy MUST be made visible to the user.
b. Tools for modifying that security policy SHOULD be made visible to the user.

Figure 2-7: Whitten’s rules for making security invisible[Whi04a, Figure 2-2, p.9]

The argument for making security visible and managed by the user is not surprising, given that
Whitten’s dissertation presents a system designed to teach the fundamentals of public key cryp-
tography. These arguments seem similar to those of a mathematics teacher arguing that students
should learn how to perform long division rather than relying on handheld calculators. Yes, it is
intellectually interesting and perhaps even important to learn long division, but most people rely
on their calculators, even though most calculators present quotients as truncated decimal represen-
tations rather than as rational numbers or repeating decimal fractions.

The problem with these rules is that they assume that users will always make decisions correctly:
security cannot be made invisible if there is a chance that the automatic system will make a mistake.
But what if there is a class of attacks against which machines consistently make better judgments
than humans? In these cases, it may make more sense to make the security policy and decisions
visible, but not to allow the policy to be modified.

2.3.2 Yee’s Actor-Ability model
Yee notes that secure usability is a system property, observing that “correct use of software is just
as important as the correctness of the software itself:”

“[T]here is nothing inherently incorrect about a program that deletes files. But when
such a program happens to delete files against our wishes, we perceive a security viola-
tion. In a different situation, the inability to command the program to delete files could
also be a serious security problem.[Yee03]

What is at issue, Yee argues, is not the mere abilities of a program or a process, but how those
abilities compare with the expectations of the user.

This insight is the basis of Yee’s Actor-Ability Model [Yee02, Yee03], which he uses to describe the
apparent conflict between the way that users expect their computers to operate and the ways that
they can actually operate.

54 CHAPTER 2. Prior Work

If:
actors A = {Ag,A1,..., A}
perceived abilities P = {Py, P1,...,P,}
real abilities R = {Ry, Ri1,..., Ry}

Then the no surprise condition requires that:

Po gRo and
P, D R; fori >0

Figure 2-8: Yee’s No Surprise Condition states that the computer user should be more powerful than she imagines, and
that all of the software running on the computer should be less powerful than she imagines.

The Actor-Ability Model is based on the capabilities available to the discrete actors resident on the
user’s computer. The computer’s primary actor, Ay, is the computer’s user. But all computers have
other actors—programs like Microsoft Word, and web browsers—which are capable of their own
actions. Yee calls these actors A ... A,.

Yee proposes that there are a set of perceived abilities that the user believes each actor 7 can perform,
which he calls P;. He notes that the range of actions available to the actor doesn’t necessarily match
the range of actions that the user believes the actor is capable of: he defines the range of actions
that the actor can actually perform as R;. He then argues that there is a no-surprise condition
(Figure 2-8) that is true when the user is more powerful than she realizes and the other actors on
the system are less powerful than she believes.

Using this model as a basis, Yee developed a list of ten “suggested principles” or “goals” for “secure
interaction design.” He divides these principles into Fundamental Principles, Actor-Ability State,
and Input and Output principles. In [YeeO5a], he augments each goal with a test that can be used
to determine if the goal is realized in a piece of secure, usable software. These goals are not the
result of a systematic investigation, but are instead based on discussion with “security experts about
their experiences designing software that had to be both usable and secure.” Yee’s goals appear in
Figure 2-9.

Many of Yee’s goals cannot be accomplished on today’s Windows or MacOS-based computers. For
example, Ye and Smith [YS02] note that today’s browsers make it possible for a hostile web site
to use a combination of JavaScript and loadable images to simulate an entire web browser user
interface, complete with address bar, pull-down menus, bookmarks, and even the SSL lock or key
icon. As a result, they argue, creating a trusted path between the web browser and the user requires
extraordinary measures. An approach that they suggest is a constantly changing visual context that
is inaccessible to the spoofing web site. Another approach would be a shared-secret between the
browser and the user—for example, a trusted icon or photograph created by the user and displayed
by the browser.

Some of Yee’s goals are in fact achieved in today’s operating systems — although perhaps not in
Windows. For example, the so-called Document-Modal Dialogs (Sheets) in MacOS X satisfy Yee’s

2.3. PROPERTIES, MODELS AND PRINCIPLES FOR USABLE SECURITY 55

Fundamental Principles

Safe Path of Least Resistance Is the most comfortable way to do any task also the safest way?

Relevant Boundaries Does the interface draw distinctions along boundaries that matter for
the user’s task?

Actor-Ability State

Active Authorization Is the user’s access given out without the user’s active consent?

Visibility Can the user view the authority relationships that affect security deci-
sions?

Revocability Can the user revoke access that he or she previously granted?

Accurate Expectation of Ability Does the interface cause the user to overestimate his or her own abili-
ties?

Input-Output Principles

Trusted Path Is the user’s communication channel to an authority-manipulating agent
vulnerable to interception or impersonation?

Identifiability Can objects or actions have misleading or confusingly similar names or
appearances?

Expressiveness Are users given the means to express safe security policies in terms that
fit their tasks?

Clear Consequences Is the user aware of the consequences of authority-manipulating actions

before they take effect?

Figure 2-9: Yee’s Goals for Secure, Usable Software

Identifiability and Clear Consequences requirements, by clearly indicating which document window
will respond to the buttons clicked on the modal dialog.[App04b]

Yee goes on to argue that one of the most common security violations today—the propagation of
e-mail attachment viruses—do not obviously violate any security policy. “The e-mail client correctly
displays the message and correctly decodes the attachment; the system correctly executes the virus
program when the user opens the attachment. Rather, the problem exists because the functionally
correct behavior is inconsistent with what the user would want.”

According to Yee, the fundamental problem with today’s operating systems is that programs run
with the user’s full set of capabilities that may be applied to any object under control of the user.
An alternative is to restrict application capabilities to a small set of objects that are designated by
the user through some kind of trusted channel. This approach will be discussed in Section 2.4.4.

Yee’s created his principles by considering the problem of computer viruses. Although they work
well in this space, it is more difficult to apply them to other security requirements such as Audit or
Availability.

2.3.3 Lederer et al.’s “Five Pitfalls in the Design for Privacy”

Lederer et al. have identified five “pitfalls” in the design of applications that are designed to protect
privacy. These pitfalls were discovered while working on a program called “Faces” which controls
the presentation of personal information in a ubiquitous computing environment. In [LHDL04]
and [LHDLO5] the authors generalize their collection of “pitfalls” and cite examples from other
privacy-enhancing tools.

56 CHAPTER 2. Prior Work

The pitfalls that Lederer et al. identify include:

e Obscuring potential information flow. Many systems that maintain and attempt to protect
personal information do a poor job explaining when the potential for information flow exists.
“Making the scope of a system’s privacy implications clear will help users understand its
capabilities and limits. This in turn provides grounds for comprehending the actual flow of
information through the system.”

For example, Internet Explorer’s control panel allows the user to set a degree of privacy
protection, but the meaning of Microsoft’s scale—from “Low” to “High”—is not clear to many
users. Second, even though the control appears on a system control panel, it in fact only
applies to Internet Explorer’s management of browser cookies—and not even to other privacy
issues in the browser, such as the cache or the history of visited sites.

e Obscuring actual information flow. Many systems do not make clear what information is
being conveyed to whom. For example, web browsers do not tell users about the existence
of cookies and web bugs, let alone report when these devices are used to report personal
information from the user back to the primary or a third-party web site.

e Emphasizing configuration over action. Systems exhibit this pitfall in two ways. First, many
users are unable to clearly articulate their privacy needs in advance: few have ever been asked
to do so. Second, even if users could predict their future privacy preferences, users are then
forced to specify those preferences in detail using some kind of rule-based logic that is far
removed from the day-to-day task of using a computer and then being frustrated by a privacy
(or security) setting.

e Lacking coarse-grained control. Users frequently want a simple, obvious control that they
can use to “make it safe” or “make it private”—even if pressing this button results in making
their computer generally unusable. One obvious way to do this with today’s computers is
by turning off the power or by pulling out the network cord. Zone Alarm provides a more
elegant way of doing this: a button, accessible from the Windows toolbar, which logically
disconnects the network.[BerO5b] A simple coarse-grained control for digital cameras is a
mechanical shutter, as discussed in Section 9.2.1 on page 304.

¢ Inhibiting established practice. Society and individuals have developed techniques for pro-
viding privacy and security: systems should support these practices, but frequently inhibit
them. Examples of such practices include plausible deniability, “whereby the potential ob-
server cannot determine whether a lack of disclosure was intentional,” and the disclosure
of ambiguous information such as pseudonyms and imprecise location. Lederer et al. note
that “Technical systems are notoriously awkward at supporting social nuance.” Examples of
systems that fall into this pitfall are location-based tracking devices which always disclose the
user’s location. An example of a system that preserves such nuance are instant messing sys-
tems that allow a user to avoid responding to an invitation to chat without having to explain
why.

2.3.4 The danger of hyperconfigurability

Sometimes approaches that are intended to promote both security and usability result in the re-
verse. Section 9.4 makes the argument that an over-indulgence in configuration options has actu-
ally made it harder to achieve either goal. Although this is a result that seems obvious to many

2.3. PROPERTIES, MODELS AND PRINCIPLES FOR USABLE SECURITY 57

people, there seems to be surprisingly little academic work on the direct impact of hyperconfigura-
bility.

Zurko [ZurO5a] describes how the database ACLs used by the Lotus Notes/Domino server were
made made more complex over time in response to pressure from customers and standards com-
mittees. According to Zurko, the original Domino database ACLs were quite simple. “The general
approach here and elsewhere was to provide something basic, secure and usable.” The system
provided a single list of users and groups who had access to the database; each user could be given
one of nine different access “levels” on a scale form “No Access” to “Manager.”

Over time, however, customers have requested the ability to create “custom access levels.” Although
this is a useful idea in principle, Zurko writes, “each customer has its own notion of how fine grained
permissions should be allocated across their organizational roles.”

To provide for greater flexibility, Lotus layered support for the LDAP ACL standards developed by
the IETF[WKH97], resulting in “a substantial increase in complexity over what we had provided
before.”

Realizing that fine grained control ‘might present usability problems, Lotus conducted a test of four
experienced Notes administrators to see if they could complete thirteen tasks making use of the
extended ACLs (xACLs). Although some straightforward user interface problems were fixed and
addressed as a result of the user test, the experienced users nevertheless had difficulty auditing the
fine-grained permissions provided by the xACLs. Writing about a test that involved auditing the
xACLs, “only one of the four test subjects was able to complete that task successfully.”

Rather than remove support for xACLs from the product, Lotus added a button labeled “Effective
Access” to the user interface “to help with that confusion.” The button determines what accesses a
specific individual or group will have to the database.

Jendricke and Markotten discuss the issue of hyperconfigurability in [JtMOO]. Arguing that Internet
Explorer’s “low-medium-high” settings are too coarse to provide useful control, and that few users
have the knowledge necessary to configure IE’s “custom security settings,” the authors instead
argue for the creation of an “identity manager” that interposes itself between the user’s computer,
the outside world, and all data stored on the system. This identity manager (Figure 2-10) has a
task-oriented user interface (Figure 2-11) that keeps track of the role that the individual is playing
and ensure that only the appropriate personal information will be shared with the appropriate
web-based entities.

Cooper argues that the temperament of most programmers is to add controls. Without a strong
manager, controls tend to proliferate. [C0099, p.96] Indeed, experience has shown that even user
interfaces that were deliberately made simple, such as those on the Macintosh and the Palm oper-
ating system, have become dramatically more complex with each successive product release.

2.3.5 Security engineering with patterns

There is a small but growing body of work that applies design patterns to security engineering.

58 CHAPTER 2. Prior Work

Appl: Netscape Communicator URL: www.securitygate.de
= |
Your current ID: Shopping-ID ¥ N
User Interface Your current ID: Shopping-ID" ¥ e
- WWWI Peter Smith Signing i
Ports 3, Main Street . =
- 'de"my WEREGED ’— Oakland, California 94999 o My partner signs
peter@securitygate.de @ | get an acknowledgement
of receipt i
T Credit Card: 0342-3762-3431-1234 <
<>
Personal SR Credit Card: 0342-3762-3431-1234 N
Change ID Personal Data
Shopping-ID = New ‘ ¥ Name
Interface for Generic Security Mechanisms Default-ID .
| Shopr)ing—ID — Nickname[|
PGP | | X509 | | mIx | New ID PPY] | & Address
) Signing B Email
I'sign Telephone
. . ¥ My partner signs Account No.
Figure 2-10: The structure of the Jendricke/Markotten I get an acknowledgement Crodit Card N
. i .
iManager, from[JtMOQO, fig. 8]. Reprinted with permis- of receipt = Lreditbard To.
sion. My partner gets an) Social Security No.
acknowledgement of receipt

Figure 2-11: The iManager prototype user interface,
from[JtMOO, fig. 9]. Reprinted with permission.

The formal study of design patterns

It is generally recognized that the formal study of patterns themselves as a tool for design was
initiated by architect Christopher Alexander in his books The Timeless Way of Building[Ale79] and
A Pattern Language: Towns, Buildings, Construction.[AIS77] Alexander found that common archi-
tectural techniques—for example, an alcove with a window and a window seat—could be identi-
fied, evaluated, and even decomposed into smaller patterns. Alexander coined the phrase pattern
language to mean a collection of interrelated design patterns that work together to accomplish a
specific aim.

