
NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

THESIS
A FRAMEWORK FOR AUTOMATED DIGITAL

FORENSIC REPORTING

by

Paul F. Farrell Jr.

March 2009

Thesis Advisor: Dr. Simson Garfinkel
Second Reader: Chris Eagle

Approved for public release; distribution is unlimited

THIS PAGE INTENTIONALLY LEFT BLANK

ii

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering
and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to
comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:
a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18i

16–3–2009 Master’s Thesis 2007-01-01—2009-10-31

A Framework for Automated Digital Forensic Reporting

Paul F. Farrell Jr.

Naval Postgraduate School
Monterey, CA 93943

Approved for public release; distribution is unlimited

Forensic analysis is the science of finding, examining and analyzing evidence in support of law enforcement, regulatory
compliance or information gathering. Today, almost all digital forensic analysis is done by humans, requiring dedicated
training and consuming man-hours at a considerable rate. As storage sizes increase and digital forensics gain importance in
investigations, the backlog of media requiring human analysis has increased as well. This thesis tests today’s top-of-the-line
commercial and open source forensic tools with the analysis of a purpose-built Windows XP computer system containing two
users that engaged in email, chat and web browsing. It presents the results of a pilot user study of the PyFlag forensic tool.
Finally, it presents a technique to use software to do a preliminary analysis on media and provide a human readable report to
the examiner. The goal of the technique is to perform rapid triaging of media and allow the human examiner to better prioritize
man hours towards media with high return on investment.

Forensic, Domex, Pyflag, Automation

Unclassified Unclassified Unclassified UU 109

THIS PAGE INTENTIONALLY LEFT BLANK

ii

Approved for public release; distribution is unlimited

A FRAMEWORK FOR AUTOMATED DIGITAL FORENSIC REPORTING

Paul F. Farrell Jr.
Lieutenant, United States Navy

B.S., United States Naval Academy, 2002

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
March 2009

Author: Paul F. Farrell Jr.

Approved by: Dr. Simson Garfinkel
Thesis Advisor

Chris Eagle
Second Reader

Dr. Peter Denning
Chair, Department of Computer Science

iii

THIS PAGE INTENTIONALLY LEFT BLANK

iv

ABSTRACT

Forensic analysis is the science of finding, examining and analyzing evidence in support of
law enforcement, regulatory compliance or information gathering. Today, almost all digital
forensic analysis is done by humans, requiring dedicated training and consuming man-hours
at a considerable rate. As storage sizes increase and digital forensics gain importance in
investigations, the backlog of media requiring human analysis has increased as well. This
thesis tests today’s top-of-the-line commercial and open source forensic tools with the analysis
of a purpose-built Windows XP computer system containing two users that engaged in email,
chat and web browsing. It presents the results of a pilot user study of the PyFlag forensic tool.
Finally, it presents a technique to use software to do a preliminary analysis on media and provide
a human readable report to the examiner. The goal of the technique is to perform rapid triaging
of media and allow the human examiner to better prioritize man hours towards media with high
return on investment.

v

THIS PAGE INTENTIONALLY LEFT BLANK

vi

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 This Research . 2

2 Background, Existing Tools and Methodologies 3
2.1 Forensic Methodology . 3
2.2 Relevant Forensic Techniques . 4
2.3 Identity Resolution . 6
2.4 Current Tools . 6

3 An Analysis of Today’s Batch Reports 11
3.1 Building a Test Image Containing Realistic Data 11
3.2 An Analysis of Current Batch Reports 13
3.3 Default Reports Comparison . 18
3.4 A Brief PyFlag User Study . 21

4 A Vision for Automated Media Reporting 27
4.1 Automated Ingestion . 27
4.2 Automated File Analysis . 28
4.3 Automated Reporting . 30
4.4 Report Distribution . 32

5 PyFlag Implementation 33
5.1 AIM Plugin . 34
5.2 Report Plugin. 36
5.3 PyFlag Limitations . 39

6 Results on Realistic Data 41

7 A Proposed Framework for Automated Reporting 43
7.1 Requirements . 43
7.2 How We Would Implement It . 49

8 Conclusions and Future Work 55

vii

Contents Contents

8.1 Conclusions . 55
8.2 Future Work . 56

Appendices

A Sample Conceptual Report 59

B Actual Generated Report 63

C Sample Adium Log 71

D Sample Pidgin Log 73

E Sample AOL Instant Messenger Log 75

F userreport.py 77

G domex.py 81

H IMLogMagic.py 83

List of References 87

Referenced Authors 91

Initial Distribution List 93

viii

List of Figures

2.1 A section of a Scalpel configuration file . 9

3.1 The Encase user interface. 15

3.2 Encase Batch Report. 16

3.3 Encase Batch Gallery. 17

3.4 The FTK User Interface. 18

3.5 FTK Batch Gallery. 19

3.6 FTK Batch Emails. 20

3.7 Autopsy user interface. 21

3.8 Autopsy general report. 22

3.9 Autopsy file browsing. 23

3.10 PyFlag Scanning Options . 24

3.11 PyFlag File View . 25

3.12 PyFlag Image Report . 26

4.1 An Automated System State Diagram . 28

ix

THIS PAGE INTENTIONALLY LEFT BLANK

x

List of Tables

2.1 Forensic tools, their costs and customization ability 8

3.1 Test system that was used to generate realistic data image 11

3.2 Analysis Time of Realistic Image . 18

3.3 Tasks performed by the users in the pilot PyFlag user study 26

5.1 PyFlag msn users table in MySQL . 35

5.2 PyFlag msn session table in MySQL . 35

5.3 PyFlag tables in MySQL . 38

7.1 Features Table . 50

7.2 Seen Features Table . 50

7.3 ID Table . 50

xi

THIS PAGE INTENTIONALLY LEFT BLANK

xii

Acknowledgements

I would like to thank everyone who has helped me while in Monterey. Steve Bassi, Greg
Roussas, Kyle Sanders, Jessy Cowan-Sharp and Andrew Slack, thank you all for your support
and friendship, it has made my time in Monterey something I will always remember. Professor
Chris Eagle, thank you for your patience, your encouragement, and for letting me be a part of
your sk3wl. Dr. Simson Garfinkel, without you this thesis would never be finished. I admire
your curiosity, your drive, and your dedication and count myself lucky to have the privilege of
working with you. Mom, Dad and Allison, thank you for always being there for me, even when
were coasts apart. Finally, to my beautiful wife, thank you for everything, I would not be where
or who I am without you.

xiii

THIS PAGE INTENTIONALLY LEFT BLANK

xiv

CHAPTER 1:
Introduction

1.1 Motivation

The amount of data in the world is increasing. In 2002, about 5 exabytes of new data were
created, growing 30% yearly since 1999 [36]. The proliferation of digital information storing
devices is incredible, and shows no sign of slowing. With smart-phones, iPods and digi-
tal cameras, the average American has more storage on his or her body than the first Cray
supercomputers[9]. In 2003, 62 million US households owned computers connected to the
Internet[34]. In 2008, one terabyte hard drives are sold for $100. With cheap storage, broadband
Internet connections for sharing, and ease of digital creation thanks to still and video cameras,
some researchers warn of the oncoming “Exaflood” of information[33] .

As storage becomes cheaper and personal hard drives become larger, the task of the digital
investigator grows geometrically harder. Individuals own more and larger media devices than
ever before, and sometimes when a crime is committed, evidence may exist somewhere on one
of the devices. It is the job of the digital investigator to find what evidence exists and recover
that evidence in a sound manner.

One only has to look to the FBI to realize how important digital forensics has become in serious
criminal cases. In 2007, the FBI opened it’s 14th Regional Computer Forensics Laboratory
(RCFL) and handled 76,581 pieces of media, up from 59,677 in 2006. Nine of the 14 labs
reported a larger backlog at the end of 2007 than at the start, despite the increases in funding
and staffing levels. In their 2007 annual report, the RCFLs state that “The capacity of electronic
devices continues to increase, examiners must review more and more data. Therefore, even if
the number of requests decreases, the workload either remains steady or actually increases in
many cases”[17]. That same report emphasizes the importance of computer forensics in high
profile cases, such as the Bike Path rapist[17], the foiled Fort Dix terrorist attack, and Operation
Remaster, the largest piracy case in U.S. history.

As the search space grows faster than law enforcement’s ability to search, there exists an
opportunity for software to step in and take some of the load from law enforcement personnel.

1

This thesis argues that the current generation of forensic tools are not up to the task because
these tools are designed for manual operation by a trained operator. What is needed, instead, is
a new generation of tools that can perform automated analysis and reporting.

