
APPENDIX D

Two Email Proxies

Software for encrypting email messages has been widely available for more than 15 years, but the
email-using public has failed to adopt secure messaging. This failure can be explained through a
combination of technical, community, and usability factors.

As part of the work on this thesis, two email proxies were designed based on the design principles
and patterns outlined in Chapters 1 and 10 of this thesis. Those proxies, Stream and CoPilot, are
based on the same design principles but were created to serve different purposes:

• Stream: Written in C++ and deployed on MacOS and FreeBSD, Stream was designed and
written to be used in day-to-day operations. It functions as an POP and SMTP proxy, and
could also be used as a filter on a mail server.

• CoPilot: Written in python and shell script, CoPilot was created specifically for the purpose
of conducing the Johnny 2 user test. As a result, CoPilot actually had to be designed twice.
First a theoretical design was created to reflect how a system like CoPilot would actually be
written and deployed. But because CoPilot was used in a user test, an implemented design
also had to be created for the actual code that would be used to conduct the study.

The theoretical CoPilot system, like Stream, was designed to be deployable as a POP and
SMTP proxy, as a procmail filter, or as an Outlook Express plug-in. The implemented CoPilot
used in the user study was written in a combination of Python and shell scripts, it’s user
interface was framed HTML messages, and it’s sole purpose was to create those messages for
the user study.

Table D.1 compared Stream, the theoretical CoPilot design, and the practical CoPilot design.

413

414 CHAPTER D. Two Email Proxies

Stream CoPilot CoPilot
(implemented) (theoretical) (implemented)

Implementation Language C++ C++/C# Python & shell
Subject: line rewriting

Channel to User: Subject: line rewriting -or- Framed HTML
Outlook Express toolbar

Cryptographic Engine: PGP S/MIME & PGP S/MIME
Key distribution Hidden in header S/MIME attachment S/MIME attachment

Table D.1: A comparison of Stream vs. CoPilot

D.1 Proxy Philosophy
Through an application of the GOOD SECURITY NOW principle, these proxies all implement a
straightforward design philosophy that is designed to provide some security features for some email
messages now—and as a result let some email pass without security processing—rather than try-
ing to be an all-comprehensive email system that either secures all email now, or else provides
military-grade authentication for some email tomorrow. For the email proxies, this philosophy can
be distilled into several key points (patterns introduced in this thesis are noted where appropriate):

• Be unobtrusive—do not require an input from the user under normal circumstances. (Zero-
click security.)

• Be informative—tell the user what is going on, and make it possible for the user to learn
more. (Visibility of Actions.) EXPLICIT USER AUDIT

• If the user doesn’t have a key, create one. CREATE KEYS WHEN NEEDED

• Sign all outgoing messages. SEND S/MIME-SIGNED EMAIL

• Attach the user’s key to every outgoing message. LEVERAGE EXISTING IDENTIFICATION EMAIL-
BASED IDENTIFICATION AND AUTHENTICATION

• If possible, seal outgoing messages for each recipient. GOOD SECURITY NOW

• Inform the user of extraordinary happenings, and give the user a chance to discover routine
events.

• Do not cause significant usability problems for the recipients of the proxy user’s messages, or
who wish to send email to proxy user. NO EXTERNAL BURDEN

D.1.1 Philosophical justification
With a few notable exceptions, today’s email systems force users on every messages they send
whether that particular message will be sent with a digital signature and/or sealed for the recipient.
One common justification for giving users such low-level control is that cryptographic protection is
not always necessary—or even desired. Giving the user control ensures that the user will take the
right action.

The problem with this common justification is that it assumes a user who is unrealistically educated,
informed, and concerned.

D.1. PROXY PHILOSOPHY 415

Figure D-1: Outlook Express 6 shows OpenPGP-signed
messages as a blank message with two accompanying at-
tachments: one for the original message, and one for the
signature.

Figure D-2: When an S/MIME-signed message passes
through the Mailman mailing list software, Outlook Express
6 displays the result as a brief message containing the mail-
ing list “boilerplate” with two attachments: one for the orig-
inal message, and one for the S/MIME signature. The rea-
son for this failure is that mailman adds its boilerplate by
taking the original S/MIME message, encapsulating it in an
S/MIME envelope, and then adding a new text/plain
part that contains the boilerplate. Outlook Express 6’s
S/MIME implementation does not understand this second-
level encapsulation and act appropriately, even though it is
allowable by the standard.