Schumacher traces the introduction of patterns into object-oriented design through the work of
Ward Cunningham and Kent Beck, who experimented with design patterns in 1987 while working
on a user interface consulting job.[SchO03b, p.12] This work was presented at the ACM OOPSLA
Conference and published in a technical report.[BC87] Coad took up work and wrote an article
popularizing the pattern-based approach.[Coa92]

Patterns took hold at the OOPSLA workshops organized by Bruce Anderson in 1991 and 1992. It
was at these meetings that Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides—the
so-called Gang of Four (GoF)—met and began working together. They began by collecting patterns
and best practices in C++ and object-oriented programming, and ultimately published the textbook
Design Patterns: Elements of reusable Object-Oriented Software.[GHJV95]

In August 1993 Kent Beck and Grady Boch organized a retreat in Colorado and formed the Hillside
Group, which has become the leading force in the movement to integrate design patterns with
object-oriented programming. The Group sponsored numerous gatherings that investigated the
use of patterns, including the first Pattern Language of Programs (PLoP) conference.[Hil05]

2.4. SPECIFIC TECHNIQUES FOR ALIGNING SECURITY AND USABILITY 59

Security patterns

There have been limited efforts in applying the patterns approach to computer security. The most
significant contribution to date is Schumacher’s treatise, Security Engineering with Patterns: Origins,
Theoretical Model and New Applications[Sch03b]. Based on Schumacher’s dissertation,[Sch03a] this
book starts with a history of patterns and pattern ontologies. Schumacher then analyzes the secu-
rity process, techniques used for improving security, and a security-specific ontology. Although
Schumacher does have a chapter on usability, the chapter merely argues that usability is important
for security. Finally he presents foundations of security patterns, a theoretical model for creating
security patterns, and an example of ways that these patterns can be employed. Although com-
prehensive from a theoretical point of view, this work suffers from a lack of specific patterns that
practitioners can use to actually improve the security of real-world systems.

While Schumacher devotes an entire chapter to the subject of usability and security—Chapter 4,
“The Human Factor”—at no point does the book present a pattern for simultaneously improving
security and usability. True to its title, Security Engineering with Patterns is a thorough treatment of
how to do conventional security engineering with patterns—but it is security engineering from the
point of view of security researchers who acknowledge the importance of the human factor, and
then proceed to ignore it.

Others who have applied patterns to security engineering includes Mouratidis et al. , who have
developed security patterns for agent systems[MGS03]; and Blakley et al. , who authored the book
Security Design Patterns for The Open Group.[BHmMO04]

2.4 Specific Techniques for Aligning Security and Usability

This section reviews some of the techniques that have been identified for aligning security and
usability. Many of the techniques in this section draw on the models and principles presented in
the previous section.

2.4.1 “User-Centered Security” (Karat, Zurko, Simon)

Perhaps the most straightforward approach to aligning security and usability is to use a traditional
user-centered design approach to develop both the non-security aspects and the security aspects
of user-facing software. Karat pioneered writing about this approach, if not the approach itself,
in her 1989 article “Iterative Usability Testing of a Security Application”[Kar89]—a paper that
was significantly presented at the annual meeting of the Human Factors Society, rather than at a
security conference. In this paper Karat describes how traditional human factors engineering of an
IBM mainframe application, including user interviews, paper mock-ups, and the use of prototypes
in user studies, resulted in substantial tech support savings and enhanced user acceptance.

Eight years later Zurko and Simon formally introduced the term “user-centered security,”... “to refer
to security models, mechanisms, systems, and software that have usability as a primary motivation
or goal.”[ZS96] Arguing that “users will not purchase or use security products they cannot under-
stand,” they proposed a framework by which security researchers could return to the emphasis on
usability that Saltzer and Schroeder had set forth in 1975.[SS75]

60 CHAPTER 2. Prior Work

€ Making yourself a key pair

Making yourself a key pair

Each person who wants to use secure electronic mail needs at least one key pair. A key pair
looks like this:

' 2~ Secret key
Key pair‘ { ﬁl

- Public key

Each half of a key pair iz a key. The black half iz the secret key, and must be kept secret.
No-one but you should ever have access to your secret key.

The white half iz the public key. It doesn’t matter who sees your public key; in fact, you
should give your public key to everyone you know. Lime will show you the right way to
do that.

Right now, you just need to make a key pair for yourself, by choosing one of the three
options below and then pressing the OK button.

Fleaze choose one of theze options and press OK:
% Create a basic key pair for my Lime user name

" Create a custom key pair using advanced options

" Load an existing key pair from a file

Cluit |

Figure 2-12: The “Making yourself a key pair” screen from Whitten’s “Lime” public key encryption simulation appli-
cation demonstrates Safe Staging and Metaphor Tailoring, the two techniques that Whitten developed as part of her
dissertation. [WhiO4a] Used with permission.

2.4.2 “Safe Staging” (Whitten & Tygar)

Whitten and Tygar’s CHI2003 workshop presentation [WTO03] introduced a technique called safe
staging, refined in Whitten’s dissertation, “that can be used to structure a user interface so that
users may safely postpone learning how to use a particular security technology until they decide
they are ready to do so.” [Whi03]

Safe Staging is a reaction to the user interface of PGP 5.0, which Whitten and Tygar criticize for
providing tools without explanations. Safe Staging is implemented as a series of help screens that
appear when the user attempts to create a new key; at this point the program provides documen-
tation and gives the user the choice between creating a key pair, creating a “custom key pair using
advanced options” (one with higher levels of security), and loading an existing key pair from a file.
Figure 2-12 illustrates Whitten’s Safe Staging concept.

2.4.3 “Metaphor Tailoring” (Whitten & Tygar)

Metaphor Tailoring is the second “specialized user interface design technique” that Whitten and Ty-
gar developed. Presented in Whitten’s dissertation, “Metaphor tailoring uses conceptual model
specifications that have been augmented with security risk information to create visual repre-
sentations of security mechanisms and data that incorporate as many desirable visual cues as
possible.”[WhiO4a, p. iii] Metaphor tailoring is best illustrated by Whitten’s key pair diagram with

2.4. SPECIFIC TECHNIQUES FOR ALIGNING SECURITY AND USABILITY 61

the black secret key and the white public key that fit together with Ying-Yang handles, as shown in
Figure 2-12.

2.4.4 “Security Through Designation” (Yee)

Yee argues convincingly that many of the issues regarding the access to resources by actors on
a computer system can be overcome by giving most actors a minimal set of abilities and then
expanding this set item-by-item in response to user actions.[YeeO5b]

For example, Yee is critical of the way that programs such as Microsoft Word open files on today’s
desktop operating systems. Briefly, programs run by the user have the ability to read or write any
file belonging to the user. Thus, when the user wishes to open a file, the following sequence of
actions takes place:

1. The user choose the “Open...” command from the “File” menu.

2. Microsoft Word instructs the operating system to display an “Open” dialogue.

3. The user selects the file that is to be opened.

The “Open” dialogue returns the name of the file to be opened to Microsoft Word as a string.
Word uses the OpenFileEx () Win32 API to open a file.

Word reads the file contents using ReadFileEx ().

N o gk

Word closes the file with CloseFile () when it is finished.

The problem with this approach is that there is nothing to stop Word from opening a different file
on the user’s hard disk; indeed, there is nothing to stop Word from opening every file, scanning for
confidential information, and then posting this information to a web site in another country.

An alternative formulation that Yee proposes would remove from Word the ability to open a file by
name. Instead, the application would only be able to access files that were opened by the operating
system and were then presented to the Word application in the form of a file handle. Thus, the new
sequence of actions would look something like this:

1. The user choose the “Open...” command from the “File” menu.

2. Microsoft Word instructs the operating system to display an “Open” dialogue.
3. The user selects the file that is to be opened.
4

. The “Open” dialogue returns a file handle of the already-opened file to the Microsoft Word
application.

5. Word reads the file contents using ReadFileEx ().

6. Word closes the file with CloseFile () when it is finished.
The advantage of this approach is that the word processor would be unable to open a file that was
not specified by the user. (In such a system, Word would need to be given read-write access to

a directory where preferences, templates, and other kinds of long-term persistent information is
kept.)

62 CHAPTER 2. Prior Work

Yee’s chapter makes other observations on how security by designation could be easily incorporated
into today’s existing systems. For example, closing a window is a simple act of revocation that
seems implicitly clear to most users: when a document window is closed, the program has lost
its authority to access the contents of the document. If the program’s main window is closed, the
program has lost authority to continue executing and should terminate.

2.4.5 “Rolling Blackouts” for password entry (Tognazzini)
Password entry has been a persistent usability problem for more than four decades. Passwords, by
their nature, need to be entered perfectly in order to be used, yet need to remain secret.

Multi-user systems that ran on half-duplex printing terminals in the 1960s always printed what the
user typed on the paper, leaving an indelible record. To prevent a user’s printout from compro-
mising his or her account, operating systems that used these terminals would prepare a password
entry area by overprinting multiple symbols in a single spot. Typically, these systems would com-
bine characters such as the *, M, W, and O, resulting in 8 black boxes over which passwords could
be typed.

Full-duplex printing terminals can disable character echo altogether when passwords are typed.
This is the approach that many operating systems took in the 1970s when such terminals became
available. Although it was not strictly necessary to disable password display on video terminals,
this was commonly done as well because of the so-called “shoulder surfing” problem: users didn’t
want their passwords echoed on the screen where they might be seen by another person sitting at
the terminal.

An alternative approach popularized by many web browsers in the 1990s is to echo passwords as a
series of dots, one dot for each character typed. This allows the user to confirm each character typed
has been received by the computer, but doesn’t allow a nearby attack to observe which character is
being typed from the screen. An attacker can, however, determine how many characters are in the
password.

Apple’s Human Interface Guidelines states that each character of the typed password should appear
as a bullet, but that when the user leaves the password field the field should be filled with as many
bullets as will fit, in order to obscure password’s length.[App04c]. This behavior is confusing to
some people, however.

Tognazzini presents yet another alternative for improving the typing of passwords: the rolling
blackout. Tognazzini’s password field shows the last three password characters typed using low-
contrast light gray characters on a white background. When the fourth character of the password
is typed, the first character is changed to bullet. Testing found that this compromise allowed users
to visually verify and correct their passwords, but still prohibited shoulder-surfing.[Tog05]

2.4.6 Hash visualization and graphical authentication (Lotus, Perrig and Song)

It is desirable to give users some sort of visual indication that the password they have typed is
actually the password that they intended to type. This is especially important for systems that
will lock out user accounts when an incorrect password is attempted on multiple occasions. Early
versions of Lotus Notes included a system the designers called “password hieroglyphics.” As the

2.4. SPECIFIC TECHNIQUES FOR ALIGNING SECURITY AND USABILITY 63

Enter Password

Enter Password

E E Enter the paszword for Ken Moore/Groove:
% E “ Cancel
(a)

Wn qq Enter the password for Ken Moore/Groove:
Cancel
§§ hoooooo00000000et
(b)

Figure 2-13: The so-called “password hieroglyphics” in the Lotus Notes client allows the user to see a visual hash of the
password that has been entered. The hope is that users will learn their password icons and be able to tell in advance if
the password that they have typed doesn’t match before they press the OK button.

Lotus Notes

Password [X000000000000MKO0N] 0K
Faoruser. Mam Ellen Zurko/westiord | B
Cancel

Figure 2-14: In Notes 6 the password hieroglyphics
were replaced with a more culturally sensitive key-
chain display.

License Wizard g|

— Enter your Name and Company precisely as they appear in your
@z—_- registration letter. Copying and pasting from the registration letter into the
license fields is the easiest way to do this.

Mame: Checksum
|Simson L. Garfinkel D88
Compary:

|MITI D03D

When you have entered the requested data, the checksum value has to
match the value in the registration letter. I it does not, compare your
entered data to the registration letter.

< Back | Nex = | Cancel |

Figure 2-15: The Secure CRT license wizard displays
a checksum of the user’s typed Name and Company
to facilitate correct entry of these items.

user typed each key of the password, a hash of the typed letters is computed and used to display a
set of four glyphs, as shown in Figure 2-13.

In the latest release of Lotus Notes the hieroglyphics have been replaced with a more culturally
sensitive display based on a set of cartoons, as shown in Figure 2-14. These can be combined to
generate a large number of different password hashes, as shown in Figure 2-16.

Displaying a hash or checksum of what the user types is a useful technique whenever information
must be typed precisely. The popular Secure CRT virtual terminal program uses a license manage-
ment system where license strings are keyed to the exact spelling of a person’s Name and Company.
To facilitate proper entry, the program displays a “Checksum” of the user’s typing to the right of the
input field, as shown in Figure 2-15.

Perrig and Song propose using these kinds of visualization techniques to allow people to visually
compare the hashes associated with cryptographic keys. The reason is that it is relatively easy for
an attacker to create a key that has a chosen set of hexadecimal digits at the beginning and at
the end as a target key but which differs in the middle. It is possible, the pair asserts, that many
human beings will think that the fingerprints F1=51:86:E8:39:87:87:F3:87:83:10:AA:87:
35:98:E0:AA and F»=51:86:E8:45:88:F0:F3:F9:F3:31:99:33:5F:98:E0:AA are the
same, when in fact they are different.

51:86:E8:39:87:87:F3:87:83:10:AA:87:35:98:E0:AA
51:86:E8:39:87:87:F3:87:83:10:AA:87:35:98:E0:AA
51:86:E8:45:88:F0:F3:F9:F3:31:99:33:5F:98:E0:AA

64 CHAPTER 2. Prior Work

Figure 2-16: A selection of 14 visualized password hashes from the Lotus Notes 6 Client. Different bits of the hash
appear to select different keychain fobs (e.g., a ball, a tag, etc.), the coloring of the fob, the number of keys, and
the placement of those keys. Although Lotus has apparently not documented the algorithm or the visual keyspace, it
appears that at least 232 different keychains can be displayed from the variety present in these 14 images. Courtesy
Henry Holtzman, MIT Media Lab. Reprinted with permission.

Instead of using computer-generated cartoons, Perrig and Song use random “art” that is generated
using a set of mathematical functions that are controlled by a set of parameters (Figure 2-17).
The idea is to use the hash to specify the parameters: in these sorts of chaotic systems, very small
changes can have very large effects. The pair also suggest that palettes of computer generated art
can be used as the basic building-block of a picture-based authentication system.[PS99]

Widespread use of random art for hashes has a number of potential problems, as Laurén noted in
a recent posting to the HCI-SEC mailing list:

e If random art is used as the primary visualization, it is important that all possible values be
distinguishable: no two different hashes can have representations that are visually indistin-
guishable.

e Reproducing visual hashes on business cards might be problematic.

e Individual and corporations might be concerned if the visualizations of their identifiers or
keys are not aesthetically pleasing or that do not match the color schemes employed by the
key holder’s web site.[Lau05]

There are also concerns that the random art might not look truly different for different hash values.
If true, then it might be possible for an attacker to create two very different keys that nevertheless
have very similar, and possibly indistinguishable, visual hashes.