1.2 This Research
With the potential mountains of information related to any investigation, the forensic examiner
has to prioritize their man hours. In large cases it may be infeasible to exhaustively analyze
every piece of media. The media must be prioritized for potential evidence it may contain.
If multiple computers are seized, the examiner may have no idea which hard drive contains
the evidence they are looking for. This thesis proposes an automated reporting system that
will give the examiner a brief summary of the data residing on a piece of media. Important
information may include email and instant messaging accounts, digital pictures and movies, as
well as external devices registered with a particular operating system such as digital cameras or
iPods. The report can also look for particular data of interest and flag it for priority analysis,
such as images taken by the same camera associated with child pornography. Once the media in
a case is ingested and the reports are generated, the examiner can then prioritize their in-depth
analysis towards high probability media.

2

CHAPTER 2:
Background, Existing Tools and Methodologies

The computer forensic field is very active in both the commercial and research sectors. Com-
mercial tools provide standardized interfaces, storage formats, training, certification and support
to the forensics community. Some are formally reviewed, tested and analyzed by the National
Institute of Standards and Technology (NIST) Computer Forensic Tool Testing (CFTT) program
[28] other tools are used without formal testing, raising potential problems if the results are
challenged in court.

2.1 Forensic Methodology
There have been many attempts to create a formal methodology for digital forensics. Such a
methodology not only aids in training and practice, but also serves as a guide in future tool
development. In 2001, The Digital Forensic Research Workshop (DFRWS) identified a seven
step process as identification, preservation, collection, examination, analysis, presentation, and
decision[13]. In 2004 the U.S. Department of Justice (DOJ) released Forensic Examination of

Digital Evidence: A Guide for Law Enforcement. This guide outlines 3 principles for digital
forensics:

• Actions taken to secure and collect digital evidence should not affect the integrity of that
evidence.

• Persons conducting an examination of digital evidence should be trained for that purpose.

• Activity relating to the seizure, examination, storage, or transfer of digital evidence should
be documented, preserved, and available for review[35].

In addition to these principles, the Guide explains the steps necessary for digital forensics as
assessment, acquisition, examination, and document and reporting.

In his 2005 PhD dissertation, Carrier describes the concepts as transfer, identification, clas-
sification, individualization, association and reconstruction [6]. These separate but similar
approaches all share common concepts and generalized steps, namely to obtain the data, to
analyze the data and to yield a result from the data.

3

2.2 Relevant Forensic Techniques

One of the reasons that digital forensics is such a demanding profession is that it requires
mastery of many different, highly specialized techniques. An added complication is that most of
these techniques are in a constant state of flux given the speed with which the industry changes.

2.2.1 Imaging

One of the first techniques used in a digital forensics investigation is to image, or copy, the
media to be examined. Though this seems to be a straightforward step at first, modern Operating
Systems (OSs) perform many operations on file systems when connected, such as indexing or
journal resolution. Without care, media can be modified, however slightly, and the integrity of
the evidence can be compromised. For example, OSs that index files may modify the access
times of the files being indexed or the act of mounting a disk may cause data in the disk journal to
overwrite other data. A trained investigator is required to have intricate knowledge of different
operating system behaviors so that residual data will not inadvertently be overwritten.

Both hardware and software solutions have been created to allow imaging that does not modify
the drive. For most OSs, there are procedures to follow to protect the media to be imaged.
This involves disabling auto-mounting services and accessing the raw device directly. There
are also hardware solutions, in the form of write blockers, that physically prevent the OS from
modifying the media. Write blockers are most common for hard drives, and provide several
variations on implementation technique.

Once the investigator is assured that the source disk will not be modified, the data must be copied
off the source disk for analysis. Once again, this seemingly simple procedure has important
details that must be considered. A physical media device is normally made of addressable
blocks where data is stored. These blocks can be grouped into multiple partitions per device,
with potential gaps between the partitions. Partitions are then formatted into filesystems, with
certain blocks containing metadata and control data for the file system. To ensure all information
is accurately copied from media, the media must be imaged at the block level. Also, if the
original media is damaged or presents input/output errors, the imaging software must account
for the error, yet try to recover as much of the data as possible.

Imaging is a complex and important task in the realm of digital forensics. To support law
enforcement and industry alike, the National Institute of Standards and Technology (NIST),

4

has created the Computer Forensic Tool Testing (CFTT) Program. CFTT has set standards,
created testing utilities, reviewed and certified disk imagers, file recovery software, hardware
and software write blockers[28].

2.2.2 Hashing

To quickly identify a file and to provide authenticity that an image or file was not modified, the
forensic community adopted cryptographic hashing. Modern hashing functions use one way
cryptographic functions to obtain a hash. The uniqueness of the hash depends on the crypto-
graphic function used. MD5 hashing was developed in 1991 by Ron Rivest [?] and was rapidly
adopted by the forensics community. NIST soon decided upon SHA-1 as the federal standard
[27], but the forensic community continued to use MD5 in most tools because it was faster and
produced a shorter hash. In 2004, MD5 was shown to be insecure by Chinese researchers[38].
This research makes relying on MD5 hashes alone questionable in legal contexts.

NIST collects software to hash for it’s National Software Reference Library project. NIST
hashes the files collected with both MD5 and SHA-1, and plans additional functions in the
future[29]. NIST also plans to distribute hashes of individual file ”blocks”. These hashes are
distributed as the Reference Data Set (RDS). The RDS is distributed in 4 compact disc iso
images, with RDS 2.21 covering 47,553,722 known files with 14,563,184 unique hashes.

Since basic hashing provides drastically different results for a 1 bit change in a file, research
is underway to provide approximate hashing. State of the art in hashing is Multi-Resolution
Similarity Hashing based on context triggered piecewise hashing, using hash similarities to
form edit distances between files[31].

2.2.3 Carving

One category of tools in the digital forensic toolkit is called file carvers. These tools allow the
scanning of disk blocks that don’t belong to current files to find deleted data. Carvers use known
header and footer signatures to combine these ‘unused’ inodes into the original files that were
deleted[23]. Carving can recover deleted but not overwritten files as well as temporarily cached
files on media. An analysis of carving techniques was performed by Mikus in 2005 [25].

Recent advances in carving allowing fragmented files to be recovered with more accuracy.
Garfinkel demonstrated file carving with object validation [18], showing it was possible to

5

validate whether blocks belonged to certain files as they are carved out, allowing fragmented
files to be recovered intelligently. In 2008 Pal took validation further to present Sequential
Hypothesis Testing using earlier work in Parallel Unique Path [30]. This allowed largely
fragmented files to be recovered as long as a sufficient validation function exists for the filetype.
Also in 2008 Cohen described advanced JPEG carving, creating a jpeg validator based off of
the open source libjpeg and a distance function to find sudden image changes, indicative of an
invalid reconstruction[8].

2.3 Identity Resolution
Resolving individual pieces of data or information to an owner or identity is a significant
problem in forensics cases. Where multiple users could exist on a single machine or network
capture, the process of data ascription becomes complicated. Two techniques for resolution
are heuristic techniques like Jonas’s work for IBM[24], and probabilistic machine learning
techniques developed by researchers for law enforcement[37]. Data is correlated together from
various sources into a database and then pointed to by an entity entry meant to represent a
person. As more data is ingested, an entity may gain more pieces of data for greater resolution,
or new information may arise that causes an entity to split into separate entities. The pieces
of data that an entity owns may represent communication to other entities and social networks
may now be formed in the database for further analysis.

2.4 Current Tools
The forensic market has created many opportunities for commercial ventures and popular for
open source alternatives. Standalone tools that perform specific functions such as extraction of
EXIF data from JPEG, are constantly being developed and distributed in the academic and open
source communities. These novel functions are eventually incorporated into larger analysis
suites. These suites are typically large GUI-based programs that allow an analyst to explore and
search the data on a hard drive.

The remainder of this section discusses the most popular forensic suites.

2.4.1 EnCase

EnCase is a forensic suite sold by Guidance Software, certified by the NIST CFTT, and used
by many law enforcement agencies throughout the United States. “EnCase Enterprise is a
powerful, network-enabled, multi-platform enterprise investigation solution. It enables imme-

6

diate response to computer-related incidents and thorough forensic analysis. It also preserves
volatile and static data on servers and workstations anywhere on the network, without disrupting
operations[22].”

EnCase uses a proprietary file format to store its images[19]. The open source library libewf[2]
allows other forensic tools to use these images. EnCase has a complicated interface that requires
many steps and operations before actionable intelligence can be returned in an investigation.
EnCase provides a basic scripting language to automate common tasks in the suite and scripts
are often traded in the user community. This scripting language allows custom carving, ex-
tracting and reporting, though the reports are limited to within the EnCase viewer and are not
immediately able to cross reference other cases. The source code is closed and users are not
able to add their own extensions to the program.

Proper EnCase usage, especially in a law enforcement environment, often requires advanced
training, which can cost up to $5,000 for a one-week course[21]. Guidance Software made $35
million from service and maintenance related income in 2007, almost 44 percent of its overall
revenue[20].