For example, if a message signed with an OpenPGP signature is sent to an Outlook Express user,
the message and its signature both appear as attachments on an empty message (Figure D-1). If an
S/MIME-signed message is sent to a Mailman mailing list that adds a footer as an attachment, then
Outlook Express will display both the original message and the S/MIME signature as attachments
on the mailing list footer—even though Outlook Express allegedly implements the S/MIME standard!
(Figure D-2) This is because the Outlook Express S/MIME implementation is incomplete. Ordinary
users are in no position to learn these rules, learn the capabilities of their correspondents, and then
consistently apply the rules as needed. More likely, they will stop using the mail security technology
entirely.

The proxies developed for this thesis take a different approach. They remove decision making from
the user, and instead attempt to “do the right thing” based on the information that they have. The
theory is that the proxy is in a better position to notice and track specifics such as email clients used
by correspondents, rather than forcing the user to remember such minutia and take it into account
when each mail message is sent. When the proxy cannot determine if an email security capability
can be used, it should fall and not use it, if there is a possibility that the use of the proxy will cause
a burden to the user’s correspondents.

416 CHAPTER D. Two Email Proxies

D.1.2 Private key migration
When encryption keys for digital signatures and sealing are created dynamically on a client com-
puter, there needs to be some provision for backing up these keys in a secure manner. If keys are
to be backed up, then that backup has to happen either manually or automatically.

Programs like PGP provide manual systems for backing up and restoring both public and private
keys. Whitten and Tygar tested PGP’s facility for backing up keys and found it wanting.[WT98]
Manual key escrow further violates one of the design principles of the proxies described in this
appendix: if backup is manual, then the proxies cannot be unobtrusive. Outlook Express and
Thunderbird provide for manual backing up and migration of private keys in PKCS12 files, but this
functionality is difficult to use.

Instead, a variety of techniques were envisioned for automatically backing up the keys created by
Stream and CoPilot:

• The most straightforward approach was for the proxy to e-mail to the user’s own mail ac-
count a copy of the public and private key pairs. If there are multiple instances of the proxy
downloading mail from the same mailbox—perhaps by using POP’s “leave mail on server”
option—then each of those instances would receive access to the same private key material.
This approach implicitly trusts the maintainer of the email system with the user’s private key.
Such trust can be reduced by asking the user for a password when the proxy is installed, and
using that password to encrypt the private key material before it is sent.

• If the proxy is downloading email from an IMAP server, then the key can be uploaded to the
server as an attachment to a special message stored in the inbox.

• Finally, the key can be stored on an Internet-based synchronization service that is protected
by an independent username/password service. This is the approach that Apple MacOS 10.4
takes for synchronizing usernames, passwords, public key certificates, and private keys stored
in the Apple keychain through the “.Mac” online subscription service.

Migrating and protecting private keys needs to be an important part of any email security system.
But according to the survey of Amazon.com merchants presented in this thesis, of the 414 people
responding to the question, only 33% knew that they would be unable to access the content of
an email message if they lost the private key needed to unseal it! (When only the 102 users of
cryptography were considered, the number of those who realized that they needed to retain their
key rose to just 56%.) Thus, automatic key migration needs to be part of any system that is intended
for significant widespread use.

Although the proxies presented here did not implement key migration, such a system could easily
be added.

D.2 Stream: A PGP Proxy
Stream operates as a filter on outgoing email messages through the use of an SMTP proxy, and on
incoming email messages through the use of either a POP proxy or (in the case of IMAP), as a filter
that can be used by procmail[vdBG05] or placed directly in a “.forward” file.

D.2. STREAM: A PGP PROXY 417

Mail Server

Signed and
possibly sealed

message

Possibly
sealed and/or signed

message

POP
proxy

SMTP
proxy

stream
db

Unsealed
message

Unsealed,
unsigned
message

Mail Client

☹ ✉
✍

✉
✍

"+" in incoming
Subject line

indicates message
was sealed.

Subject: +Secret Message

Subject: +Confidential Response

"+" in outgoing Subject
line indicates message

must be sealed

Can't
seal❶

❷
❸

❹❺

Figure D-3: The stream system design. ÊMessages are downloaded to the stream systems through the POP proxy,
which unseals sealed messages and verifies the signatures of signed messages. ËUnsealed messages are passed
to the mail client. ÌMessages that are sent out from the mail client are signed and optionally sealed. ÍThe signed
and possibly sealed message is to the SMTP server, and from there, to the intended recipient. ÎIf a message Subject:
line contained the mandatory encryption character and Stream was unable to encrypt the message, the message is
returned to the sender via the POP proxy.

D.2.1 Sending mail
As an outgoing filter, Stream automatically performs these actions for each outgoing message M :

1. Determines the sender’s email address E.

2. Creates a public/private key pair for address E (KE) if one does not exist.

3. Places a copy of KE in M ’s message header using the approach described in Section 5.4.

4. Evaluates the recipients (R1...n) of M :

(a) If there are other recipients on the original message for which Stream has the keys on
file:

i. Those keys are extracted from the sender’s PGP keychain and signed.
ii. These signed keys are then embedded in the message’s MIME headers.