Some of these concerns could can be overcome if a strong visual hash algorithm were standardized.
Such an algorithm would presumably not have the collision problem. Furthermore, an organization
could keep creating new public keys until it found one with an attractive hash representation.
On the other hand, an organization that changed the color scheme of its web site might wish to
simultaneously change the its public key to match the new scheme; such changes would defeat the
purpose of human-verifiable hash visualizations in the first place!

2.4.7 “Instant PKI” (Balfanz, Durfee and Smetters)

Balfanz, Durfee and Smetters at PARC have demonstrated that PKI systems can be made dramati-
cally easier to configure and deploy by replacing certificates designed to convey identity with single-
use certificates that are treated as capabilities. They call this approach “Instant PKI.”[BDSG04]

The PARC implementation is designed to provide a laptop with an X.509 certificate that can be

2.4. SPECIFIC TECHNIQUES FOR ALIGNING SECURITY AND USABILITY 65

Figure 2-17: “Random art” images, courtesy of Adrian Perrig. Reprinted with permission.

used for authentication on a 802.11x EAP-TLS network. Although the technology to issue and
install these certificates is widely available, there are many acknowledged usability problems with
current implementations.

In their original experiment, eight subjects—most holding Ph.D.’s in Computer Science—were pro-
vided with a set of instructions that clearly described the 38 distinct steps required to configure
Microsoft Windows XP to authenticate over a wireless 802.11x network. The average time for
subjects to request and retrieve their certificates, then configure their laptops, was 140 minutes.
Several of the subjects reported that the process was “the most difficult computer task that PARC
had ever asked them to do.”[BDSGO5]

The revised system, based on the Instant PKI concept, authenticates not individuals but the laptops
themselves. The laptops are given a helper application that communicates with a local CA over
an infrared link in a secure room. The laptop creates a public/private key pair, sends it over the
wireless link to the CA, receives in response the signed certificate, and installs it. The total time
from beginning to end is approximately 32 seconds.[BDSGO5]

The PARC system is important because it shows that many concepts being discussed in the HCI-SEC
community actually work in a commercial environment. These concepts include:

e The use of single-purpose, identity-free certificates.

e The leveraging of existing social methods of authentication. In this case, anyone who could
convince the network administrator to open the locked room was assumed to be allowed
access to the wireless network.

e The use of physical proximity as a surrogate for trust.

2.4.8 E-mail Based Identification and Authentication (Garfinkel)

Gutmann observes that E-mail based identification and authorization (EBIA)—the ability to receive
email at a previously registered address—has been widely adopted for automated password resets
and mailing list subscriptions. Essentially, EBIA delegates web site identity management to the
Internet Service Provider of the user’s choice. Such authentication techniques are probably “good
enough,” Gutmann observes, “unless the opponent is the ISP.”[Gut04b] (Although there is one case
in which the enemy was in fact the ISP [USA04], this does not seem to be the general case.)

66 CHAPTER 2. Prior Work

A detailed analysis of EBIA options and present best practices is presented in [GarO3a]. E-mail
Based Identification is one of the design patterns outlined in Chapter 10.

2.5 Prior and Related Work on Sanitization

There exists a significant body of work in the academic, commercial and hobbyist communities on
the topic of disk sanitization. This body of work is surprising when one considers that sanitization
tools are rare in commercial operating systems and automatic sanitization is all but nonexistent.

2.5.1 PGP’s -w option

PGP version 1.0 supported a “-w” option to “wipe” information from the computer’s hard drive.
When used in conjunction with an encryption function, the “-w” option would “destroy every trace
of plaintext,” according to a comment in the program’s source code.[Zim91a] The “-w” option could
also be used without the encryption function, in which case its performed a sanitized erasure of
the file whose name was provided on the command line. PGP version 1.0 implemented file wiping
in a function called wipeout () that moved the file pointer to the beginning of the file and then
overwrote the contents with repeated calls to the fwrite () command using a zero-filled buffer.
As discussed in Chapter 3, there are many cases in which this approach would have silently failed.

2.5.2 Secure file deletion under Linux

Remy Card introduced support for Linux file attributes with release 0.4 of ext2fs. [Car96] Card
created three attributes: the “c” attribute, which marked a file for automatic compression, the
“s” attribute, which marked the file for secure deletion, and the “u” attribute, which marked the
file for undeletion.? Although all were documented, only the “s” secure deletion attribute was
implemented in version 0.4.

7R
S

The implementation of the “s” attribute required minor modifications to just four locations of the
ext2fs code. But support for the “s” attribute was removed from the Linux kernel “as of Linux
2.2,” according to the Linux 2.4 chattr man page (Figure 2-18). An examination of the current
Linux ext2fs source code shows no trace of Card’s original implementation. It is likely that support
for secure deletion was removed when the file system’s block-handling routines were rewritten to
achieve higher performance.

Bauer and Priyantha describe a modification to the Linux operating system to support secure dele-
tion. Whereas Card’s implementation set a flag that required the blocks be zeroed before they
were placed on the freelist—something that Card implemented in the file system itself—Bauer and
Priyantha’s implementation overwrote deleted files asynchronously using a kernel thread. The au-
thors correctly note that “an asynchronous overwriting process sacrifices immediate security but
ultimately provides a far more usable and complete secure deletion facility.”[BP01]

Despite being distributed under the Gnu Public License,[Sta01] Bauer and Priyantha’s implemen-
tation was not incorporated into the Linux kernel. What’s more, the technology cannot be easily
incorporated at this time, owing to the fact that the kernel has changed significantly in the years
since Bauer and Priyantha did their work.

2«when the file is deleted, its contents are saved to allow a future undeletion.”[Car96]

2.5. PRIOR AND RELATED WORK ON SANITIZATION 67

CHATTR (1) CHATTR (1)
NAME
chattr - change file attributes on a Linux second extended file
system
SYNOPSIS
chattr [=RV] [-v version] [mode] files...
DESCRIPTION
chattr changes the file attributes on a Linux second extended file sys-
tem.

The format of a symbolic mode is +-=[ASacDdIijsTtu].

The operator '+’ causes the selected attributes to be added to ths
existing attributes of the files; ‘-’ causes them to be removed; ang
‘=’ causes them to be the only attributes that the files have.

ATTRIBUTES

When a file with the ‘s’ attribute set is deleted, its blocks are
zeroed and written back to the disk.

BUGS AND LIMITATIONS
As of Linux 2.2, the ‘c¢’, ’'s’, and ‘u’ attribute are not honored by
the kernel filesystem code. These attributes will be implemented in
a future ext2 fs version.

Figure 2-18: The documentation for the Linux “chattr” command promises an “s” attribute that, when set, causes files
to be securely deleted. Only at the bottom of the page does the document make it clear that the feature has yet to be
implemented. From [Car02]

Despite the fact that the Linux ext2fs and ext3fs file systems no longer provide secure deletion
facilities, the “s” file attribute is still supported by the chattr command. It is only in the “BUGS
AND LIMITATIONS” section of the command’s document does one learn that this attribute is ignored
by the operating system (Figure 2-18). Given the way that security vulnerabilities seem to be
understood in the Open Source community, the failure to implement a documented security feature
is a missing feature, and not a security flaw, and is not likely to be fixed anytime soon.

2.5.3 Apple’s “Secure Empty Trash”

Following the initial publication of the sanitization work that will be presented in Chapter 3 of
this thesis, Apple Computer added a “Secure Empty Trash” function to the Finder component of
its MacOS operating system. According to interviews conducted with Apple’s security group on
January 12, 2003, the group had long wanted to put a secure file delete function in the operating
system’s interface: such efforts had been deemed low priority by Apple’s management until the

68 CHAPTER 2. Prior Work

File Edit View Go
About Finder

Preferences... 3,

Empty Trash... 4{#¥&
Secure Empty Trash

Services »

Bus74-75.pc

|
Empty Trash

Hide Finder #H
Hide Others C3EH
Show All

Figure 2-19: Apple added the “Secure Empty Trash” feature to the MacOS 10.3 operating system following the publica-
tion of the Remembrance of Data Passed paper. Apple’s addition of this feature was incomplete: although the feature
was added to the Finder menu (left), it was not added to the control-click menu on the Apple trash can (right).

_J Are you sure you want to remove the items in the L J 0 Are you sure you want to erase the items in tI:e l
[l Trash permanently? e Trash permanently using Secure Empty Trash?

:% You cannot undo this action B E | If you choose Secure Empty Trash, you cannot recover the files ™
1m Eiz m 5i
ani) . - i) .]
ack . ck L
h18 Dec 24, 2004 Ba7 P - 18 Dec24. 2000 gA7 P -

Figure 2-21: Choosing “Secure Empty Trash” from the
File menu of MacOS 10.3’s Finder application causes
this alert panel to be displayed.

Figure 2-20: Choosing “Empty Trash...” from the File
menu of MacOS 10.3’s Finder application causes this
alert panel to be displayed.

Remembrance paper was published.

Apple implemented “secure file delete” as a modification to its Finder program, rather than as a
modification to the operating system’s kernel. After files are dragged to the Trash, the user may
choose either the “Empty Trash...” or the “Secure Empty Trash” options from the Finder menu,
as shown in Figure 2-19 (left). Choosing these options, respectively, causes the confirmatory alert
panels shown in Figures 2-20 and 2-21 to be displayed.

Although it is personally rewarding that a paper published in January 2003 would result in a
significant modification to an operation system used by tens of millions of people in less than a
year’s time, there is much to critique in Apple’s initial implementation of secure file deletion.

Most obviously, the labeling in the Finder menu items and on the modal alert panel have the
obvious marks of a rushed job—perhaps a direct result of the short time between the publication
of the Remembrance paper and the release of MacOS 10.3:

K

e The menu title for the item “Empty Trash...” includes three trailing periods, indicating that
running the command will not result in the command being run but will result instead in a
dialog being displayed. On the other hand, the menu title for the item “Secure Empty Trash”
does not include three trailing periods, leading the user to believe that the command will be
instantly acted upon by the operating system. The lack of the ellipsis may make the user less

2.5.

PRIOR AND RELATED WORK ON SANITIZATION 69

inclined or even fearful to choose the command.

The subtle difference in text between the two modal panels does not convey the actual differ-
ence between the “Empty Trash...” and “Secure Empty Trash” commands. While both actions
“remove the items in the Trash permanently,” the “Empty Trash” operation cannot be undone,
whereas files deleted with the “Secure Empty Trash” command cannot be “recover[ed].”

Although subtle, the text is literally accurate: MacOS does not provide tools for undeleting
files once the files have been removed from the Trash (that is, unlinked from the ~/.Trash
directory), but third-party utilities do exist for recovering deleted files. These utilities will
recover files that have been deleted with “Empty Trash...” but not recover files that have
been deleted using “Secure Empty Trash,” as “Secure Empty Trash” overwrites the file blocks.
This distinction is made clear by typing “Secure empty trash” into Apple’s Help Viewer and
choosing the first answer that comes up. (See “Deleting files and folders” in Figure 2-22.)

The “Secure Empty Trash” feature is not available from the Trash can’s context menu. A
person who only empties the trash by control-clicking on the Trash can’s icon in the MacOS
Dock will not discover the feature.

“Secure Empty Trash” is a very slow procedure, during which time the Finder’s Trash may
not be otherwise used: Attempting to drag a file to the Trash causes the Finder to display
the message “You cannot move any items to the Trash because it is being emptied.” Double-
clicking on the Trash icon causes the Finder to display the message “You cannot open the
Trash because it is being emptied.” This is a disincentive to using the “Secure Empty Trash”
sanitization facility.

Because “Secure Empty Trash” is such a slow procedure, it seems that it would be advanta-
geous to be able to specify files to be securely erased on a file-by-file basis. However, there is
no way to make such distinctions.

Likewise, there is no way to securely erase a specific file but leave the other files in the Trash
untouched. This is poses an inconvenience to users who habitually keep hundreds or even
thousands of files in their Trash directories and who wish to securely delete a single file from
time to time.>

K

If the user inadvertently chooses “Empty Trash...” instead of “Secure Empty Trash,” there is
no way to go back and securely overwrite the disk blocks once the files have been unlinked
from the Trash directory.

Implementing “Secure Empty Trash” in the Finder, rather than in the operating system’s ker-
nel, means that there is no way to securely delete files that are deleted by programs other
than the Finder (e.g., using rm or Emacs).

There is no way to remove from a disk the information that was contained in files that have
been “overwritten” using the “Save As...” feature.

Section 3.6.1 proposes another technique for implementing the functionality of file sanitization that
should deliver a more usable solution in a way that builds upon both Bauer and Priyantha’s work
with Linux [BPO1] and Apple’s work with MacOS.

3There is a rather straightforward albeit annoying work-around for this problem: Simply move all of the files that are
in the Trash into a second, temporary directory, leaving behind the files to be sanitized. Choose “Secure Empty Trash.”
Finally, move the files from the temporary directory back into the Trash.

~/.Trash

70 CHAPTER 2. Prior Work

eo0e Mac Help =) |

< > in; Q- secure empty trash

ﬂl' Deleting files and folders

You can delete files and folders on your disk that you no longer need.

-

| 1. Drag the items to the Trash (at the end of the Dock).

Any files or folders you drag to the Trash remain there until you empty the Trash. If you change your
mind about something, you can still retrieve it from the Trash if you haven't emptied it yet. Click the
Trash icon to open the Trash window, then drag items back to your home folder.

2. Choose Finder » Empty Trash.

Even after emptying the trash, deleted files may still be recovered by using special data-recovery software.
To delete files so that they cannot be recovered, choose Finder > Secure Empty Trash. Files deleted in this
way are completely overwritten by meaningless data. This may take some time, depending on the size of the
file. You may want to use Secure Empty Trash if you sell or give away your computer.

i L

If an item is locked, you cannot put it in the Trash. Select the item and choose File > Get Info, then deselect
the Locked checkbox in the General pane. If you do not own the item, you may need to provide an
administrator's name and password to put the item in the Trash.