2.4.2 FTK

Forensics Tool Kit (FTK) is a forensics suite sold by AccessData. FTK is another commercial
tool with a steep learning curve for its users. Like EnCase, FTK has been validated in court-
rooms with legal precedent [1]. FTK provides more data rich reports in the default interface than
EnCase. FTK does not provide a scripting language and does not allow users to add additional
functionality.

2.4.3 Sleuthkit

The world of open source forensics is dominated by The SleuthKit (TSK)[5], the primary tool
for extracting files from disk images. TSK is an open source suite of digital forensic tools based
on the original The Coroner’s ToolKit tool set[15]. TSK supports file system browsing, string
searching, timeline building, and other reports. TSK also has a programming library, allowing
other programs to be written on top of it.

Although SleuthKit can be run from the command line, many practitioners find it easier to use
a graphical user interface. Two such graphical interfaces are Autopsy[4] and PTK[11]. Both

7

Name Scripting Cost
EnCase Yes $2,708.31

FTK No $2,557.44
Sleuthkit Yes Free
PyFlag Yes Free

Table 2.1: Forensic tools, their costs and customization ability

Autopsy and PTK are little more than graphical shells which run the TSK commands as child
processes and present the results in a web browser for easier visualization than the command
line tools.

2.4.4 PyFlag

The Australian government has released the Python Forensic and Log Analysis GUI (PyFlag).
PyFlag is an open source forensics suite designed for media and network analysis. PyFlag
imports a case image into a back-end database where persistent information is stored for access
through a web browser from a client workstation[7]. In practice the database can be on the same
system as the client, allowing for a mobile deployment, or on a central server, allowing many
investigators to work n the same case at the same time. PyFlag uses TSK for underlying image
access and builds individual file analysis, extraction and reporting on top of TSK[7]. PyFlag
provides its own scripting language called PyFlash and also allows users to write their own
extensions to the suite in python. PyFlag has proven its usefulness by being the main tool to
solve the DFRWS 2007 and 2008 forensic challenges.[14].

2.4.5 Stand Alone Carvers

In addition to the tools above, there are several stand alone file carving utilities. Many require
compilation and linking to an array of libraries. Very few are maintained in the popular reposi-
tories for easy installation. System specific compilation and configuration options are common,
and almost all run solely on the command line. The most popular open source carving tools
are scalpel by Kornblum[23] and its derivative foremost by Richard[26]. Also available are
photorec by CGSecurity and Magic Rescue by Jensen. Scalpel and Magic Rescue rely on
‘magic bits’ of files, often referred to as headers, to identify files for recovery. (For example,
Figure 2.1 shows the complexity of the Scalpel configuration file.) While training is normally
available free online and users can interact with the developers via email and IRC, the average
user can quickly become lost in command flags and version skew among the varied tools.

8

AOL ART files
art y 150000 \x4a\x47\x04\x0e \xcf\xc7\xcb
art y 150000 \x4a\x47\x03\x0e
\xd0\xcb\x00\x00
#
GIF and JPG files (very common)
gif y 5000000 \x47\x49\x46\x38\x37\x61
\x00\x3b
gif y 5000000 \x47\x49\x46\x38\x39\x61
\x00\x3b
jpg y 200000000 \xff\xd8\xff\xe0\x00\x10
\xff\xd9
#
PNG
png y 20000000 \x50\x4e\x47?
\xff\xfc\xfd\xfe
#
BMP (used by MSWindows, use only if you have reason to think there
are
BMP files worth digging for. This often kicks back a lot of
false
positives
#
bmp y 100000 BM??\x00\x00\x00
#
TIFF
tif y 200000000 \x49\x49\x2a\x00
TIFF
tif y 200000000 \x4D\x4D\x00\x2A
#

Figure 2.1: A section of a Scalpel configuration file

Recently released is Adroit Photo Recovery[12] using the Parallel Unique Path algorithm dis-
cussed earlier; this tool is focused solely on digital picture recovery. This carving tool is both
extremely powerful and quite easy-to-use. It is likely to have a significant impact on both the
forensic and the data recovery market.

9

THIS PAGE INTENTIONALLY LEFT BLANK

10

CHAPTER 3:
An Analysis of Today’s Batch Reports

This chapter presents the batch forensic reports created by today’s top-of-the-line commercial
and open source forensic tools. To test these tools with data that could be published here we
built a clean computer system running Windows XP in a VMWare Virtual machine, populated
the machine with two user accounts and a standard set of software, and then used the accounts
to engage in simulated real-world communications. We also conducted a pilot user study of
PyFlag.

The analysis here confirms what many forensic practitioners already know: significant training
is needed to use today’s forensic tools. The tools have many reports, each one highly specific
with a lot of information which easily overwhelms users and customers alike, delaying the
finding and use of actionable intelligence. Each report that comes with EnCase internalizes
its information, making sharing with other reports difficult, and FTK has no way to script it’s
multiple reports together into the single report desired.

3.1 Building a Test Image Containing Realistic Data
To evaluate these tools against each other for ease of use and value of automated reports, we
created a test image populated with realistic data.

The test image is a VMWare Fusion virtual machine running Microsoft Windows XP Service
Pack 3 with an assortment of messaging and communication applications installed as seen in
Table 3.1.

Software Package Version
Windows XP Service Pack 3
Internet Explorer 6.0.2900.5512.xpsp.080413-2111
Mozilla Firefox 3.0.3
Google Chrome 0.3.154.9
AOL Instant Messenger 6.8.12.4
Pidgin (www.pidgin.im) 2.5.2
Mozilla Thunderbird 2.0.0.17

Table 3.1: Test system that was used to generate realistic data image

11

3.1.1 Building the Test Image

In our hypothetical scenario, a computer is discovered or acquired and the analyst needs to
determine who was using the drive, what they were doing with it, and with whom they were
communicating. To enable testing of this scenario, we created a test image with realistic but
fictional data.

The image has two users, domexuser1 and domexuser2. (The user accounts were cre-
ated from the default administrator account and labeled domexuser1 and domexuser2 for
simplicity.) Each account was created as a standard user with no administrator privileges.

On a separate computer, a domexuser3 account was created for third party communications,
a requirement for portraying a communications network in which there are unknown or not yet
analyzed identities. We created a hotmail and gmail account for each user account, for a total
of 6 email accounts.

After the user accounts were created, the administrator account was used to install common
communication and productivity software, including Microsoft Office 2008, Mozilla Firefox,
Mozilla Thunderbird, AOL Instant Messenger, and Pidgin were installed for all users. The
installation files were deleted and the recycle bin was emptied, and the administrator account
logged off.

Over a course of several days, an experimenter playing the role of one user and then the
second exchanged instant messages and emails with domexuser3, which resided on a separate
system. The two accounts received, edited and saved office document files as well as various
media files. Some of these files were then deleted. Email and instant messenger conversations
were saved locally on the system. The accounts also visited web pages for news and webmail.
Forum and message board accounts were created and used.

Domexuser1 was the first to log in, and immediately went online to create communication
paths. Using Mozilla Firefox, domexuser1 created a hotmail account, a gmail account, a
gchat account and an AOL instant messenging (IM) account, all with the name domexuser1.
Thunderbird was configured for the accounts and left open to synchronize. AOL instant mes-
senger was connected to the internet and domexuser1 setup was completed.

The Switch User option in the XP menu was then used to log in as domexuser2 without
logging out domexuser1. This time, using Internet Explorer, the same online accounts were

12

created for the username domexuser2. Outlook Express was configure and synchronized for
the mail accounts and Pidgin was logged on for the AOL IM and gchat accounts.

Switching between the three accounts, test emails and instant messages were sent back and
forth to establish that all were participating. Domexuser1 then created three Microsoft Word
documents and three Microsoft Excel Documents. One document of each type was sent to the
email threads, one of each was deleted, and one of each was left alone.

The VMWare image then needed to be imaged for analysis. VMWare Fusion allows allows
the vmdk files to be mounted within userspace. The unix command dd was then used with the
options noerror and sync to provide a raw copy of the image. The final image was 40 Gigabytes
in size, with much of that space empty.

3.1.2 Why a Test Image

This thesis does not use real data, instead, we created a realistic test image to provide a stan-
dardized image to test current tools on and to develop PyFlag modules against. Using realistic
data avoids the man hours required to scrub the dataset and results of Personally Identifiable
Information (PII). Finally, the use of realistic communications data would require consent of all
communicating parties, which was deemed to be too high a hurdle for a single research project
such as this.

3.2 An Analysis of Current Batch Reports

All of the reports that were analyzed for this thesis have a similar flaw: the reports are filled
with data, but they do not present intelligence.

The forensic tools analyzed here are able to recover tremendous amounts of raw data, files,
streams and associated metadata. This data by itself yields little value in an investigation. There
are pages and pages of file names, time stamps, attributes, and other low-level details. None of
this data is presented with any higher level of summarization or analysis.