(b) If a public key (KR) for R is known, Stream:
i. Encapsulates M ’s original mail header within message M .

ii. Adds to this encapsulated header the key fingerprint for each recipient’s encryption
key.

418 CHAPTER D. Two Email Proxies

 Alice sends Bob a
cleartext message with

her public key embedded
in the header.

Alice Bob

{+key}

 ✉

Alice's key and email
address are added to the

Stream database.

{+key}

{+key}

Bob's reply to Alice is
automatically sealed with
Alice's key; Bob's key is

embedded in the header.

{+key}

❶ ❷

❸

Figure D-4: Stream’s key distribution system ensures that the first reply from a stream user to a second Stream users’s
message will be cryptographically sealed. ÊAll stream messages include a copy of the sender’s public key hidden in
the MIME headers. ËWhen a message containing a hidden key is received, Stream automatically incorporates the key
into the program’s key database. ÌWhen the recipient of the message (Bob) replies to the sender, the message is
automatically encrypted by a copy of Stream that proxies the sender’s outgoing messages.

iii. Creates a new sanitized mail header for message M containing a single To: address
and a nondescript Subject: line.

iv. Encrypts M for the recipient and sends the message out through SMTP server SS.
(c) If the public key (KR) is not known:

i. If the message Subject: line contains the mandatory encryption character, the
message is sent back to the sender with a brief message added to the top indicating
that the message could not be encrypted for recipient R.

ii. Otherwise, the message is sent to recipient R without first being sealed.

Stream provides opportunistic encryption: if the email message can be encrypted, it is. If it cannot
be encrypted, it is sent without encryption. This behavior mimics the behavior of many encryption
users: they use it if they can, but if they can’t, they send their message anyway. However, Stream
gives users a simple mechanism to override this behavior: a special character (currently the plus
sign) is added to the beginning of the Subject: line.

D.2.2 Receiving mail
As an incoming filter, Stream automatically performs these actions on each incoming message M :

D.2. STREAM: A PGP PROXY 419





Claire

 Bob

Alice {+key claire}bob

{+key alice}bob
{+key bob}

To: Alice
cc: Claire
Subject: Introduction

Dear Alice, I wanted
to introduce you to Claire.

---Bob

❶ Bob sends an email
message to both
Alice and Claire.

❷ Stream signs a copy of Claire's
key and attaches it to the
message that is sent to Alice.

❸ Stream also signs a copy of
Alice's key and attaches it to the
copy of the message that is sent
to Claire.

❹
Alice and Claire can now
exchange sealed mail.

Figure D-5: Stream provides for the opportunistic distribution of keys and peer-to-peer cross-certification, building upon
the PGP “web of trust.”[Gar94] In this example, ÊBob sends an email message to both Alice and Claire. Stream splits
this message into two messages, one scheduled for delivery to each recipient. ËStream signs a copy of Claire’s key
and attaches that key to the message that Stream sends to Alice. ÌStream also signs a copy of Alice’s key and attaches
it to the copy of the message that is sent to Claire. ÍNow Alice and Claire can immediately exchange secure mail, as
they have been given copies of each other’s keys, and those keys have been certified by Bob.

1. Remove any mail headers from the message that have X-Stream prefixes.

2. Remove the mandatory encryption character from the beginning of the Subject: line, if it is
present.

3. Determine if an encryption key is present in the mail header.

(a) If so, the key is added to the user’s key database.
(b) If this is a new key KE for an existing email address E in the database, the user is

notified of this fact. (Stream’s method of communicating with the user is to send the
user additional email messages.)

4. If the message is sealed with encryption:

(a) Stream unseals the message.
(b) Unencapsulate the encapsulated mail headers.
(c) If key fingerprints were present, Stream verifies that the fingerprints on the encapsulated

message headers match those for the copies of the keys in the key database.
(d) If the fingerprints do not match, a warning is sent to the recipient.

420 CHAPTER D. Two Email Proxies

(e) Insert the mandatory encryption character at the beginning of the Subject: line.

5. If the message is digitally signed:

(a) If a key is on-file, verify the signature.

(b) If the signature verifies, insert an X-STREAM mail header indicating this fact. (This
allows sophisticated users to look at headers to verify signatures, should they choose to
do so.)

(c) If the signature doesn’t verify, modify the Subject: line to indicate this fact. (For example,
by adding the words “(BROKEN SIGNATURE”) to the end of the Subject: line.)

In the above description, the phrase “beginning of the Subject: line” means the text that follows
the colon and following space, ignoring any number of repeating ”Re:” sequences.