Press the Option key when you choose Empty Trash to prevent the warning message from appearing. You
| can also turn off the warning in the Advanced pane of Finder preferences.

3 Tell me more

Figure 2-22: Typing “Secure empty trash” into the MacOS 10.3 Apple Help Viewer causes the application to display this
help page describing the difference between Empty Trash and Secure Empty Trash.

2.5.4 Cryptographic file systems

As discussed in Section 3.2, cryptographic file systems provide a partial solution to the data rema-
nence problem: data is simply stored on a cryptographic file system. When it is time to throw away
the drive, the user only needs to ensure that the key that was used to encrypt the data is properly
destroyed. Once that key is gone, there should be no chance of recovering the data.

In practice the use of cryptographic file systems is slightly more complicated. Apple’s MacOS 10.3
operating system contains a cryptographic file system called File Vault. This system is implemented
through Apple’s “Disk Utility” subsystem that allows a disk file to be mounted on the MacOS desk-
top as if the file were an external device. When used with File Vault, each block of the file is
encrypted with the AES-128 cipher. The key, encrypted with the user’s login password, is stored at
the beginning of the disk file.

File Vault is designed to be used with home directories on laptops and desktops. When the user
logs in, MacOS automatically uses their login password to decrypt the key used for the particular
File Vault file. The file is then mounted as the user’s home directory and login proceeds. By
design MacOS applications keep all user-specific data inside the user’s home directory. For example,
the popular Firefox web browser for MacOS keeps each user’s browser cache in the directory ~/
Library/ApplicationSupport/Firefox/Profiles/.

Although File Vault is very easy-to-use—once it is enabled, the user is more or less oblivious to its

~/Library/Application Support/Firefox/Profiles/
~/Library/Application Support/Firefox/Profiles/

2.5. PRIOR AND RELATED WORK ON SANITIZATION 71

8en6o Accounts =)
=46 o
Show All | Displays Sound Network Startup Disk
Password Picture | Security | Startup Items

Q “ FileVault secures your entire Home folder by encrypting
its contents. It automatically encrypts and decrypts
4 Beth Rosenberg your files on-the-fly, so you won't even know it is
I Admin happening

WARNING: Your files will be encrypted using your login
password. If you forget your login password and the
master password is not available, your data will be last
forever.

Tarminal — cch — 177x39
A master password is set for this computer. I YO O Security =1

Change..

1 You are now ready to turn on FileVault protection.
FileVault protection is on for this account. sl 4 Q b

— I WARNING: Your files will be encrypted using your login password.
(_ Turn Off FileVault) 1 If you forget your login password and the master password is not

available, your data will be lost forever.

entire Home directery. Depending an how much data you have, this could take a
while. You will not be able to log in or use this computer until the initial setup is

Allow user to administer this computer 1 Once you turn on FileVault, you will be logged out and FileVault will encrypt your
ﬁ Login Options -
—T completed.

+

(Cancel) (TurnOn FileVault) |

tl
J 'JI Click the lock to prevent further changes.

Figure 2-23: Apple’s File Vault cryptographic file sys- Figure 2-24: When File Vault is first enabled, it cre-
tem is enabled and controlled through the System ates a cryptographically protected virtual disk, copies
Preferences panel. the user’s files to that disk, and then deletes unen-

crypted the files. Analysis of a disk revealed that File
Vault does not use Compete Delete to delete the un-
encrypted files. As a result, they can be recovered
using forensic tools.

presence—it does not implement the sanitization patterns described in Chapter 10. Using these
patterns to guide an analysis of File Vault, the following problems were observed:

e When File Vault is first enabled for a user, a cryptographic volume is created, the user’s files
are copied to the volume, and finally the files are deleted but not overwritten. (File Vault will
not engage unless the amount of free space on the hard drive is larger than the amount of
space taken up by the user’s directory.) As a result, after File Vault is engaged, unencrypted
copies of all of the user’s files can be recovered from the hard drive using standard “undelete”
programs. (This claim was verified by recovering 100% of the blocks in a 512MB file that was
in a user’s home directory prior to File Vault being enabled.)

e After File Vault is enabled, there is no way for an unassisted end-user go back and use the
MacOS “Secure Empty Trash” to actually overwrite the deleted files. This is because files,
once deleted, cannot be unerased using the tools provided by the operating system. (The
Disk Utility command of MacOS 10.4 includes the ability to erase the unallocated space on a
volume. The function is implemented by a small program that creates a big file on the disk,
then deletes the files after the disk is filled up. This is the approach used by \w switch of
Microsoft’s CIPHER.EXE, described in the next section, and is likely to have similar security
problems.)

e There is no indication that the cleartext copies of the files deleted by the File Vault enabling
process can still be recovered using forensic tools, a violation of the “User Audit” pattern.

e File Vault does not have clean integration to support media disposal. Ideally the operating
system would have a simple provision for securely overwriting the File Vault encryption keys

72 CHAPTER 2. Prior Work

when the computer is no longer needed. Because this functionality is missing, it is possible
for an attacker who recovers a discarded computer to mount a guessing attack against the
user’s File Vault password. Such attacks are frequently successful.

But the most important reason that cryptographic file systems are not a solution to the file saniti-
zation problem is that deleted files can be recovered from such a file system when the volume is
mounted. A shared computer that is running in a library or in an office will still have files that are
deleted but recoverable on its hard drive, even if password needs to be typed when the system is
first turned on. An attacker who has access to such a system will be able to recover data that was
intentionally deleted but not overwritten.

2.5.5 Microsoft’s CIPHER.EXE

After a talk on the Remembrance of Data Passed project at Microsoft Research in July 2002, a mem-
ber of the audience stated that Microsoft had already addressed the problem of deleted data with
a command-line utility called CIPHER.EXE. This assertion was repeated during two days of inter-
views performed at Microsoft in January 2004.

CIPHER.EXE is a command-line tool for controlling aspects of the Microsoft Cryptographic File
System (CFS) that was introduced with Windows 2000. A feature of CFS is that it can be enabled
on a disk-by-disk or directory-by-directory basis. When CFS is enabled for a directory, the oper-
ating system encrypts each of the files in the directory and then unlinks the plaintext files when
the encryption is done. This behavior generated consternation within the CFS group that the un-
encrypted files were still on the computer’s disk at the end of this process—the files were deleted,
but recoverable. (This is, in fact, the exact security problem that was discovered with Apple’s File
Vault, as discussed in the preceding section.)

Microsoft’s solution to this problem was to add an option to the CIPHER.EXE that would sanitize
deleted information on the hard drive, thus erasing the contents of the deleted files. Documentation
for this option appears in Figure 2-25. The program accomplishes this goal by opening a single file
for writing and then writing to that file until there is no more space on the device. This is the
same procedure that several free and commercial tools use. Unfortunately, it does not fully sanitize
sensitive information from the disk, as is discussed below.

Following the release of Windows XP with the improved CIPHER.EXE command, Guidance Soft-
ware, makers of the EnCase forensics tool, published a provocative whitepaper entitled “Can Com-
puter Investigations Survive Windows XP.” In that whitepaper authors Stone and Keightley evalu-
ated the sanitization capabilities of CIPHER . EXE and found them lacking:

“Results: All unallocated space was filled with random values (which greatly affected
file compression in the evidence file); however, the cipher tool affected only the unal-
located clusters and a very small portion of the MFT#; 10-15 records were overwritten
in the MFT, and the majority of the records marked for deletion went untouched). The
utility does not affect other items of evidentiary interest on the typical NTFS partition,
such as: file slack, registry files, the pagefile and file shortcuts.

“Master File Table

2.5. PRIOR AND RELATED WORK ON SANITIZATION 73

“In terms of its anticipated end-user adoption, the cipher feature is a burdensome
command-line utility that is difficult to find and operate. Notably, the cipher function is
available on the Professional version, but not included in the Home version of XP and
Windows 2000. Despite some speculation, the function is not set by default.”[SK03]

The white paper concludes:

“...The scrubbing feature is part of Windows XP, but it is not all that it was initially
thought to be. It is a command line tool that is difficult to use, time consuming and
nothing more than a good wiping utility. The average computer user will not know
how to use it, and even if it is used, evidence artifacts still remain in certain system
files.”[SKO3]

As with Apple’s “Secure Empty Trash,” CIPHER . EXE is an example of a program that literally solves
the problem that the operating system vendor set out to solve. However, the solution is limited in
scope, burdensome to use, and ultimately doesn’t provide users with the protection that would be
afforded by a more comprehensive solution.

2.5.6 Microsoft’s “Remove Hidden Data” tool

Starting in August 2004 Microsoft prepared a series of Knowledge Base articles that instruct users
on fast saves and the proper procedure for removing metadata from their Word and PowerPoint
documents. [CorO4a, Cor04b, Cor05b, Cor05c, Cor05a]

In August 2004 Microsoft also released its “Remove Hidden Data tool for Office 2003 and Of-
fice XP.”[Cor04c] This tool is designed to remove much of the metadata, revisions, and other
potentially embarrassing information that had been the source of so many media reports. The
Remove Hidden Data tool automatically removes more than a dozen kinds of hidden information
and metadata, including:

e Comments from Visual Basic Macros and modules

e Previous authors and editors e The ID number used to identify the doc-
ument (ID numbers are used by Word to

The User name
* allow changes to be automatically merged

Personal summary information.

Revision marks (if there are revisions
pending in the document, the tool auto-
matically accepts all revisions)

Deleted text

Previous versions and versioning informa-
tion.

Descriptions and comments are removed

back into the original document using
some document management systems)

Routing slips
E-mail headers
Scenario comments

Office 97 unique identifiers (these identi-
fiers were removed from later versions of
Word) [Cor04c]

Even though Microsoft sells a version of Word that runs on the Macintosh operating system, the
Remove Hidden Data tool is only available for Microsoft Windows.

74 CHAPTER 2. Prior Work

C:\Documents and Settings\simsong>cipher /?
Displays or alters the encryption of directories [files] on NTFS partitions.

CIPHER [/E | /D] [/S:directory] [/A] [/I] [/F] [/Q] [/H] I[pathname [...]]
CIPHER /K

CIPHER /R:filename

CIPHER /U [/N]

CIPHER /W:directory

CIPHER /X[:efsfile] [filename]

/W Removes data from available unused disk space on the entire
volume. If this option is chosen, all other options are ignored.

The directory specified can be anywhere in a local volume. If it

is a mount point or points to a directory in another volume, the

data on that volume will be removed.

directory A directory path.

filename A filename without extensions.

pathname Specifies a pattern, file or directory.
efsfile An encrypted file path.

Used without parameters, CIPHER displays the encryption state of

the current directory and any files it contains. You may use multiple
directory names and wildcards. You must put spaces between multiple
parameters.

Figure 2-25: The /W option added to CIPHER.EXE in Windows XP Professional

Overall, the Remove Hidden Data tool has the look of a rush job (Figure 2-26) and does not have
the level of professionalism evident in other parts of the Office application.

Evaluation of the Tool
One problem with the “Remove Hidden Data” tool is that there is no obvious way to look at a Word
file and determine if it has been processed with the tool or not. This is similar to the problem of
being unable to determine if a hard drive has been properly sanitized after an overwriting program
has allegedly been run.

It’s important to note that “Remove Hidden Data” doesn’t protect a publisher from accidentally
publishing a document with confidential content that was constructed with the malicious intention
of defeating Microsoft’s sanitization system. For example, a document could be created using a
Word Macro that displays confidential material after a certain date. Because “Remove Hidden
Data” does not remove macros from documents, the hidden content in such a document will not
be removed because it is not technically “hidden:” it is simply active content that changes in form
at a previously designated time.

2.5. PRIOR AND RELATED WORK ON SANITIZATION 75

E Remove Hidden Data

Remove Hidden Data creates a new version of your document without comments, revisions, file properties, or other
data that you might not want others to see. You should only use this feature when you are ready to publish your
document.

Enter a file name for the new version B Remove Hidden Data

File name:

Recommended: Use a different file naj
its original name.

Cancel

Remove Hidden Data is automatically checking for hidden data.

crecong.. [IHENNNNNNNNENENENNNNNRNE] oo

Click Finish to close this document and display a log file of resuits.

WARNING: If you open this file
data. B Rhd2.log - Notepad
File Edit Format View Help

v:\current\Blast_Notes.doc scanned at 8:35:21 PM on 3/5/2005
personal summary information found and removed.
= pSEEoral Sumsry Inforiatlon Tours ohd
comments not found.
Early document versions not found.
VB Macro comments failed to remove. Reason: If the "Trust Access to visual Basic Project” security setting is
SendrForReview RCIDs not found.
printer path not found.
v:\current\Blast_Notes.doc scanning completed

Ln1,Col1

Figure 2-26: Microsoft's Remove Hidden Data before (left) and after (center) a file is sanitized. After the program runs,
the program’s log file is opened in the Windows Notepad application (right).

2.5.7 Rivest’s incremental key forgetting proposal

An excellent way to implement a sanitizing delete is to store files encrypted and then, when the
files are no longer needed, both sanitize the key and unlink the files. This avoids what is sometimes
known as the “Oliver North Problem”—deleting documents only to be done in by data stored on
backups (Figure 2-27). Of course, it is important that the key actually be deleted and that it not be
backed up in any location itself.

Instead of throwing away the key, Rivest proposed the idea of throwing away bits of the key on
some sort of schedule.[RivO4] For example, if the document in question were encrypted with a
128-bit AES key, and if a modern computer can try 100,000 AES keys per second, then throwing
away 24 bits of key would protect the data to be sanitized from most casual attackers (and certainly
from a large-scale analysis of several hundred disk drives) yet require at most 168 seconds try all
224 possible keys. If the key recovery operation had not be initiated within an hour, the computer
could proceed to throw away another 9 bits (for a total of 33 bits discarded), which would slow
the data recovery time to roughly a day. If the data wasn’t needed for another month, another 3
bits could be discarded, increasing the recovery time to a little less than a week, and so on.