Data must be analyzed in the context of the current case to yield actionable intelligence. This
analysis should occur before the tool presents its results back to the user: it should not be the
task of the user to try to weed through all of the data and make sense of it. Of course it is risky
to take the human out of the loop completely—the tool should not hide data from the user, nor
be biased towards any type of intelligence conclusion. But some decision must be made, for the

13

simple fact that all of the information cannot fit on a single page. Today’s tools typically order
their output alphabetically or chronologically. In most cases this is not the optimum ordering.

Each tool analyzed here presents very different reports containing different kinds of informa-
tion. Both the reports and the interfaces used to obtain them correspond to the forensic tool’s
internal program architecture, rather than the way that an analyst would hope a tool to work or
a report to be organized. To use these tools, the analyst must learn to think the way the tool’s
original programmer thought.

Today’s forensic tools are diverse and designed for use by digital forensic tool experts. The
commercial tools are designed with complex interfaces that are confusing to both inexperienced
users and to experts who have merely been trained on other tools. Documentation and tutorials
are available for all of these programs, but it is highly specific to each tool. This is not surprising:
Commercial training and certification on individual tools is significant source of revenue for tool
makers, so there is little incentive to standardize. Both the complexity of the commercial tools
and their differences from one another are made clear by comparing the EnCase user interface
(Figure 3.1) and the FTK user interface (Figure 3.4).

The purpose of this thesis is to describe a next-generation forensic tool that can be used by a
person who is familiar with digital forensic abilities and limitations, but who is not an expert in
any technique or tool set. The user will need the tool to produce a report with useful information
with a minimum of configuration and interaction. Ideally the tool will be a “one-click” solution,
producing a report with minimal involvement. The user can then decide if a piece of media
requires deeper analysis by an expert, ideally with a focused search for certain information or
file types.

3.2.1 EnCase Batch Report

EnCase data analysis begins by ingesting the data into the EnCase program. Each ingest then
must be indexed before a useful report can be generated. This indexing uses a word dictionary
that the user can add to and then search the image, creating a list of found words. The reporting
tab is then populated with the results of the index. The default report (Figure 3.2) shows a file
directory tree, which has far more data than is useful, with little filtering or layout consideration.
Though this report could be better organized and searched through with more scripting, the
built-in EnCase report provides little intelligence to the investigator. Other default reports are a
gallery view of all images found and a timeline view of all files on the media. The reports allow

14

Figure 3.1: The Encase user interface.

filtering by the user according to different file properties. The next step is to process the case,
which runs file type specific searches against the media, as well as regular expression searches.
EnCase can also mount container files in this process. These reports are then saved as html files
in a user chosen directory, and must be viewed by an external web browser.

3.2.2 FTK Batch Report

Like EnCase, FTK must ingest a media file to start analysis. At the ingest phase, FTK allows
the user to select how in depth the case index is created, as well as what files are returned in
the results. Carving options are also available on ingest, and a list of known types to carve for
is presented to the user. In our tests, FTK 2.0 would hang when analyzing files shared across
a network, even when the file share was mounted as a drive in windows. We were only able to
achieve results with FTK when the data to be analyzed was present on a local drive. This is a
significant limitation when distributed operations are desired.

15

Figure 3.2: Encase Batch Report.

FTK then presents the user several views on the data analyzed. The user can explore the file
structure, see all email information, see all graphics, see general file information and statistics,
and run searches on the index or the actual media based on regular expressions or words. No
additional analysis can be performed, and custom scripts to extract data from known file types
or to carve for other file types do not exist. FTK presents the data it finds in an easy to read
view, but still presents a lot of data to the end user, and the user must search and filter the data
for relevant information.

3.2.3 TSK/Autopsy Report

Autopsy ingests do not have the same index requirement the other applications have. Autopsy
performs its analysis as the user navigates the web interface, performing the analysis on the
fly. However, Autopsy does require precursor steps for timeline related viewing, but only for
that mode. Through the web interface, this procedure is described as “process the file system
images, collect the temporal data, and save the data to a single file.” Once processed, Autopsy
recommends the user view the timeline in a separate application such as a text editor. Autopsy
also provides a general report about the ingested media’s metadata. Users can browse the file

16

Figure 3.3: Encase Batch Gallery.

structure through autopsy, which issues TSK commands as the requests are made. Autopsy
also allows the user to extract all strings from the media image into a file for faster searching,
otherwise the media image is searched in real time for the user.

3.2.4 PyFlag Batch Report

PyFlag is a significantly more sophisticated open source forensic tool than Autopsy. Like
Autopsy, PyFlag uses SleuthKit for extracting files from disk images, but it then analyzes
the files using its own recursive analytical framework. PyFlag is also capable of analyzing
intercepted network packets and memory images. All in all, PyFlag is much more comparable
to EnCase and FTK than to other open source alternatives.

We ingested the raw image using PyFlag running on an Unbuntu Virtual Machine inside VMWare
Fusion on a 2.0 GHz Core 2 Duo Macbook with 4GB of RAM. To test the limits of PyFlag’s
analysis, all scanners were turned on except for network scanners.

17

Figure 3.4: The FTK User Interface.

Name Time
EnCase 48 hours
FTK 30 hours
Sleuthkit/Autopsy N/A(real-time)
PyFlag 26 hours
Table 3.2: Analysis Time of Realistic Image

Once all the scanners had run and the database was populated, the user could request that the
system create a report. At this point the user can create reports from one of three categories:
Disk Forensics, Network Forensics, memory Forensics. The most useful batch reporst for this
image were the “I’m Feeling Lucky” reports—a collection of five disk forensics reports. For
this image the “File Times” report was also useful; this report was under the top-level “Disk
Forensics” category.

3.3 Default Reports Comparison
Each application was run against the 40 GB realistic image previously discussed, to look for
information about computer user accounts (domexuser1 and domexuser2), stored com-

18

Figure 3.5: FTK Batch Gallery.

munications (email, web and IM logs), and other information (office documents). For each
application, the The PyFlag ingestion and reporting option took approximately 24 hours to
complete. By re-running all available scanners against the image (only default ones are run
at ingestion), analysis took another two hours. The EnCase ingestion, indexing and searching
took nearly 24 hours. The Case Processor step of EnCase took another roughly 24 hours as it
apparently attempts the most in depth file carving across the image. This carving step The FTK
ingestion and analysis took roughly 30 hours. Of note is that each test was run on the same
virtual machine hardware, limiting the amount of available memory to 1024MB. On computers
with high end hardware, these times may be faster.

The imaged we created to be analyzed has several specific pieces of information that should be
presented to the user. Each system has two user accounts in addition to the administrator. Each
user account has two email addresses and two instant messenger accounts. Also, domexuser1
has four document files in his My Documents directory and two deleted documents. Each
account also communicates with the same third party account via email and instant message,
domexuser3.

19

Figure 3.6: FTK Batch Emails.

EnCase allows the user to find and recover all office files, but the user must navigate to the
appropriate directories by hand. After the initial 24 hours ingest and analysis, we initially ran
the case processor with the entire image selected and all relevant options selected (non-Windows
options were disabled.) This analysis took another 24 hours and the report generated had little
data and less information. The email accounts and instant messenger communications were not
found, even though those options were selected. We re-ran the case processor on only the two
user home directories with only the options selected for information we know existed. Even
with this narrow search focus, EnCase took almost 12 hours and was unable to report on email
or IM communications in the test image.

FTK presented the found email addresses to the user under the email tab. Each email could
be seen and could be sorted by to, from, size and date. FTK also allows the user to find files
by extension or browse the file structure, recovering all office documents in the image if the
user knows where to look. FTK did not present any information about the instant message
communications.

20

Figure 3.7: Autopsy user interface.

PyFlag had the worst results of all three tools, though it is more because of display and maturity
of the software than capability. PyFlag allows the user to recover all the office documents if
they explore the right directory areas, but it does not present these options in an easy-to-find
manner. PyFlag did not extract any of the email or instant message communications by default.
(The software is capable of extracting email and IM information from network captures, and
this capability could be added to static media captures as well.)

None of the tools presented the user with information that there were multiple accounts on
the media being imaged, nor did they attempt to sort the results by user account to provide
identity context with results. This information is important in an investigation as it can provide
attribution of specific data or plausible deniability if a user did not have ownership.

3.4 A Brief PyFlag User Study
We conducted pilot user study to test the usability of the PyFlag interface for the average user.
Two computer science graduate students were selected to perform a very basic analysis of a
64MB USB flash drive with the files deleted. (A small flash drive was used so as to avoid
overwhelming the students with the large realistic disk image.) The drive was formatted in
FAT32 and the files deleted using the Windows command line DEL command. The drive was
then imaged using dd. We also analyzed the drive image to verify each file could be recovered.