Stream was developed in the fall of 2002 and used successfully by the author on MacOS, FreeBSD,
and Windows. A paper on the technology was presented at the 2003 National Conference on Digital
Government Research.[Gar03b]

D.2.3 Stream evaluation
Stream was intended to be a workbench for refining the technique of placing hidden signatures
and keys in e-mail messages; to demonstrate the viability of a transparent encryption property; and
to evangelize the philosophy that cryptography with weak email-based authentication was better
than email without cryptographic protections at all.

Although Stream was reasonably successful in each of these goals, the software failed to achieve any
adoption. The reason was not that nobody wished to download and install the program. Instead,
the reason was that people didn’t wish to go through the trouble of downloading software that
implemented a cryptographic email protocol that wasn’t compatible with any other system that
was currently deployed. This proved to be a fairly dramatic lesson and it guided the design of the
CoPilot system.

D.3 CoPilot: A Proxy or Plug-In that Implements KCM
CoPilot is the second proxy designed to implement the philosophy presented earlier in this ap-
pendix. CoPilot builds on the experience of the Stream project with the primary realization that
it is better to leverage the existing email security technology that has been deployed over the past
decade, rather than try to deploy a technology that implements a fundamental new standard.

Although there are many acknowledged problems with the S/MIME mail security standard—and
even more with today’s S/MIME implementations—it is the standard that has been deployed. The
philosophy of CoPilot is that it is better to use the standards that are deployed, rather than waiting
for better ones to come along.

The primary problem in automating S/MIME is that today’s S/MIME agents generate annoying
warning messages when they encounter email messages that are signed using Digital IDs that were
not issued by trusted CAs. CoPilot proposes two approaches to this solution:

D.3. COPILOT: A PROXY OR PLUG-IN THAT IMPLEMENTS KCM 421

• CoPilot could be distributed with an agent that can perform the necessary challenge-response
process with the Thawte web site and obtain a Thawte FreeMail certificate. At the present
time, the only information that Thawte appears to validate for obtaining these certificates is
the user’s email address. Since CoPilot would have access to that email address, the entire
acquisition process could be automated.

• Alternatively, CoPilot could be distributed with both the private key and the public key of “the
permissive CA”—that is, the CA that is willing to sign any digital certificate. (What makes the
CA permissive is the fact that its private key has been compromised by being distributed with
CoPilot.) Because CoPilot implements the TRACK RECIPIENTS pattern, it is able to differentiate
between the S/MIME users who have installed the permissive CA and those who have not.

CoPilot was created to demonstrate the viability of Key Continuity Management. But this thesis does
not argue that Apple, Microsoft, and their customers should abandon today’s Certificate Authority-
based solutions. Instead, the argument is that today’s products need to more sensibly handle the
case when signed email is received for which the Digital ID was not created by a recognized signing
authority. By addressing this particular case in a manner that is consistent with the principles
outlined in this thesis, the use of S/MIME can be dramatically increased.

422 CHAPTER D. Two Email Proxies

Outlook / Outlook Express

Mail Server

POP SMTPIMAP

Message Display

CoPilot
db

CoPilot Plugin

Trusted
Display
Channel

CoPilot Plug-in

Track Received Keys

Track Recepients

Distinguish Internal Senders

Send Signed

Create Keys When Needed

Figure D-6: The design of the CoPilot Plug-in for Outlook Express specifies that CoPilot monitors incoming mail (from
POP or IMAP) and outgoing SMTP. As with Stream, CoPilot is able to unseal messages as they are downloaded and
automatically sign and/or seal messages as they are sent. Unlike Stream, CoPilot uses a piece of reserved real estate
in the Outlook Express window to convey information to the user. CoPilot also maintains a database of keys that have
been received and the inferred capabilities of the key holders.

D.3. COPILOT: A PROXY OR PLUG-IN THAT IMPLEMENTS KCM 423

Mail Server

POP SMTP

Message Display

pre-computed
rules

Unmodified Outlook Express

Send Signed

keys imported in advance

Experimenter

Experimental Subject

Unix Pipe

CoPilot

SMTP

keys created in advance

Figure D-7: The actual CoPilot system that was developed for the Johnny 2 experiment. Keys were created in advance
using OpenSSL and imported directly into the copy of Outlook Express running on the subject’s workstation. The rules
for each message were pre-computed in advance to infer whether messages should be displayed with the yellow, green,
red, or gray borders. Messages were transmitted to CoPilot through a Unix Pipe. The CoPilot then opened an SMTP
connection to the Unix server and sent the messages. These were then displayed using an unmodified copy of Outlook
Express.

	Two Email Proxies
	Proxy Philosophy
	Stream: A PGP Proxy
	CoPilot: A Proxy or Plug-In that Implements KCM