The advantage of this approach is that the encrypted data is increasingly rendered difficult to re-
trieve as more and more bits of the key are thrown away, but the data is never placed beyond
recovery if one is desperate enough. The theory is that the computer user will have the determi-
nation to recover the key (and the data) only if it is really needed—but a casual attacker (or an
automated program) will not have the needed determination. Another advantage is that, although
it is possible to recover an individual file or two, it becomes progressively harder over time for an
attacker on a limited budget to recover all of the data that has been processed in this manner.

76 CHAPTER 2. Prior Work

| 4 o -
®enon Shredder Control Panel

When do you want to shred the documents?

Once a document is shred, it can no longer be recovered.

Dq

@ Shred documents at: 8:00 pm E}
O Shred documents in shredder after 2 days
[— ") Shred documents now
Documents in shredder: 37 ﬂ ‘
Figure 2-27: ‘We all sincerely believed that when we send a Figure 2-28: The hypothetical Shredder Control Panel. Car-
PROFS message to another party and pressed the button toon shredder by Clay Bennett, The Christian Science Mon-

‘delete’ that it was gone forever” — Lt. Col. Oliver North itor. Used with permission.
testifying before Congress, July 8, 1987 [Sip95]

2.5.8 Ephemeral communications

Another approach to the data remanence problem is to use an ephemerizing service. Such a service
creates secret encryption keys that have widely publicized expiration dates. To create a message
M that will be unreadable after a particular date D the user simply encrypts a document with key
K and then sends K to the ephemerizer with a request that K be encrypted with K p, the key that
expires

<{M}Ka{K}KD7D>

A commercial system based on this approach was fielded in the late 1990s by a company called
Disappearing Ink which changed its name to Omniva and was acquired by Liquid Machines in
2004. Omniva’s technology is described in [GS02b, pp.280-283] Perlman presents an improved
solution to this problem in her technical paper The Ephemerizer: Making Data Disappear. [PerO5a]

2.5.9 Understanding data lifetime via whole system simulation

Chow et al. have examined the lifetime of sensitive and confidential information in the Unix oper-
ating system using an approach they call “TaintBochs” which are tracked through a simulation of
a running system.[CPG™04] Using their system, they have determined that conventional systems
scatter sensitive data such as passwords, credit card numbers, and encryption keys throughout the
system’s kernel memory, user memory, and swap space. Unless specific measures are taken to sani-
tize these memories, the researchers have found that such information may persist for the lifetime
of the computer system. They have also found that relatively simple measures—such as explicitly
overwriting memory that is freed—can drastically reduce the extent of the problem.

2.5. PRIOR AND RELATED WORK ON SANITIZATION 77

2.5.10 Other work on Disk Sanitization
There are a substantial number of programs available for sanitizing sensitive files and/or entire
disk drives. Some of these programs are free, while others are commercial.

In general, programs that sanitize the entire hard drive are easier to write and easier to verify than
programs that attempt to sanitize individual files. Horn has created an excellent program called
DBAN that boots a customized version of Linux from a floppy disk or CDROM and proceeds to erase
the computer’s hard drive (after first asking for confirmation, of course!)[Hor05] The MacOS 10
Disk Utility program includes the ability to overwrite a disk with a pass of “zeros” (ASCII NULs),
with eight passes of random data, or (in version 10.4) with 35 passes of data, when a disk is
formatted; Figure 2-29 shows a screen shot of the version 10.3 Disk Utility at work. (The origin of
the 35-pass process and the fact that it was never necessary to subject any given hard drive to 35
passes of overwriting is discussed at length in [Gut96].) The default is not to overwrite the media
but to simply write a new root directory.

Programs that attempt to selectively sanitize some information have a much harder time—the
problem is allowing the user to specify what information is to be sanitized in a manner that is
usable. AccessData’s Secure Clean and PGP Personal Privacy load an extension to the Windows File
Manager that allows any file to be sanitized through right-clicking on the file and then choosing a
menu option. More challenging is the job of programs that claim to generically remove private or
compromising information. Geiger reviewed three such tools in December 2004 and found that all
of these programs left significant amounts of information on the computer’s hard drive that they
claimed to sanitize. He concludes that reviews written in magazines and by users of these programs
are based on product claims and feature comparisons, rather than on an actual evaluation of the
program’s abilities. He is conducting further research in this area.[Gei04]

Crescenzo et al. discuss the need to scrub a computer’s storage after a cryptographic key is no
longer needed and present a theoretical model for determining when media is sanitized.[CF1J99]

78

CHAPTER 2. Prior Work

e0e Disk Utility =)
LA & R Erase Options
electing any of these options will significantly increase initialization time.
g L= v Sel f th Il significantl I i
New Image Eject Infa
™ Zero all data '
= First Aid | Erase | Partition RAID Restore Writes zeros to all sectors of disk. I
[2455.9 GB TOSHIBA MK&0.
- r
| Water = = — =
- To erase a disk, select a disk or volume, select the appropriate format and name and § Way Random Write Format
=} Purity click the erase button. -~ i
= R Writes random data over entire disk eight times. «
488.7 MB SanDisk Cruz... « Erasing a disk results in all velumes of that disk being erased and one large volume
" ISANS1Z being created on that disk. 3ol by
« Erasing a volume results in a clean volume being created. (_Cancel) @ u
« Erasing an optical disc (CD-RW, DVD-RW, etc.) will result in a blank optical disc. No
_SnapClip.dmg formart is applied to an erased optical disc.
" IsnapClip ; _ 06 - Disk Utility o
Volume Format: | Mac OS Extended (Journaled) s] s e Covlor
New image Selecting any of these options will signfcantlyincrease iniilizaton time.
Name: Untitled
= - Mzeroall data e
559 GBTOSHBAMK 4o v to i sectorsof sk =
= Water
= purity 8 Way Rane e Format
(20488.7 MB SanDisk €1 ees random da v
Lsans12
Cancel
Volume Format: | Mac 05 Extended Gournaled) 5
Name: Untitled
€ Options. Y [Erase)
Optins [
= Disk Description : SanDisk Cruzer Mini Media Total Capacity : 488.7 MB (512 483,328 Bytes)
= Connection Bus : USE Write Status : Read/Write
Connection Type ! External =1 557 8 512,483.328 s
Connection ID : —
VA

Figure 2-29: The Apple MacOS 10.3 Disk Utility (left) has an “Options” button which, when pressed, displays a subpanel
(upper right) gives the user the option to overwrite the disk with zeros or eight passes of random data. The subpanel
is displayed on the main window as a “Sheet” (lower right). Considering how much empty space is in the Disk Utility
window, it probably would have made more sense—and been more usable—to display the options on the main panel
and to have removed the “Options” button.

2.6. A BRIEF SURVEY OF REGULATORY AND OTHER NON-TECHNICAL APPROACHES 79

2.6 A Brief Survey of Regulatory and Other Non-Technical Approaches
There is a long history of both successful and unsuccessful attempts to control computer systems
through the use of defacto or dejure regulations. Although some argue that it is inappropriate
to have government regulation on technology because the market can solve technological prob-
lems faster and more effectively than the heavy hand of government, others argue that markets
frequently fail to make optimum solutions when it comes to detailed technological issues.

Morgan and Newton argue for a middle ground, stating that “market-based standards are not
relevant to most issues involving information technologies.”[MNO4] In part, they write, this is
because markets are simply not equipped to deal with the nuances and long-term implications of
technological decisions. Instead, markets tend to focus on short-term results.

Of course, regulation can itself be ineffectual or produce unintended consequences. It is widely
acknowledged that unsolicited email sent over the Internet did not stop after Congress passed
the CAN-SPAM act.[CANO3] Likewise, an unfortunate byproduct of the regulations prohibiting the
export of software containing strong cryptographic algorithms in the 1980s was that less software
was made available inside the US that implemented those algorithms.[Koo99] Thus, any regulatory
proposal should carefully consider the potential for both intended and unintended consequences.
It is also useful to consider voluntary “regulations” that are backed by some kind of industry or
even moral authority, rather than by the force of law.

To that end, Morgan and Newton describe a series of escalating approaches for the adoption of
design principles to regulate technology so that it can achieve socially relevant ends:

1. Best professional practice, adopted by professional societies.
2. Certification of systems, attesting that the systems conform to the design principles.

3. Acquisition specifications used by purchasers to decide which products are considered for
purchase and which are rejected.

4. Legal frameworks built upon proven best professional practice and certification standards.
[MNO04]

The patterns introduced in this thesis fit into the Morgan/Newton framework as well-developed
best professional practices, and as templates for legal frameworks.

The remainder of this section explores a variety of past regulatory efforts, with specific attention to
the regulation of drugs and warning labels.

2.6.1 Fair Information Practice

After nearly a decade’s worth of public disclosures and congressional hearings about the increased
use of consumer databanks, the U.S. Department of Health, Education and Welfare issued a report
in 1973 about the impact of databanks in American society.[UDoHoAPDS73] At the time, the con-
sumer reporting industry was in the middle of a transition from manual records to computerized
records. Some people believed that the federal government needed to adopt laws and regulations
that would guarantee the right of individuals to access information about them stored in the data-
banks of American businesses. As a result of these concerns, the report’s authors recommended
that a Code of Fair Information Practice be adopted. (See Figure 2-30.)

80 CHAPTER 2. Prior Work

“The Code of Fair Information Practice is based on five principles:

1. There must be no personal-data record-keeping systems whose very existence is a
secret.

2. There must be a way for a person to find out what information about the person is
in a record and how it is used.

3. There must be a way for a person to prevent information about the person that was
obtained for one purpose from being used or made available for other purposes
without the person’s consent.

4. There must be a way for a person to correct or amend a record of identifiable
information about the person.

5. Any organization creating, maintaining, using, or disseminating records of identi-
fiable personal data must ensure the reliability of the data for their intended use
and must take reasonable precautions to prevent misuse of the data.”

Figure 2-30: The Code of Fair Information Practice. [UDoHoAPDS73]

While the Code was not adopted in the United States, it became the basis for more than 30 years
of privacy regulation in Canada, Europe and Asia.

The 1973 Code of Fair Information Practice can be applied to the many HCI-SEC issues involving
the recording and display of sensitive information in computer systems. Much of the work in this
thesis on the topic of sanitization (Chapters 3 and 4) and covert monitoring (Chapter 8) is based
on a direct application of these principles to desktop computer systems.

2.6.2 Product labeling as a precedent for software labeling
Cranor suggests that it might be useful to take food nutrition labels as a starting point for the design
of any privacy labeling system.[CAGO02] This section is based on that suggestion.

There are in fact many similarities between the way that drugs work on the human body and the
way that software works on computer systems. Both are made by individuals or organizations that
are separated in space and time from the user. Both have stated actions and side-effects. And both
have actions that are are fundamentally unpredictable: while the user usually knows the trademark
or brand name of what was consumed and what claims were made, the drug or software may or
may not have these effects. There may be undisclosed parts or ingredients. There may also be
unexperienced consequences as well.

The Pure Food and Drug Act of 1906

By the end of the 19th Century, consumers in the United States faced a serious problem: many
foods, tonics and drugs contained significant quantities of addictive substances such as codeine or
cocaine. Often these substances were placed in the foods specifically for the purpose of addicting
consumers, so that consumers would have unexplained cravings for the products and continue to
purchase them. Addictive drugs such as morphine, heroin, opium and laudanum were even put
into “soothing syrups” designed to help babies cope with the pain of teething. (See Figure 2-31.)

After much public outcry, Congress passed The Pure Food and Drug Act of 1906 to deal with the

2.6. A BRIEF SURVEY OF REGULATORY AND OTHER NON-TECHNICAL APPROACHES 81

Figure 2-31: “Soothing syrups” containing morphine, heroin, opium, or laudanum (a mixture of alcohol and opium)
were packaged for babies to stop their crying at the turn of the 20th Century. The Pure Food and Drug Act of 1906
required that the names of the narcotics and their dose be indicated on product labels. Once the information was made
public, newspapers, magazines, and the American Medical Association could began the fight against these so-called
“soothers.” Image c¢.7910 from [oM98].

problem of food and drug adulteration. The 1906 Act did not outlaw the addition of addictive
substances to foods or tonics: it simply mandated that any food or drug containing specific addictive
drugs—such as alcohol, codeine, or cannabis—disclose the presence of those drugs on the package
label. The words “may be habit forming” also had to be prominently displayed.

The Act also required that labels explicitly mention any artificial colors and flavors. After the law’s
passage, drinks couldn’t be sold as “orange soda” unless that drink had flavoring that came from
genuine oranges. Otherwise the drink had to be labeled with the words “imitation” or “artificial.”

The Act required that every bottle, box, and bag of food be clearly labeled to indicate the precise
weight of the food that it contained.

In the case of drugs, the Act further specified that consumer packaging had to specify the strength,
quality, and purity of the pharmaceutical the package contained if it differed from accepted stan-
dards. The dose of the drug had to be clearly printed on the outside of the package.

Although such labeling was designed to let consumers make informed decisions, in practice the
disclosure caused many manufacturers to remove the addictive substances from their products.
For example, following the passage of the 1906 law, cocaine was removed from the formula for

82 CHAPTER 2. Prior Work

Coca-Cola, a popular beverage of the time.

Product labels made it possible for scientists and the nascent consumer groups to rapidly collect
information over a broad segment of products—far more than could have been collection through
laboratory investigation, spot inspections, or litigation. This information ultimately provided law-
makers with additional evidence that was used to justify future legislation that outlawed many of
the more excessive practices.

Food labels today

Today the product labels of the 1906 law have been expanded to include a more complete list of
ingredients and nutritional information. The intent is for consumers themselves to read these labels
and make their own decisions about diet and health.

But while food labels have proved to be a boon for government regulators, food scientists and
academics, there is a growing body of research that finds these labels to be infective in reaching
the very consumers who could benefit the most from the information that they contain.

A study of 631 shoppers in Sydney by Worsley found that there was no clear consensus as to what
information should appear on food labels.[Wor96] Instead, the kind of information that people
thought should be present tended to break down along “gender, educational background, and
other demographic characteristics.” Worse, there were sharp disagreements between consumers
and experts as to what information should appear on labels so as to be useful to consumers.