The primary goal of this pilot was to analyze the current PyFlag interface from the point of
view of a non-expert user. The non-expert user is often overlooked by forensic tool developers,

21

Figure 3.8: Autopsy general report.

yet this is important. A case investigator often knows what information they are looking for as
evidence. It could be a document containing a phone number, credit card numbers, or email
communication between certain people. It could also be certain kinds of images, such as child
pornography. In these cases, the case investigator may not need a digital forensic expert to find
the files, they need a computer user to operate the tools available. By designing the tools in
such a way that provide a forensically sound manner yet still retain ease of use for “standard”
investigating, the workload could be distributed across a larger group of users. Only in cases
where the subject has used methods to hide data or in cases where advanced techniques are
necessary, would a forensic expert be required to step in.

22

Figure 3.9: Autopsy file browsing.

The second purpose of this test was to analyze the current PyFlag reporting format from the
point of view of a non-expert user. The current reporting format uses tables to show results.
Each table is presented as a frame in the browser window, with the PyFlag navigation bar at the
top. The table may also be alone in a separate browser window. The table view is powerful in
that it lets users filter by every attribute PyFlag has recorded through a point and click menu,
and view the raw SQL query that generated the results, but it is designed for presenting tabular
data in a fixed format, not for data fusion and readable display.

The list of tasks performed by the users appears in Table 3.3; The steps required are listed in
Appendix with screenshots. User results and responses were then recorded quantitatively via
Likert Scale scoring and qualitatively via conversation style dialogue where the author asked the

23

Figure 3.10: PyFlag Scanning Options

user’s opinions, what they liked and disliked, and what they would change about the interface
for a better experience.

At the conclusion of the tasks the students were debriefed. Based on their comments and diffi-
culties accomplishing the tasks with the provided software, we drew the following conclusions:

• PyFlag lacks a summary report to give a snapshot of the image being examined. Such a
summary report would be useful.

• The generic report option allows the user to select from every attribute capture by PyFlag
in the back end database. This allows useful information to be reported on along with the
generic information per image, but overwhelmed the users with too much information.

• Filtering is applied in a separate step once the search is conducted. Though the user is
able to view the raw SQL query, there is no option to save the query and filter for use
on future cases. The option also assumes a familiarity with SQL; the students were both

24

Figure 3.11: PyFlag File View

intimidated and surprised by the SQL and were not able to make use of it in the way that
the PyFlag authors intended.

• For PyFlag, the Disk Forensics menu offers an option called “I’m Feeling Lucky,” (similar
to the Google search option). This menu option allows searching for certain communi-
cation streams, html pages or image files in the ingested image. Calling this option “I’m
Feeling Lucky” caused the users to skip over it; this was unfortunate, because it contained
the most useful reports for the standard tasks at hand.

25

Figure 3.12: PyFlag Image Report

• Create a new case.

• Ingest a data image

• Load a file system image

• Scan the image

• Produce a report of the file timeline of the data image

• Produce a report of the deleted items of the data image

• Produce a report of the images on the data image

Table 3.3: Tasks performed by the users in the pilot PyFlag user study

26

CHAPTER 4:
A Vision for Automated Media Reporting

As shown in Chapter 3.2, the current state of forensic tools are designed with the expert forensic
user in mind with little desire for cross case correlation or identity resolution. Time require-
ments and limited expert man hours are not considered when these tools were designed. Most
tools involve a considerable learning curve for which companies sell specialized training.

Better tools need to be developed to provide fast triage of large data sets. Automated ingesting of
images, searching for known files or files of interest, and standardized reporting on the images
are all functional requirements of an ideal system and all quite easy to automate, given the
desire, programming skill and budget.. These functions could provide an untrained investigator
with answers to potential questions about data that resides on the media, yielding information
relevant to the case.

4.1 Automated Ingestion
Ideally, an automated system will ingest a media image with no or minimal user interaction[3].
The image would then be scanned for a partition table and overall drive information. For each
partition in the table, or if no partition table exists, a file system should then be tested for. Once
file systems are identified, the partitions would be ingested. The system would have fail safe
fallbacks, such as a ingesting media as a raw binary stream, assuming nothing about partitioning
or file structure.

This level of automation is easily achievable. Sleuthkit’s mmls command lists each partition on
a disk image by type, offset and length; Sleuthkit’s file system commands (e.g. fls, istat and
icat) take these offsets as parameters from the command line. But the open source community
has generally not been interested in automating the process. For example, PyFlag has menu
options for printing the partition table and selecting which partition to ingest—but only one
partition can be selected at a time. If the user wishes to process multiple partitions, multiple
ingests must be performed on the same image.

As before, the goal is to automate trivial tasks that can be abstracted or generalized. A dedicated
workstation or acquisition device should be able to automatically perform these steps on all
devices connected, creating a sort of “drop center” where large amounts of collected devices

27

Figure 4.1: An Automated System State Diagram

can be connected and acquired without further user interaction. In the case of criminal inves-
tigations, it is unlikely that the same device will be acquired more than once due to evidence
handling requirements. Automated systems should detect and warn when the same device or
image is presented more than once for analysis.

4.2 Automated File Analysis
Once ingested, an image should have its resident and deleted files automatically analyzed.
(PyFlag performs carving at this point as well, although this is not strictly necessary.) In this
framework, the end user is a non-technical investigator looking for information about the users
of the acquired devices. This analysis step should attempt to organize data to answer questions
the investigator has, such as who owns this device, who are the communicating with, are they
linked to other people being investigated, do they possess illegal or interesting files?

Automated analysis can be broken into several categories:

1. General searching and analysis should be done for popular file types unique to communi-
cation, internet and media activity.

2. Known file analysis should be conducted if there is a known corpus of evidence being
searched for.

28

3. Deleted files should be discovered and recovered if possible, sometimes through carving.

4. Finally, malicious software should be searched for and identified.

General searching and file analysis can provide a high level overview of ingested media. Basic
histograms can be constructed by file type using the built in extensions of the native file system
of the image. Therefore, the initial file system should be walked, with file information being
recorded in a searchable structure. By performing this task once, more in-depth follow on
reports can be generated without additional processing of the image. A simple database query
can be conducted in the reporting step.

Compressed and container files provide a particular challenge during this phase. The archi-
tecture must allow file introspection to determine the contents of these file types. The basic
computer science principle of recursion must be applied, as container files may be recursive
themselves.

File extension validation can also be performed during the analysis phase. There are several
methods to verify file type used today. One approach is to base file identification on “magic
numbers” or signatures appearing at the beginning or end of the file, a technique used by
libmagic[10] and Scalpel[23]. This approach can be extended to use regular expressions, as
PyFlag does. PyFlag runs file identifier searches on each file, with each known file type scoring
the suspected file. If unknown file A is scanned by known file type scanners C and D, both C
and D would return scores that A is of their known type. The file is then assigned the type of
the highest score received. A mismatch between the file extension in the file system and the
scored file type might indicate attempted data hiding, or a non-standard system that requires
more in-depth analysis. (One significant problem with the PyFlag scoring approach is that the
scores generated by each recognizer must be manually tuned by the developer.)

Deleted files should also be searched for and recovered if possible. Files that can be recovered
by file system analysis should be recovered instantly. For all unknown blocks or inodes, carvers
should be run to maximize the data recovered.

The analyzed file system and deleted files should then be scanned for known files or data of
interest. In cases where there is sufficient knowledge of the crime committed, the investigator
may be searching for presence of some data. This can range from malicious exploitation
software, to child pornography or communications to certain email addresses. This scanning

29

can be conducted automatically by the system, and speed can be increased by conducting file
hashing during the initial analysis and then comparing hashes. (We have previously shown that
Bloom filters are an ideal data structure for this step for their fast access time and ability to have
low false positive rates[16].)

Installed malware should be searched for by the system. The presence of malicious software
could prove significant to a criminal case. Malware such as backdoors may directly influence
the legal requirement of reasonable doubt. Also, in cases where the media image was obtained
while in transit, the presence of certain malware could provide clues to where the image came
from or what kind of environment an image was used in. Malware can be identified from
MD5/SHA1 hash sets, or using standard anti-virus systems such as ClamAV[32].

Finally, custom information extractors can be run against the image. If an operating system
is detected, user accounts, user names, and other OS unique information should be extracted.
The detection of communication programs in the previous steps should trigger extractors to
provide account names, email addresses, communication threads and more. Image files should
be analyzed for possible EXIF data.

4.3 Automated Reporting
The system must then automatically provide a useful report to the user, converting acquired data
into useful intelligence for the investigator. The generic report should have several sections, to
include user accounts, communications, internet history, unique images and video, and a general
typing of software installed. The report itself should be modular, so that parts may be added and
removed as the system develops and technologies change. Following is a sample of currently
useful reporting sections.