What’s more, consumers seem to be poor judges as to what information would best satisfy their
needs. Given the labels that they prefer, consumers actually did worse on an “information-intensive
task” than given labels that experts thought would be appropriate to the task, according to a study
of shoppers over 18 years old conducted by Levy, Fein and Schucker.[LFS92]

A metanalysis study of 130 nutritional labeling studies (from a universe of 307 papers) published
in June 2003 by the European Heart Network found the following summary results:

e “Most people claim to look at nutrition labels often or at least sometimes. Some claim that
looking at labels influences their purchases, especially for unfamiliar foods.”[p.20]

e ... but while many people say that they look at labels in self-reported studies, analysis suggests
that many people “look” at the nutrition information panel but do not actually process the
information.

e The most common reason the people look at labels is to avoid certain nutrients or to assess
nutrient content.

e ... but people do not look at labels when they are pressed for time or when they doubt the
accuracy of the label information.

e Men are less likely than women to look at labels. Women who have higher income and people
who have higher levels of education are more likely to read labels.

e People on special diets or who are interested in their health are more likely to read labels
than the average consumer.[EHNO3]

2.6. A BRIEF SURVEY OF REGULATORY AND OTHER NON-TECHNICAL APPROACHES 83

ACAUTION | [AWARNING

0

Do not touch
surface of hot
tank.

Do not enter
robot area when
light is flashing.

Lock out power
betore removing

guard.

Figure 2-32: Representative warning designs used in the United States.[WCSJ02] Used with permission

These studies imply that labels conveying information about privacy or security aspects of software
or services might be helpful for consumer activists or perhaps an elite subset of computer users, but
alone they will not provide a general panacea to privacy or security problems.

On the other hand, these studies do not consider another widely recognized result of mandatory
labeling: by forcing manufactures to label content that might be objectionable, such regulations

frequently result in the removal of the objectionable material so that it will not have to appear on
the label.

2.6.3 Safety and warning labels

Whitten and Tygar suggest that security warnings in consumer software applications could be in-
formed by current research on standardized warning labels (e.g., Figure 2-32).[WT99, WT03] This
section is based on that suggestion.

Visibility of warning labels

Wogalter and Young conducted a study of 44 college students to see if which of three presentations
of warnings would achieve the highest degree of compliance. The warning was straightforward:
“Glue can burn and kill skin on contact. Wear supplied gloves when using glue.”

This warning was presented to subjects in three ways: along the side of a small glue bottle (the
control); along wings molded into the bottle’s body; and on a tag that was visible when looking
down on the bottle. These bottle designs and the typography utilized in the study are shown in
Figure 2-33.

The study found that tag presentation was dramatically more effective than the alternatives: 80%
of those who were presented with the warning on the “tag” followed its instructions and put on
supplied gloves when they were asked to use the provided glue to assemble a model airplane.

84 CHAPTER 2. Prior Work

“
Instructions | t
’ Wamning
{
i

.-..---II------I.---.------.-----.I------.------1

WARNING: Glue can burn and kill
skin on contact. Wear supplied gloves
when using glue.

KEEP OUT OF REACH OF CHILDREN

Control

Instructions

Wings

Figure 2-33: Wogalter and Young'’s three bottles experimented with different placement of warning labels (left). The
researchers found that the “tag” style worked much better than the “Control” and “Wings” styles because subjects
were forced to look at the warning as they opened the bottle. The warning is shown at the right. [WDL99] Used with
Permission.

By contrast, only 35% of those presented with the label on wings followed the instruction, and
only 13% presented with the traditional (control) label complied. Significance of these results was
reported at x? = 14.05(2, N = 44),p < 0.001.

Wogalter and Young attributed the high rate of compliance to two facts. First, the tag warning
was more readily seen: 100% of those in the tag group noticed the tag, compared with 50% of
the wings group and 26% of the control group, x? = 17.39(2, N = 44),p < 0.001. Second, safety
gloves were provided on the same table as the glue and the model airplane kit and required “little
effort to don,” [p.56], so the cost of compliance was relatively low. The authors indicate that
this finding is in conformance with their other research on compliance, which finds that “social
influence” [WFSB93], the cost of compliance, and whether or not the subject notices the warning
all affect overall compliance. [WY94, p.56]

The results of this research imply that warning labels that are readily apparent to the user may have
a positive impact on performance, but that compliance with warning labels will be more likely if
compliance is easy. Pop-up warnings that tell the user “you are about to engage in a dangerous
operation: continue?” probably won’t be effective unless they give the user a low-cost alternative
to the objectionable operation that will still accomplish the user’s overall goal.

Wogalter, Conzola and Smith-Jackson have produced a set of guidelines for creating warnings
and evaluating their use in research.[WCSJ02] Good warnings, they argue, are salient (they are
immediately noticed and attended to); have effective wording; have clean layout and placement;
and incorporate pictures or symbols (to increase the likelihood of being noticed, to improve memory,
and so they can be used by those who are illiterate in the warning language). The wording itself
consists of four message components: “(1) signal word to attract attention, (2) identification of
the hazard, (3) explanation of consequences if exposed to hazard, (4) directives for avoiding the
hazard.”[WCSJ02, p.221]

2.6. A BRIEF SURVEY OF REGULATORY AND OTHER NON-TECHNICAL APPROACHES 85

Product safety labels: ANSI Z535.4-2002

Whitten and Tygar suggest that the American National Standards Institute standard ANSI Z535.4
for Product Safety Signs and Labels [Ins98] might have application to computer security, as the
standard explains how to present warning information so that it is understandable by those who
are relatively untrained.[WT99, WT03] Unfortunately, they did not follow this suggestion with an
examination of the standard in question. Such an examination follows.

While the recommendations in Z535.4 have little to do with software, an analysis of Z535.4 for
this dissertation found 15 specific recommendations in the standard that are directly applicable to
the presentation of security warnings in desktop software. Those recommendations are presented
in Figure 2-34.

In industry, the widespread adoption of Z535.4 by manufacturers dramatically increased the oppor-
tunities for passive learning because safety-critical information encountered by individuals in one
context is relevant when the same symbols are used to present safety-critical information in other
contexts.

It seems reasonable to suggest that software practitioners could similarly benefit from the standards
recommendations that specific typography, graphic presentation, symbols, and “signal words” be
used for the universal presentation of safety-critical messages.

2.6.4 Existing information technology labels
There is a small but growing collection of instances in which the labeling approach has been applied
to information technology. A representative list appears below.

Cranor et al. ’s Technology Inventory Icons

In a report that cataloged tools available to parents for choosing or controlling online content for
their children,[CRG97] Cranor et al. introduced six icons for describing the capabilities of the 41
tools that they evaluated:

Suggest
Used for web sites, printed publications, and filtering software that suggests sites for
children to explore.

Search
Indicates a search service that can restrict its content to material that is appropriate
for children.

s
B
Q Inform
' &

Provides information about content. This includes PICS labels,[KMRT96] reviews, and
other kinds of descriptive content.

Monitor

Records for later inspection information a list of the content accessed by the user.
The record may consist of all content accessed or simply the content that is deemed
inappropriate.

86

CHAPTER 2. Prior Work

Section Page

Recommendation

4.10

4.13

6.4

7.2.1
7.2.2

7.2.3

8.1.1
8.1.2

B3.2

B3.3.1

B3.3.2
B3.3.3
B3.3.5
B3.3.6
B3.3.10

3

wu

(o)}

15

16

17
17
17
18
19

The Safety alert symbol (a equilateral triangle surrounding an exclamation
mark) should only be used to alert individuals to a potential personal injury
hazard; it should not be used to alert persons to property-damage-only acci-
dents.

The signal words for product safety signs are DANGER, WARNING and CAU-
TION. “DANGER” is to be used for imminent hazard which, if not avoided, will
result in death or serious injury. “WARNING” indicates a potential hazard which
could result in death or serious injury. “CAUTION” indicates a potential hazard
which may result in minor or moderate injury. “It may also be used to alert
against unsafe practices.”

Signs should have contrasting borders to achieve distinctiveness from their
background.

The word “DANGER” shall be in safety white letters on a safety red background.
The word “WARNING” shall be in safety black letters on a safety orange back-
ground.

The word “CAUTION” shall be in safety black letters on a safety yellow back-
ground.

Signal words shall be in sans serif letters in upper case only.

Message panels should be printed in a combination of upper and lower case
letters.

Hazard messages should come first, followed by action/avoidance messages—
but only “if there is enough time to read the entire word message and still avoid
the hazard.”

Write short messages using “headline style.” For example, use “Moving parts
can crush and cut” instead of “This machine has moving parts that can crush
and cut.”

Write in the active voice, rather than the passive voice.

Avoid prepositional phrases.

Write in outline format with bullets to enhance readability.

Use left-aligned, ragged right text.

Use black type on a white background or white type on a black background.

Figure 2-34: Specific recommendations found in ANSI Standard Z535.4 that are applicable to the presentation of
security information in computer interfaces.

2.6. A BRIEF SURVEY OF REGULATORY AND OTHER NON-TECHNICAL APPROACHES 87

Warn
A Provides information about content and warns the user against accessing content that
is deemed inappropriate.

Block
E Block the user from accessing information that is deemed inappropriate.

The primary use of the icons in the report are on the report’s first page, as an attention-getting
mechanism, and on pages 5 and 6, where the capabilities are introduced. The report does not use
the icons on the pages describing the individual products that are reviewed, nor does the report
recommend that standardized icons appear on produces or on web sites describing the products.
Nevertheless, this appears to be the first use of icons to describe generic functionality that might
exist within a range of different software products.

The Platform for Privacy Preferences Project (P3P)

Developed under the auspices of the World Wide Web Consortium, P3P is a standard that allows
web sites to publish privacy policies in machine readable form.[CDE*"05] These policies can then
be read either by P3P “user agents” built into web browsers such as Internet Explorer. The policies
can also be used by search engines to automatically screen results—for example, so that a results
page for a search of online merchandise will not display merchants who would share details of the
sale with third parties, if the person making the purchase is opposed to this kind of secondary use.

TRUSTe’s “trust marks”

TRUSTe is an independent organization dedicated to helping individuals and organizations “estab-
lish trusting relationships based on respect for personal identity and information in the evolving
networked world.”[TRU04] TRUSTe is best known for its green and black seal which it licenses for
use on the web sites of organizations that have a privacy policy, that agree to be audited by TRUSTe
or by an outside third party, and that agree to participate in TRUSTe’s dispute resolution processes.

Today TRUSTe offers five licensable seals:

e Web Privacy Seal

Children’s Privacy Seal (COPPA Safe Harbor)
eHealth Seal

e EU Safe Harbor Seal

e Japan Privacy Seal

Each of the TRUSTe seals have specific minimum privacy standards such as allowing consumers
to unsubscribe from email newsletters and to opt-out from the sharing of personally identifiable
information. The seals also require that the organizations abide by specific minimum security mea-
sures and post a privacy statement which makes specific disclosures. A full list of the requirements
appears at http://www.truste.org/requirements.php. The Web Privacy Seal trustmark is
shown in Figure 2-35; other seals are similar, but with different lettering along the bottom.

TRUSTe also manages a “Bonded Sender” program. This program lists organizations that follow

http://www.truste.org/requirements.php

88 CHAPTER 2. Prior Work

 ©

site privacy statement

reviewed by

Figure 2-35: The TRUSTe “trustmark.” Reprinted with permission.

specific mailing guidelines and, as a result, are placed on a special whitelist so their mail is not
blocked by mail filters.

When TRUSTe launched in June 1997 with the name eTRUST (the name was changed due to
trademark restrictions), the organization’s original plan was to have different licensable seals called
“trustmarks” that organizations could use to indicate the content of their privacy policies. Three
trustmarks were proposed:

“No Exchange” No personally identifiable information would be collected by the site.
“One-to-One” The site would collect information, but not share it with others.
“3rd Party” The site would both collect information and share it with others.

TRUSTe ultimately dropped its plans to use these informative icons. At the time, TRUSTe’s execu-
tive director said that the change was being made in the interest of simplicity.[Mac97] In fact, the
real reason that the practice-specific icons were dropped is that there was no incentive for organi-
zations to voluntarily license and display a mark indicating that they shared information with third
parties—no matter how beneficial that sharing might actually be to the consumer.[Hod05]

The fact that TRUSTe was unable to find support for these highly informative icons in 1997 is
an example of market failure—the very kind of market failure that typically justifies the need for
regulation.

EPCglobal guidelines

The Electronic Product Code (EPC) is a system that applies Radio Frequency Identification (RFID)
technology to the task of supply chain tracking and supermarket check-out. Proponents of RFID
describe a world where small EPC tags will be built into the packaging of consumer goods much in
the way that barcodes are placed on packages today.

EPCglobal Inc. is an membership organization that oversees the development of EPC standards.
The organization has adopted a set of “Guidelines on EPC for Consumer Products” which includes
four key elements governing the use of radio frequency identification technology (RFID) in con-
sumer products:

e Consumer Notice. Consumers must be given notice that a product contains an EPC tag that
is embedded or in the product’s packaging. Notice is given through the use of the licensed
EPC logo, the use of which is tightly controlled by EPCglobal.

2.6. A BRIEF SURVEY OF REGULATORY AND OTHER NON-TECHNICAL APPROACHES 89

e Consumer Choice. Consumers must be told that they are allowed to disable or discard the
EPC tags that they receive.

e Consumer Education. Consumers must have the opportunity to obtain information about
EPC tags.

e Record Use, Retention and Security. “Companies will publish, in compliance with all appli-
cable laws, information on their policies regarding the retention, use and protection of any
personally identifiable information associated with EPC use.”[EPCO05]

These guidelines fall short of the RFID Bill of Rights discussed in Section 8.4. For example, the
“Consumer Choice” principle says that consumers are allowed to disable or remove the EPC tag—
but what if removing the tag voids the product’s warrantee? On that topic the guidelines are silent.

The second problem with the guidelines is that they lack any enforcement power. There is nothing
to prevent a manufacturer from using EPC technology without abiding by the guidelines. Although
such a manufacturer might be prohibited from using the EPC logo on their product, the manufac-
turer might not be concerned.

Nevertheless, the EPCglobal guidelines are a significant first step in an industry that has generally
shied away from many other kinds of disclosure requirements. It will be interesting to see if this
effort is successful.

Hosmer’s attack icons

Hosmer proposed that icons could be used for visualizing risks and attack scenarios. Using icons,
Hosmer argued, allows for “rapid comprehension and presentation of information security” in a va-
riety of environments. “Visual attack scenarios help defenders see system ambiguities, imprecision,
vulnerabilities and omissions, thus speeding up risk analysis, requirements gathering, safeguard
selection, cryptographic protocol analysis, and INFOSEC training.”[Hos00]

In her paper, Hosmer presents more than 50 icons and rules for combining the icons to graphically
depict scenarios. Although it is unlikely that the kinds of icons that Hosmer presents would be part
of any mandatory labeling regime—it is clearly unreasonable to expect software pirates to label
their warez sites with “piracy” icons—Hosmer’s work shows that reasonable icons can be used to
rapidly convey a variety of security-critical events.

Williams’ software ingredients and software facts

Jeff Williams, the CEO of Aspect Security, a Columbia Maryland consulting firm, has suggested that
software vendors adopt literal software labels showing the ingredients and the results of automated
threat analysis.[WilO5] An example of the figures from Williams’ presentation appear in Figures 2-
37 and 2-38.

Drawing upon analogies from automobile safety and food labeling, Williams argues that today’s
software is unsafe because of hidden internal failures. Arguing that manual auditing code is very
difficult, Williams’ firm is currently developing a system that will issue these labels for any Java
application that is uploaded. His labels are intentionally designed to resemble food nutrition labels,
Williams says, because most people are familiar with food labels and are immediately curious as

90 CHAPTER 2. Prior Work

. W

Malicious Intruder Buffer Overflow Data Scavenging

" %
Theft Poorly Installed Software

Figure 2-36: Hosmer’s visual attack scenarios.[Hos00]

to how the concept could be applied to software. It is unclear whether or not this project will be
successful.

2.6.5 Regulations addressing the data sanitization problem

Although no regulations have mandated that computer manufacturers provide systems that are
easier to sanitize and easier to verify when sanitization has not occurred, a number of regulations
have been passed that nevertheless mandate that sanitization must take place.

NSA IAM Section 15

Presidential Decision Directive 63 (PDD 63) signed by President Clinton on May 22, 1998, outlined
civilian and governmental responsibility to protect the US Critical Infrastructure and established
the framework of the National Infrastructure Assurance Plan. Under this plan, the National Secu-
rity Agency (NSA) was mandated to perform information security assessments of US Government
Systems. This assessment has since been standardized as the NSA Infosec Assessment Methodology
(IAM). Section 15 of the NSA IAM discusses media sanitization and disposal.

As many organizations are now training individuals in the NSA IAM, it is likely that there are a
growing number of computer security consultants and practitioners who are aware of the data
sanitization issue.

BS 7799 and ISO 17799

On December 1, 2000, the International Standards Organization adopted ISO/IEC 17799:2000(E),
“Information technology—Code of practice for information security management.” (ISO 17799 is
based on and supersedes BS 7799, which was passed in 1995.)

Section 7.2.6 of the standard addresses the issue of media sanitization prior to disposal:

“7.2.6 Secure disposal or re-use of equipment
Information can be compromised through careless disposal or re-use of equipment (see

2.6. A BRIEF SURVEY OF REGULATORY AND OTHER NON-TECHNICAL APPROACHES 91

Software Facts

Typical Roles per Instance 4
Expected Number of Users 15

;nmount Per Serving
Modules 155 Modules from Libraries 120

% Vulnerability*

Cross Site Scripting 22 65%
Reflected 12 15%
Stored 10

SQL Injection 2 10%

Buffer Overflow 5 95%

Total Security Mechanisms 3 | 10%

Modularity .035 0%
Cyclomatic Complexity 323

Encryption 3

I

Authentication 15 4%

Access Control 3 2%

Input Validation 233 20%

Logging 33 4%

* % Vulnerability values are based on typical use scenarios for
this product. Your Vulnerability Values may be higher or lower

Ingredients: Sun Java 1.5 runtime, Sun o e et et
J2EE 1.2.2, Jakarta log4j 1.5, Jakarta “Raieces T T 10 :
Commons 2.1, Jakarta Struts 2.0, gg;ef"gggfﬂgw LLTThh 20 2
Harold XOM 1.1rc4, Hunter JDOMv1 S e ke s
Figure 2-37: A “software ingredients” label developed Figure 2-38: A “software facts” label developed by Jeff
by Jeff Williams; used with permission. Williams and used in his PowerPoint presentation to

argue that programs should be given “software facts”
labels in a manner similar to the way that foods are
given nutritional labels today. Used with permission.

also 8.6.4)°. Storage devices containing sensitive information should be physically de-
stroyed or securely overwritten rather than using the standard delete function.

“All items of equipment containing storage media, e.g. fixed hard disks, should be
checked to ensure that any sensitive data and licensed software have been removed or
overwritten prior to disposal. Damaged storage devices containing sensitive data may
require a risk assessment to determine if the items should be destroyed, repaired or
discarded.”[ISO00]

Unfortunately, the distribution of ISO standards are tightly controlled by the copyright holder and
are extraordinarily expensive to purchase. For example, the web site www.standardsdirect.
org sells ISO 17799 as a downloadable PDF for £110 (approximately $209). Nevertheless, the
fact that organizations can be certified to be ISO 17799 compliant has created a growth industry
in ISO 17799 training and certification courses. In March 2005 a Google search found 179,000

>Section 8.6.4, “Security of system documentation,” has nothing to do with sanitization. This section states that
system documentation should be stored securely, protected from unauthorized access, and restricted to the minimum
possible number of authorized individuals. The validity of such advice will not be considered in this thesis.

www.standardsdirect.org
www.standardsdirect.org

92 CHAPTER 2. Prior Work

web pages that included the term “ISO 17799,” of which 35,200 specifically addressed the issue of
ISO 17799 certification and compliance.

VISA's Cardholder Information Security Program (CISP)

Since June 2001, merchants that accepted VISA cards and service providers that perform payment
card processing have been required to follow VISA's 12-point Cardholder Information Security Pro-
gram (CISP). [VISO5] In December 2004, the VISA CISP standard was folded into the Payment
Card Industry Data Security Standard. [U.S04]

Although these standards apply to all merchants and processors, different levels of security are
required for merchants of different sizes. Key elements that apply to all merchants are standards
that protect the merchant’s network, cardholder data, the institution of a vulnerability management
program, access controls, requirements to monitor and test the network, and maintenance of an
information security policy.

In conducting the Traceback study, disk #21 was determined to come from a major supermarket
firm. The disk, which contained 3,722 credit card numbers, was removed from service in May
1999. The disk was acquired on November 11, 2000 and included the notation “Pulled from
working system and tested good.”

In discussions with the senior manager at the company responsible for information security at the
company, it was learned that the firm had adopted a data sanitization process as a result of the
VISA CISP requirement. According to the manager, in 2000 the company had just started its data
sanitization process and it is possible that some drives fell through the cracks. The company now
wipes all of its hard drives with Norton Disk Wipe and it has a forensics department which, among
other things, samples the wiped drives to make sure that they are actually wiped. “It really is a
problem, asset disposal. The assets have little or no value by the time they depreciate. From an
accounting perspective, no one cares. But the value of the data on these disks is really, really high.
It just has to be managed.”[Gar04b]

Federal regulations on consumer information and records disposal

The Fair and Accurate Credit Transactions Act of 2003 (FACTA) amended the Fair Credit Reporting
Act to require that “any person that maintains or otherwise possesses consumer information, or any
compilation of consumer information, derived from consumer reports for a business purpose” to
“properly dispose of any such information or compilation.”[US03, §216, 15 U.S.C. 1681 w(a)(1)]
On November 18, 2004, the Federal Trade Commission issued its Final Rule implementing the
requirements of the FACTA.[ComO04b] The Securities and Exchange Commission issued its own final
rule on the “Disposal of Consumer Information” three weeks later on December 8.[SC04] Other
Federal bodies charged with regulating portions of the nation’s financial industry, including the
Federal Reserve Board, the Office of the Comptroller of the Currency, the Federal Deposit Insurance
Corporation, the Office of Thrift Supervision, and the National Credit Union Administration, have
adopted consistent and comparable rules.

Designed to help combat the growing tide of identity theft, these rules cover a broad range of
businesses and financial institutions in the United States that have sensitive consumer information
on their computers. For example, the FTC Rule covers not only consumer reporting agencies, but

2.6. A BRIEF SURVEY OF REGULATORY AND OTHER NON-TECHNICAL APPROACHES 93

also “lenders, insurers, employers, landlords, mortgage brokers, car dealers, and other businesses
that use consumer reports.”[Sot05]

Organizations collecting “consumer reports” are now required to properly dispose of that infor-
mation “by taking reasonable measures to protect against unauthorized access to or use of the
information in connection with its disposal.” The law specifically considers “abandonment ... as
well as the sale, donation, or transfer” as forms of disposal. The term “consumer reports” is broadly
defined in the law to include pretty much any personally identifiable information that could be
used to make a decision in granting credit or insurance.

The rules apply both to paper and electronic records. While the rules to do not specify what
constitutes reasonable measures, they give examples. For paper records the FTC Rule notes that
generally appropriate measures would include shredding or burning and parenthetically notes that
a paper shredders are “available at office supply stores for as little as $25.” For electronic records,
the FTC notes that a “small entity” could comply with the disposal rule by a variety of means:

“If a small entity has stored consumer information on electronic media (for example,
computer discs or hard drives), disposal of such media could be accomplished by a small
entity at almost no cost by simply smashing the material with a hammer. In some cases,
appropriate disposal of electronic media might also be accomplished by overwriting
or ‘wiping’ the data prior to disposal. Utilities to accomplish such wiping are widely
available for under $25; indeed, some such tools are available for download on the
Internet at no cost. Whether ‘wiping,” as opposed to destruction, of electronic media is
reasonable, as well as the adequacy of particular utilities to accomplish that ‘wiping,’
will depend upon the circumstances.”[ComO4a, p.30]

According to the FTC, the Rule covers far more than just a person’s name and social security num-
ber, but also includes driver’s license numbers, phone numbers, physical addresses, and e-mail
addresses. Significantly, the Rule also covers so-called “credit header” information—the portion
of a credit report that does not actually have any credit information. It even covers information
from public records, although the Commission noted that businesses may consider the sensitivity
of consumer information when determining what sort of disposal methods should be used.

In its report, the FTC wrote that businesses would need to educate and train employees on how
to properly dispose of paper and electronic records. But despite the requirements for new training
and the purchase of paper shredders, the FTC noted that most of the organizations filing comments
“stated that the proposed Rule would not create any undue burdon for small businesses.”

All businesses that maintain consumer reports must comply with the FTC rule on June 1, 2005.
Compliance for the SEC rule starts July 1, 2005.

2.6.6 Regulating accessibility with Section 508

The user interface of a surprising number of software, web sites, and telecommunications devices
came under de facto Federal regulation in June 2001 when Section 508 of the Workforce Investment
Act of 1998 (29 U. S. C. (SS) 794.d) came into effect. The law contained wide-ranging standards
mandating that information technology be usable, where possible, by individuals with a variety

94 CHAPTER 2. Prior Work

of disabilities. For example, Section 508 requires that the functionality of operating systems like
Windows and MacOS be accessible without the use of a mouse or other pointing device because
many people lack the manual dexterity or vision to use such devices properly. Likewise, Section
508 requires that web sites be accessible by someone who cannot read text that is embedded in
downloaded images—as is the case for a blind person attempting to navigate a web site with a
screen reader.

Making products accessible to those with disabilities is not merely a question of legality, compliance
and markets. Many individuals view making systems accessible for those who are less fortunate as
“morally the right thing to do.”[TR03]

Nevertheless, prior to the passage of Section 508, there was little or no support for screen readers
in Microsoft Windows or for using Macintosh computers without a mouse. Thus, it seems that the
moral argument needed the legal requirement to become a powerful driving force. There is also
the issue of competitive pressure: Once support for accessibility moves forward on one platform,
other vendors feel compelled to work harder.

Regulations such as Section 508 can have far-reaching impact because they affect not only end-
user applications but also the tools that are used to create applications and the instruction of
future application developers. Ludi reports that accessibility APIs were added to Java, Macromedia
Shockwave, Flash, and Adobe Acrobat Reader only after the passage of Section 508. The popular
Dreamweaver web site authoring tool was modified to do Section 508 compliance checking. Stu-
dents in Ludi’s course “do seem to get the message, at least in the short term,” that it is important
to design web sites for equal access by all. [Lud02]

Of course, it may be that Section 508 is not the cause of these changes, but instead reflects a
growing awareness within our society of the need to design products so that they can be used by
the disabled. It is impossible to say for sure whether the passage of Section 508 was the cause
of these changes. But many people in the industry have written that they believe Section 508 is
causative.

For example, the task of creating Section 508-compliant software was eased significantly over the
past few years by the inclusion of new functionality within systems such as the Java Swing and
TrollTech’s Qt[Tro05] application toolkits. Although Section 508 may not be the reason that the
accessibility functionality was added to these systems, it is almost certainly the reason that the
functionality has been widely used.

As a result of Section 508, much of the commercial software sold in the United States can now
be readily used by people who have significant disabilities, whereas a decade ago this was not the
case.

Procurement mandates

Section 508 is a procurement law: its sole power comes from its prohibition on the Federal Gov-
ernment from purchasing technology for information services that do not meet its accessibility
requirements.® Given that the Federal Government is the largest purchaser of information tech-

®Like many Federal regulations, the law includes a system for requesting waivers and obtaining practical exclusions.

2.6. A BRIEF SURVEY OF REGULATORY AND OTHER NON-TECHNICAL APPROACHES 95

nology in the United States—accounting for 10% of all information technology expenditures—few
manufacturers are willing to give up this market.