The user accounts section should be a small scale identity resolution report on the current
media image and the corpus of previous analyzed images. If possible, account names should
be mapped to real names, email addresses, and online aliases. Ideally, the report should let the
investigator know if the drive was used by one or many persons.

The communications section should be built upon the user account section. Each commu-
nication account owned by a user account can then be queried for additional information.
Email histories can provide a wealth of information regarding most frequent email subjects
and persons communicated with. Histograms for most frequent results and most recent results
are likely to provide useful information to the investigator.

30

For each communication program that the system is able to identify, a graphical representation
of the captured snapshot of communications could also be useful to the investigator. A mailbox
file, or saved instant message communications provides a wealth of knowledge that can be
extracted. From this data, a network, or mesh, diagram can be constructed with weighted edges
to represent frequency of communication.

Internet history should be presented to the investigator but not overwhelm. As with email, the
most recent and most popular sites should be displayed along with time stamps to establish a
general context for the information. Cookie files should be parsed for cached account infor-
mation and listed along with relevant extracted data from the file. As each site can implement
the cookie file uniquely, this will present a problem to extraction development. If the directory
structure is bare and the web browser has an access time indicating recent use, the report should
make a note that private browsing or history erasing may have been conducted.

Media reporting (still image, audio and video) has seen significant interest by law enforcement,
especially in the prosecution of child pornography. Media should be presented as most recent
greater than a certain tunable size and largest by size. By putting a lower bound on media
size, common thumbnail and embedded graphics can be ignored. Also, if applications are
installed that are known to allow file sharing, their downloaded contents should be presented
to the investigator. Media should be presented in thumbnail form to allow fast analysis by the
investigator.

Media reporting can benefit tremendously from an aggregated corpus of other media. As the
system ingests more data, it should keep track of how often file hashes have been seen and
where. The system can automatically generate relationships and perform identity resolution
between ingested media, providing the investigator additional vectors for analysis. Common
files can be relegated to background noise to further streamline and tune reporting.

As mentioned previously, the report should provide a general summary of software present on
media ingested. Software should be listed under general categories such as Peer to Peer, Com-
munications, Encryption or Software Development. By listing known programs and providing
a context of what is installed on a drive, the investigator is given information to form hypothesis
for the case, rather than raw data.

A mock up report is presented in Appendix A. Sections explained above are present, providing
an instant report on a sample drive allowing the investigator to perform their analysis in minutes.

31

The report should be as human readable as possible. Technical information pertinent to how the
data was found on the image should be hidden in the report, but stored in the framework database
to aid further in-depth analysis if warranted and provide the legal requirements necessary to
recreate the finding in a courtroom.

4.4 Report Distribution
Finally, the generated report should be distributed. Here it must be decided who is to receive the
report and how it will be delivered. The investigator assigned to the case will normally be the
recipient, though the presence of certain data may require other recipients. Based on the known
file searches conducted earlier, other parties may receive a result, such as FBI involvement
with the presence of child pornography, or an expert digital investigator with the presence of
encryption software or malicious utilities. The report can be delivered in a variety of means,
though to preserve data integrity the analysis system will normally be air-gapped from real-
world networks, making electronic distribution difficult. Printed copies are the most likely
form, with cover pages addressed to the required recipients. Though this step requires human
intervention, it can be performed efficiently by untrained personnel with minimal cost or time
requirements.

32

CHAPTER 5:
PyFlag Implementation

To create the framework for automated ingestion, analysis and reporting, this research project
used PyFlag as an underlying engine. We did this despite the apparent usability problems with
PyFlag because PyFlag provided much of the mechanisms required for an automated report-
ing system—file system handling tools, file identification, extractors, carvers, an underlying
database, and a job scheduling system.

The disadvantage of using PyFlag is that significant time had to be spent learning how to use
PyFlag and the results of this work are not directly usable by other organizations that do not have
a working PyFlag installation. We have attempted to mitigate this by distributing a VMWare
virtual machine with PyFlag pre-installed. However, this is just a work-around, and ultimately,
to be useful, either the usability problems with PyFlag must be address or the reporting system
will need to be separated from PyFlag.

Another option that we considered was to structure the automated report as a series of EScripts
for Encase. EnCase provides a scripting language that supports customized searching within
the EnCase program. Programmers are able to describe their own file classes and how to extract
information from the files into the class. EnCase supports file identification through the file
extensions, but we were unable to find examples of file categorization based on file header
information or content based search. EnCase scripting allows the user to apply scripts to all
files within sets of file extensions, files of certain sizes, other file attribute conditions, or all
files currently under examination in a case. To apply multiple custom extractors to all files of
a certain type regardless of extension requires examining all files in the case for each extractor,
which increases linearly with each custom extractor, a solution that is time consuming.

Also, EnCase is a commercial product with a high price tag, closed source, and has significant
hardware requirements. Even though we have EnCase in our lab, the cost of a single EnCase
license discouraged us from choosing it for development for automated reporting: the cost can
hinder significant deployment to smaller environments. The closed source code of EnCase was
also a limiting factor. Though EnCase provides a scripting language which can be run from
inside the application, we were unable to find a method to automatically ingest, analyze and
report with a minimum of human interaction.

33

To learn more about developing for the PyFlag system, we created an AOL Instant Messenger
Log identifier and extractor, (PyFlag did not previously include support for this file format.) We
also created a report that combined the information from our extractor with other information
already provided by the PyFlag infrastructure to demonstrate a proof of concept for automated
reporting with data fusion.

The remainder of this chapter discusses these two additions that we made to PyFlag.

5.1 AIM Plugin

By default, instant messaging programs do not keep logs of conversations when running. De-
spite this fact, these programs do have the option to turn on logging of all conversations and
chat rooms. The presence of these logs can provide a detailed view of the user’s social network.
Because of this, we decided that creating a plugin for these formats would contribute to PyFlag.
There were several steps to implement the AOL Instant Messenger file identifier and extractor.
The first was to identify what the AOL logs would look like. Three popular AOL IM clients
were chose, the official AOL IM client for windows, Pidgin for Linux and Adium for Macintosh
OS X. Each client was run with logging turned on, and several conversations were then created.
Each client saved their logs in a different format, HTML for AOL, text for Pidgin, and XML
for Adium. The logs were analyzed for both literal and regular expressions to match. The log
files for each client are available in Appendices C, D, and E.

PyFlag performs file recognition and extraction as two separate steps. First, files are recognized
via the Magic class, named from the unix style libmagic. The Magic class implements
recognition through literal and regular expression matches. PyFlag extracts information through
the Scanner.GenScanFactory class. This scanner implementation states what kinds of files it
should be run on, and then when run, it performs the actual extraction and storage of data.

5.1.1 PyFlag’s File Identification Hierarchy

PyFlag implements a main registry of file handlers called Magic.MagicResolver. When PyFlag
initially scans a disk image, it creates a virtual tree of the actual file structure as well as deleted
files and unallocated inodes. PyFlag then runs it’s file handlers against every node in the tree
to attempt to identify the file type. These identifiers inherit from the Magic.Magic class. Each
identifier must provide a regular expressions or literal rule for the file type it should identify, and
then provide several samples of matches for type validation. Each node in the tree receives a

34

+-----------------+------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-----------------+------------+------+-----+---------+-------+
inode_id	int(11)	NO	PRI	NULL	
packet_id	int(11)	NO		NULL	
session_id	int(11)	NO	PRI	NULL	
transaction_id	int(11)	YES		NULL	
nick	varchar(50)	NO	PRI	NULL	
user_data_type	enum(’target_msn_passport’,’user_msn_passport’,				

’display_name’,’url_enc_display_name’,’locale’,’os’,’client’,
’contact_list_groups’,’home_phone’,’work_phone’,’mobile_phone’,
’msn_mobile_auth’,’msn_mobile_device’,’forward_list’,’allow_list’,
’block_list’,’reverse_list’,’pending_list’,’added_user_to_list’,
’login_time’,’lang_pref’,’email_pref’,’country_code’,’post_code’,
’gender’,’kid’,’age’,’birthday’,’client_ip’,’personal_message’)

| NO | PRI | NULL | |
| user_data | text | NO | | NULL | |
+-----------------+------------+------+-----+---------+-------+

Table 5.1: PyFlag msn users table in MySQL

+----------------+--------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+----------------+--------------+------+-----+---------+-------+
inode_id	int(11)	NO		NULL	
packet_id	int(11)	NO		NULL	
session_id	bigint(20)	YES		NULL	
sender	varchar(250)	YES		NULL	
recipient	varchar(250)	YES		NULL	
type	varchar(50)	YES		NULL	
data	text	YES		NULL	
p2p_file	int(11)	YES		NULL	
transaction_id	int(11)	YES		NULL	
+----------------+--------------+------+-----+---------+-------+

Table 5.2: PyFlag msn session table in MySQL

score from each Magic handler, and the highest overall score labels the file as the corresponding
file type in the corresponding cases SQL file table.