Artman suggests that mandating specific usability requirements in law and regulation is more
effective than delegating this function to contract officers. That’s because contract officers fre-
quently have little or no training in these issues. “If the contract does not contain explicit require-
ments for usability, it is generally one of the first considerations to be cut if time or finances are
constrained.”[Art02]

What Section 508 covers

Previous attempts at using federal regulation to force the industry to comply with accessibility
guidelines were less successful than Section 508. For example, Section 504 of the 1973 Reha-
bilitation Act had mandated that those with disability receive equal treatment—for example, that
they have an equal opportunity for a full education—and Title II of the Americans with Disabilities
Act (ADA) of 1990 required that people with disabilities have the same access to communications
technologies as those without. But neither law provides clear and specific guidelines regarding
how which barriers should be addressed and how.[OR04] Section 508 does, as evidenced by the
standards shown in Figure 2-39

Corporations are free to create two different versions of their products: one for people who have
disabilities and one for people who do not. But economics of software makes this approach less
attractive. Once a product is adapted for use by those with disabilities with functionality that can
be switched on or off, there is only a tiny incremental cost associated with putting that function-
ality into all versions of the company’s product.” This tiny cost is invariably less than the cost of
maintaining two separate product lines.

Universal design

It is generally acknowledged that the beneficiaries of accessible design go far beyond the community
originally targeted. For example, the keyboard controls built in to the Windows operating system
are essential for those who cannot use a mouse, but they are also useful for “walk-about” mobile
computing when no mouse is available, or for when the computer’s mouse breaks. “Goods designed
inclusively for all people inevitably lead to products and services that benefit not only the original
target markets but other, mass markets as well.”[Mar03]

To those who work in the field of accessibility, designing a product so that it can be used by either
those with or without a disability is called universal design.

Coombs says that universal design can have immediate and far-reaching positive effects on a
much broader population than was originally intended: “Curb cuts were made to assist people
in wheelchairs, but they brought immediate benefits to people riding bicycles, pushing baby car-
riages, and so forth... Accessible Web design is the equivalent of electronic curb cuts. Everybody
benefits.”[OR04]

"The cost is not zero because the disability adaption must be tested and can result in technical support costs when
users accidentally turn the feature on and do not know how to turn it off.

96

CHAPTER 2. Prior Work

—_
—_

Section 508 requires that technology purchased by the federal government meet 16 standards
of accessibility:
1.

o N s wDd

—_
e

. Availability of audio cutoff—Systems that deliver speech output must provide a mecha-

12.

13.
14.

15.
16.

Usable by a person without vision

Usable by a person with low vision without relying on audio.

Usable by a person with little or no color perception.

Usable by a person without hearing

Usable by a person with limited hearing—for example, by providing audio amplification.
Usable by a person with limited manual dexterity, reach, and/or strength.

Usable without time-dependent controls or displays.

Usable without speech

Usable by a person with limited cognitive or memory ability.

Usable by a person with language or learning disabilities.

nism for private listening or a mechanism for interrupting the speech.

Prevention of visually induced seizures—systems that flash must use rates of 3Hz or
lower or 60Hz or higher to avoid inducing seizures in people with photosensitive
epilepsy.

Bypass of biometric identification or activation systems—because biometrics invariably
require existence or use of a piece of the body that not everybody has.

Usable with upper extremity prosthetics—systems that rely on capacitive sensing of the
human body should be replaced by those which rely on pressure.

Compatibility with hearing aids, through magnetic wireless coupling, for example.

Usable from a wheelchair or similar mobility device.

Figure 2-39: Specific requirements for access in Section 508.

Evaluating the impact of Section 508

Despite the incredibly wide-ranging impact that Section 508 has obviously had on the computer
and telecommunications industries in the United States, there has been some disagreement on just
how successful the measure has been.

For example, Podevin reported in December 2004 that 94% of the Fortune 100 web sites did not
have “fully accessible home pages.” Specifically, 20% were found to have one Section 508 bar-
rier, 17% were found to have 2 barriers, and a whopping 54% were found to have 3 or more
barriers.[Loi04] The 17% success rate is actually lower than the 20% success rate found by Za-
phiris and Zacharia in an analysis of 30,000 Cypriot Web sites—a set of web sites which would not
be covered by Section 508.[ZZ01] In another report of failed Section 508 compliance, Zaphiris and
Ellis report that only 30% of the top-50 US university web sites pass the usability requirements of
the popular “Bobby” automated accessibility checker.[ZEO1, Wat05]

2.6. A BRIEF SURVEY OF REGULATORY AND OTHER NON-TECHNICAL APPROACHES 97

Figure 2-40: An HTML tag that is not in compliance with the Bobby automated accessibility checker.[Wat05] A screen
reader might read this HTML element as “STAR DOT GIF”

<img src="star.gif" width=16 height=16
alt="Ornamental star image #5412; please ignore!">

Figure 2-41: An HTML tag that is in compliance with the Bobby automated accessibility checker.[Wat05] A screen
reader might read this HTML element as “ORNAMENTAL STAR IMAGE NUMBER FIVE FOUR ONE TWO; PLEASE
IGNORE!"

But there is a problem in basing an analysis of Section 508’s success solely on scores from an auto-
mated checker. While checkers like Bobby make it very easy for researchers to rapidly scan many
web sites and get an accessibility score, changes in Bobby scores over time may not accurately
capture the impact of Section 508 on its target population. This is because the Bobby score re-
ports literal conformance with specific HTML coding standards—it does not actually measure the
usability of web sites by users with disabilities.

For example, Bobby will declare a web site to be in violation of Section 508 if that web site has
a single ornamental image that lacks a textual ALT tag, as shown in Figure 2-40. But Bobby will
happily rate this the tag shown in Figure 2-41 as being in compliance with Section 508. For a blind
person using a screen reader, the first HTML form is far more usable than the second. [TRO3]

Yet another problem with using the web site Bobby ratings as the sole tool for judging the effec-
tiveness of Section 508 is that the web is a moving target. Hackett et al. sampled 40 web sites
from the years 1997 through 2002 using the Internet Archive’s Wayback Machine, They discovered
that even though the absolute number of accessibly violations increased, the percentage of viola-
tions compared to the number of potential violations significant decreased—dropping from a 63%
in 2000 to 41.7% in 2002. “This either suggests that some Web designers are becoming aware of
accessibility guidelines or that general ‘good practice’ in Web design happens to include elements
that also increase accessibility,” the authors conclude.[HPZ04] A more simplistic study that focused
on Bobby ratings alone would have yielded the reverse conclusion.

Finally, focusing on web sites, while easy, ignores the significant investment made by US businesses
in making desktop applications accessible.

Laura Ruby, program manager of Microsoft’s Accessible Technology Group, writes that Section 508
was criticized early on for having vague regulations that would lead to numerous lawsuits. “To-
day, two years after Section 508 was implemented, it looks as though the critics were wrong. By
offering the technology industry a carrot instead of a stick, Section 508 set the stage for a proac-
tive public/private partnership. Technology companies rushed to collaborate with government
officials.” [Rub03]

98 CHAPTER 2. Prior Work

2.6.7 Previous work on vocabulary as a barrier to usability and understanding

It is impossible for any regulatory effort to succeed without an agreement on underlying vocabulary.
Section 8.2 of this thesis goes further, arguing that the confusion over vocabulary is an important
factor in the current conflict between security and usability.

For an illuminating example of how confusion over basic vocabulary can contribute to failure,
consider Artman’s ethnographic study of a web-based application developed for a Swedish organi-
zation by the Swedish office of a US firm. Having taken a training course on usability issues, the
procurement officer wrote language into the contract specifying that she should be able to review
the “design” of the system’s prototype. But the procurement officer and the contractor used the
word “design” to mean different things:

e The procurement officer thought that the term “design” referred to the application’s over-
all functional requirements, the flow of information inside the application, and interactive
elements on the application’s screens.

e The contractor thought that the term “design” referred solely to the application’s “aesthetic
values”—specifically the design of the application’s screens. [Art02, p.68]

This fundamental confusion over a single word, design, disrupted the entire project’s attempt at
usability engineering. When the procurement officer requested paper prototypes, the contractor
responded by having his art department create finished screen designs and then printed them
out. The contractor thought that the request was unreasonable, given the current status of the
project. The procurement officer never showed these designs to users—necessary for “user-centered
design”—because they looked like finished pieces of work. And the procurement officer never
went back and demanded documents about functional requirements and data flow, because the
contractor had already fulfilled the requirement to present a “design.”

Words are the primary tool that humans use to convey information and concepts. But words can
be ambiguous or otherwise imprecise: In some cases a pair of words have the same meaning (e.g.,
two and a couple), while in other cases a pair of words can have meanings that are similar but
subtly different (e.g., heavy and weighty). Since many words have multiple meanings (e.g. white),
multiple readers of a document may walk away with meanings that are significantly different.

Technobabble

Barry explored the question of linguistic confusion in high tech in his 1991 book Technobable [Bar91].
While humorous and somewhat dated, this volume nevertheless remains one of the best discussions
of linguistic challenges in high tech. More than other areas of human endeavor, Barry asserts that
the computing field lends itself to the rapid proliferation of new and inconsistent terminology as
nouns are turned to verbs, verbs are turned to nouns, acronyms are turned to words, and so on.
Perhaps this is just an excellent example of modularity and object re-use, but it is tremendously
confusing to people who are not intimately familiar with the technology under discussion.

Academic IT babble

Confusion over vocabulary isn’t just a problem for industry: it affects academia as well. Alter’s
89-page article “Same Words, Different Meanings: Are Basic IS/IT Concepts Our Self-Imposed
Tower of Babel” explores how different articles in academic research on Information Technology are

2.6. A BRIEF SURVEY OF REGULATORY AND OTHER NON-TECHNICAL APPROACHES 99

systematically using the same words to mean different things. The genesis of the article was a series
of letters exchanged between Jim Sutter and Lorne Olfman in Communications of the Association for
Information Systems arguing whether or not there was “too much user participation in IS projects.”
Writes Altner:

“When I first glanced at Sutter’s letter my immediate response was disbelief since ‘any-
one knows that user involvement is important and beneficial.” Then I took another look
and realized that Sutter’s users were functional area managers and their representa-
tives, people with enough clout to become involved in discussions of technical IT strat-
egy whether or not they had much knowledge to contribute. These are people CIOs and
high level IT managers view as ‘their users’ but these aren’t the people I usually think of
as users, namely, people who use information systems directly.”[Alt00, p.4]

Alter’s article goes on to review 10 articles published in CAIS between June and December 1999 and
shows that the terms “System,” “User,” “Stakeholder,” “IS project,” “Implementation,” “Reengineer-
ing,” “Requirements,” “Solution,” and “Point of reference” have radically different meanings. He
argues that by not standardizing terminology, it is hard to be rigorous as different concepts mean
different things to different people. Imprecise terminology causes people to become confused, to
misunderstand what others are arguing, and, ultimately, hampers the course of progress.

Standards babble

Soderstrom comments on the same problem, arguing that the word “standard” has taken on so
many meanings that it is no longer possible to understand what people are about when they use
the word without qualification. A standard, Soderstrom notes, may be a specification, a recom-
mendation, a framework, a pattern, or, in fact, a standard. Sometimes “standards bodies” create
standards, but sometimes they create other things. And not all standards are created by standards
bodys! [S02]

Soderstrom gives and then mocks the European Software Institute’s definition of the word “stan-
dard.” A standard, she writes, is “a technical specification approved by a recognized standards
body for repeated or continuous application, compliance with which is not compulsory.” That is, a
standard is something that an organization chooses to follow because it has a choice not to follow.
Thus, an organization can only standardize on Microsoft Windows if its employees might realisti-
cally have the option of running MacOS or Linux. If Windows is the only possible operating system
to use, then there is no need to standardize on it!

The problem with this definition, notes Soderstrom, is that it makes the standard something that
are in the eye of the beholder. One organization might standardize on Windows, but other organi-
zations might simply use windows because it does not have a choice.

Why are programmers lax with vocabulary?
Cooper hypothesizes that programmers are particularly bad at choosing appropriate vocabulary for
user-facing applications because words are inherently less precise than source code:

“When the words are fuzzy, the programmers reflexively retreat to the most precise
method of articulation available: source code. Although there is nothing more precise

100 CHAPTER 2. Prior Work

than code, there is also nothing more permanent or resistant to change. So the situation
frequently crops up where nomenclature confusion drives programmers to begin coding
prematurely, and that code becomes the de facto design, regardless of its appropriate-
ness or correctness.” [Co099, p.186]

Another reason that programmers and mathematicians have difficulties in choosing a consistent
vocabulary may be that their profession and training teaches them to work with interchangeable
labels that stand for underlying values or concepts. Examples of such labels are variables used
within a program or a mathematical expression. In this context, it is easy to think of words as just
another set of interchangeable labels; as long as the underlying concept is the same, the actual
word that is used may be considered to be immaterial.

2.6.8 Lessons from the prior work on regulation

This review seems to imply that regulation could be a tool that could be used to promote features
that simultaneously increase security and usability in consumer software. Based on this analysis,
the kinds of regulations that are likely to be the most successful are those that:

e Mandate specific principles and implementation goals, rather than the use of specific tech-
nologies and approaches;

e Emphasize the labeling and disclosure of objectionable functionality, rather than attempting
to force its removal;

e Create typographical and linguistic standards for the presentation of security-critical informa-
tion.

We shall return to the question of using regulatory practices to align usability and security in Chap-
ter 8.

2.7 Conclusion

Like many other areas of computer science research, there is not a particularly good track record
on the transitioning of HCI-SEC research from the laboratory to practice. Likewise, even when
techniques for aligning usability and security have been developed and deployed in one application,
these techniques have generally not migrated to other products or systems in the way that other
good ideas have spread in the computer industry.

This thesis holds that one of the key factors limiting the diffusion of HCI-SEC practice is that good
HCI-SEC techniques have not been systematically identified and discussed. A second gating factor
has been the willingness to accept long-established models, mechanisms and designs for basic
functionality provided by operating systems and application programs, rather than redesigning
these systems so that they are more consistent with user expectations and can do a better job
supporting actual user needs.

	Prior Work
	Early Work in HCI-SEC
	Rules and Principles for Designing Usable Systems
	Properties, Models and Principles for Usable Security
	Specific Techniques for Aligning Security and Usability
	Prior and Related Work on Sanitization
	A Brief Survey of Regulatory and Other Non-Technical Approaches
	Conclusion