We created three new classes, one for each log file. Each class inherits from Magic.Magic.
Regular expressions were developed for each log format as well as literal matches that occur
in each log. The literal matches were given a higher score than the regular expression matches
as they occur less frequently and are unique to the application logs. The Magic handlers then
label each file as Instant Messenger Log Files. A possible side effect to this strategy is that any
communication or file that discusses these log files may also be matched by the Magic handler.

35

5.1.2 PyFlag’s Extraction Hierarchy

Data Extraction in PyFlag is handled by the Scanner.GenScanFactory class. For each log type
identified above a new class was created that inherits from Scanner.GenScanFactory. These
classes specify what file types to be run against, in this case Instant Messenger Log Files. These
scanners read the files line by line, and perform regular expression matching for extraction. This
step is similar to that performed in the previous Magic class, but only for these basic text files
where the same regular expressions that hold data are the same that identify the file type. These
scanner classes then make a database connection and insert the data into the proper tables for
later analysis.

One issue discovered is that the AOL log format does not put the username that is logging in
the log unless they actually respond. For example, if user2 sends user1 several messages but
user1 does not reply, the log only has the IM name of user2. This can be resolved by pulling
the user1 name from the path in the filesystem where the log exists, but if the log file has been
deleted and is recovered via carving, there will be no way to recover user1’s IM name.

Once the log files were identified and the user names extracted, they need to be placed into the
PyFlag database. The current schema consists of a table for MSN users and MSN sessions.
The PyFlag maintainers recommended placing all instant message style communications into
the MSN table, despite the varied protocols in use with different fields. The MSN tables in
PyFlag are designed for network based stream captures instead of static log files captured on
media. The msn\ users table stores the nickname of the sending user, but not the nickname
of the user a message is sent to. The msn\ sessions table is designed to store the TCP/IP
information about the MSN communication in the sender and recipient columns, rather than the
usernames involved.

5.2 Report Plugin

We then implemented our idealized report. The current PyFlag database provides much of the
data required to generate our report and we leverage from it heavily. The PyFlag reporting plu-
gin architecture is unable to display a report in the desired format. Our findings and discussion
of how we constructed our code follows.

36

5.2.1 PyFlag’s Reporting System

PyFlag’s reporting is the most primitive part of PyFlag. The reporting system consists of small
scripts that perform SQL SELECTs on the database server and present the results in HTML
tables in a web browser. The system even has provisions for presenting the SQL to the user so
that it can be modified as necessary to improve the specificity of the query. PyFlag also has the
ability to interactively build an SQL query through the use of its “manual” report.

PyFlag offers no ability to perform automated correlation between cases. As with the other
tools examined, users are allowed to add multiple disk images, or sources, to an individual
case within the system. There are currently no PyFlag utilities that provide cross case indexing,
searching, or notification that unique files or email addresses have been seen previously. Though
information protection and hiding is important to provide forensic soundness and follow legal
guidelines, we believe this can be implemented and still prevent contamination between cases.

PyFlag also offers no ability to perform identity resolution. A relatively simple approach would
be to have the system group together all of the email addresses that have the same username but
at different mail services. For example, user1@hotmail.com could be grouped automatically
with user1@gmail.com. Likewise, there is no provision for telling the system that two email
addresses represent the same person.

5.2.2 PyFlag’s Databases

PyFlag implements one global database table called pyflag upon creation. Inside this database
are tables for geographic IP address lookups, WHOIS information for DNS resolving, a dictio-
nary used to store keywords for indexing cases, and other information used to provide informa-
tion to cases. This database is populated during the installation and first run of PyFlag, and the
only table modified by any other case is the job table. This table keeps track of queued jobs
to be run in other cases and is emptied when complete. PyFlag also creates a global database
called nsrldb to hold the NSRL RDS information if it is loaded by the user.

5.2.3 The Reporting Program

We designed our report in python so that future integration with PyFlag would be simplified.
As PyFlag currently limits reports to the table view shown previously, we decided to run our
reporting program against the PyFlag database directly and output into html. This maintains the
constant interface used with PyFlag and does not require the user to learn varied applications.

37

+------------------------+
| GUI_filter_history |
| LogicalIndexOffsets |
| LogicalIndexStats |
| MainThread_12327000201 |
| MainThread_12327000261 |
| MainThread_12327000281 |
| MainThread_12327002721 |
| annotate |
| block |
| connection |
| connection_details |
| dns |
| email |
| file |
| filesystems |
| ftp_commands |
| ftp_data_streams |
| ftp_sessions |
| hash |
| http |
| http_parameters |
| http_sundry |
| ie_history |
| inode |
| interesting_ips |
| iosources |
| irc_messages |
| irc_p2p |
| irc_session |
| irc_userdetails |
| log_tables |
| mac |
| meta |
| mmsessions |
| mozilla_form_history |
| mozilla_history |
| msn_p2p |
| msn_session |
| msn_users |
| passwords |
| pcap |
| reg |
| regi |
| reporting |
| resident |
| sql_cache |
| sql_cache_tables |
| timeline |
| type |
| virus |
| webmail_attachments |
| webmail_messages |
| xattr |
+------------------------+

Table 5.3: PyFlag tables in MySQL

Our code is organized into the logical sections of the idealized report. Each section queries the
appropriate current PyFlag database tables and extracts the desired data. The organization of
the data and display attempts to turn this data into information for the user (or investigator) so
that by reading through the report once, they have a generalized understanding of the media
being examined. Our reporting code makes a database connection to the PyFlag database,
runs a custom query on the case specific database, organizes the data, and outputs into html.
The user must then open the html report for viewing. This reporting code is not meant as a
final product report ready for deployment, but is meant to provide proof of concept that the
PyFlag architecture allows rapid third party development to meet custom requirements and can
implement the automated reporting framework discussed in this thesis.

38

5.3 PyFlag Limitations
While working on this project, several limitations with the current design of PyFlag became
apparent. As a new developer trying to work with established code, we found several difficulties
with the existing implementation of source file organization and internal database schema. Also,
while using the PyFlag suite to perform forensic analysis, we found user interface and design
decisions that we believe deserve more attention.

5.3.1 Fragmented Database Schema

PyFlag’s current design stores communications in a variety of different database tables. Some
tables are used for storing the results of multiple extractors, while other tables were created for
use by a single extractor. This haphazard design of tables appears to be the result of the system’s
organic growth and reflects the lack of an underlying system architecture.

For example, PyFlag stores information about email messages in a table called EMAILS but
stores MSN chat logs in a table called MSNMessager. The developers recommended that the
AOL extractor store its logs in the MSNMessenger table as well, and craft its results to fit
into the schema that the MSNMessger system had established. This makes it difficult to write
reports that evaluate all communications between a pair of data subjects, as the MSN tables are
designed to store one way MSN messages as part of an overall stream. The table stores who the
message was sent from, but not who it was sent to. The fragmented schema also complicates
the maintenance and future development of the system.

Reflecting the design of other forensic analysis tools, PyFlag stores evidence in containers
called cases with no provisions for linking information. Searching for an email address re-
quires explicitly searching each email table for each active case—there is no single table of
all email addresses that the system has encountered. The advantage of this approach is that
the performance of the system in analyzing any specific cases does not degrade as more cases
are added to the server; the disadvantage is that searching for a single email address in all the

cases is a slow and (currently) manual process. This reflects the development of the system for
managing evidence in police cases, rather than for performing intelligence investigations.

5.3.2 Reporting View

The PyFlag standard view for all information is via a table viewer. All data is retrieved from the
PyFlag database via SQL commands and displayed in table format to the user. This view gives

39

power to the expert user as they can customize the SQL queries in the view to fine tune their
information. This table based view seems derived from the developers deciding how to present
the data stored to a user, instead of asking the users what they want to see and crafting the view
around that desire. Currently too much data is displayed by the built in reports, and even after
customizing queries, the display is still framed by the table and column results of the database.
Presenting information in an easy to read format while still maintaining the underlying database
structure must be addressed to allow the average investigator to benefit from the system.

5.3.3 Difficulty of Integrating New Tools

PyFlag lacks a standard interface for describing new tools—for example, a new file system
implementation, a new carver, or a stenography detector. Instead, each tool must be custom
developed within the PyFlag architecture with its own set of Python classes. It would be useful
if there was a way to easily add additional tools by simply adding lines to a table or an XML
file.

Once a new tool is introduced to a system and verified to work, it can then be added to tools
that PyFlag is aware of. Each tool could be described to PyFlag with a name, path to execution,
necessary flags, file types to be run against, maximum run time per file (to determine if the
tool has frozen and should be abandoned), and how to parse the return data or file to be PyFlag
aware. This tool description methodology could allow PyFlag to be highly flexible for new or
custom written tools that programmers did not intend or were unable to implement in PyFlag
directly.

40

CHAPTER 6:
Results on Realistic Data

We ran the proof of concept extraction plug in and reporting utility against the realistic data
set previously created to simulate real world results. Ideally, we want to present the user
with information from the image instead of large amounts of technical data with minimal user
interaction between choosing the device to image and receiving the report.

The reporting utility generated the report in Appendix B. Though rough in presentation, the
report presents the core ideas of automated digital forensic reporting and proves that PyFlag is
an appropriate framework for future development.

The first section provides signature matches. In this version, the report is looking for matches
against the NSRL RDS. However, custom hash libraries (and bloom filters for distributed remote
applications) can store more relevant information to the individual investigator’s concerns or
their organizational interest. As most signature searches are for known data features or files of
interest, the significance of a signature match requires that it be the first thing to appear to an
investigator in the report.

The next section of the report, users, is broken up according to the main users of the system.
The current report is focussed on a Windows XP system and automatically filters out the default
users the operating system has installed. For each user on the realistic system, Administrator,
domexuser1, and domexuser2, the examiner is provided with information about what the
account is primarily used for, whether it be media related, software related, or other uses. Each
user has reports on several subsections.

The first subsection is file related. PyFlag supports UID information to be extracted from the
filesystem, but the current implementation is unreliable at best, often showing all users as UID of
0. Therefore this report relies upon the file path stored in the database to determine ownership.
Once the user id, group id, and permissions are extracted by PyFlag, future reports could take
these into account to determine likelihood of ownership of all files in the image. The report
shows the most recently used files as well as the most popular file extensions in that user’s
account.

41

The following subsections cover other areas of interest to the investigator. Web history, Images,
Document Files, Emails and Instant Message data all have subsections for each user. We were
unable to extract image thumbnails from the PyFlag framework at this time. By organizing in
this manner, and providing the most popular or most recent pieces of data, the data becomes
information to the investigator.

42

CHAPTER 7:
A Proposed Framework for Automated Reporting

Based on the experience of working with PyFlag and other forensic tools, this chapter presents
ideas and a design for a new automated reporting system.

The framework and implementation for automated forensic reporting was designed using a pro-
cess based on user-centered design. By examining available tools, real world exploit reports and
interviews with current users a better understanding of how forensic examiners are analyzing
media was formed. From this data, a sample report was created, to show a simulated end product
of analysis. The idea was to create a simple, easy to understand report that contained the specific
information needed by an investigator. The report is also designed to provide vectors for further
analysis, should more in depth data be required. From this report, a list of desired information
was created, along with important properties and metadata.

7.1 Requirements
The requirements to achieve this automated reporting vision can be broken into three broad cat-
egories. First is system requirements for parallel processing, distribution, storage and function-
ality. Second is the user interface requirements to allow minimal interaction to yield maximum
information in a reasonable amount of time. Lastly is the ultimate report requirements which
converts the data acquired into intelligence for the investigator.

7.1.1 System Requirements

The forensic framework should provide several key functions. To provide a large corpus for
identity resolution, the system should support multiple ingestion points for data. As PyFlag
and EnCase already implement, parallel analysis must be performed. As PyFlag and FTK
already implement, a database backend must be used to provide standardized data storage, data
relationships and the ability for other programs to interact with the data. Finally, the forensic
framework should allow a stand alone capability for field deployment.

Multiple Ingestion Points

The large amount of digital media retrieved in many cases makes data ingestion a significant
problem for a forensic framework. At the ingestion stage, basic case information must be

43

entered for proper tracking and labeling of the case evidence. The media can then be ingested
into the system for analysis. The data should ideally be stored on a high availability data server
with fault tolerance with a high speed interface. The system can then run its analysis and
extraction utilities against the centrally located data, reading into local memory as necessary.
No analysis will be conducted on the ingestion systems during ingestion. Once the whole media
image is received into the storage system, the framework will begin to create jobs against that
data so that all operations can be controlled and tracked.

A single ingestion point creates a chokepoint or single point of failure for the initial step of this
framework. At any given time, there can be multiple cases being prosecuted where media
devices have been confiscated for analysis. The benefits gained by a large corpus of data
require that all results be stored on a single system, though that system may consist of multiple
computers networked together. Multiple systems that synchronize at specified intervals will
result in a time window where data exists in one repository and not another. Reports generated
on one system during that window will not be analyzed against data entered into the other
systems during that windows, resulting in missed connections that may be found later if another
report is run. Since a single system for an organization is the ideal implementation, that system
must provide multiple ingestion points to the system to support an unknown number of users,
large numbers of devices in a single case, or simple surges of new devices to be imaged.

Parallel Analysis

Imaged media is becoming larger and larger, creating more space to be searched and analyzed
per ingestion. Regular expression searches must search through the entire address space of the
device, while file carving searches all unallocated blocks and attempts to fit them together. The
algorithms to perform these searches can be slow, and large devices can take days to analyze
on average computer systems. Multiple media devices ingested simultaneously as required
previously will only compound this problem.

Parallel analysis of the media when possible is the only way to implement a large scale forensic
framework that can handle large amounts of media and provide results within a real world
usable time frame. Serialized processing of multiple terabyte hard drives by a single computer
would increase linearly with each new device added. The final report would not be produced
until all drives were analyzed, a sum function on the time for analysis. Parallel analysis on
independent systems would speed the analysis by the factor of number of systems available, but
each system would yield a separate report, failing to perform identity resolution or any cross-

44

drive analysis. Parallel analysis of devices by a single system spread across multiple machines
with the framework performing job management can obtain the speeds necessary for useful
report timeframes with the benefits of a large system implementation.

Database Back End

To support the tracking of multiple ingestion points, job management for parallel analysis and
storing the data from each case, a robust database backend is required by the framework. A
relational database meets the previous requirements and has been demonstrated as the imple-
mentation of choice by PyFlag and FTK, though specific database selection varies. A database
back end on a popular implementation also provides the ability for further tool development to
run on data extracted into the database as well as run resolution algorithms to perform identity
resolution on the entire corpus of information. A database also provides a large speed increase
over a flat file implementation, while also providing atomic operations, journaled operation for
recovery and clustering for maximum performance.

Stand Alone Operation

Analysis of media must be performed in the field In some cases. This can happen at checkpoints
or random encounters where analysis of data in plain view could result in information relevant
to law enforcement. The framework should support a stand alone method of operation, where
all ingestion, analysis, and reporting is performed on a single device. Since time of analysis is
a priority in this scenario, extensive analysis such as carving may not be able to be performed
within a reasonable amount of time. Initial imaging for later in depth analysis should be a
priority, followed by regular expression searches through the entire device. To provide lookup
speed and secure distribution of data sets of interest, bloom filters should be recognized as a
reference media to query for information of interest.

7.1.2 Report Requirements

The sample report in Appendix A shows all of the sample information to be gathered and
presented to the investigator. This information should be arranged to answer questions the
investigator has about the media device, listed in Section 4.2. The information of interest to
answer these questions varies among user accounts on the local machine, email accounts, lines
of communication, web history, and stored media. Each of the sections for answering these
questions will be reviewed in depth below.

45

User Accounts

User accounts can reveal much in an investigation as well as provide for a means of attribution.
Unix based systems provide a simple way to extract local accounts from a full system image.
Unix, Linux and the BSD variants store user accounts in the /etc/passwd file, with hashes
of the user passwords in the /etc/shadow file for linux or /etc/master.passwd for
BSD. /etc/passwd also contains mappings from usernames to user identification numbers,
or UIDs. An intact Unix based filesystem maps every file to the owning UID and permissions
for read, write and execute for binaries. These permissions are stored in the format Owner(Read,
Write, Execute), Group(Read, Write, Execute), World(Read, Write, Execute). Since the group
permissions on a file could be significant on a multi-user system, the /etc/group file is also
of significance to forensics.

While the /etc/passwd file may not map directly to real-world names, it can be a crucial
link in this eventual mapping. Following are two examples where it could prove important,
assuming a mailbox is write-able only by the owner. If a mailbox store is owned by UID X,
that store can then be parsed for information. In typical mail storage systems, by running a
histogram function on all email addresses seen, the address with the most occurrences tends
to be the email of the mailbox owner, or the account the mailbox is for. Then, by parsing the
individual emails, A regex for a greeting could be run against each email. If the greeting is of the
form D̈ear Name,̈, the regular expression could then match Name as the real world name of UID
X. All files on the system owned by X can then be mapped to the real world Name. The same
example works for saved html files, such as purchase receipts or forum account cookies. Using
this approach, multiple aliases for email addresses, forum names, instant messenger names, and
more can be mapped to real world names applicable to a case.

Windows based systems store the account information in either the SAM file or the Registry. If
a FAT file system is used, no user account information is linked to individual files, while NTFS
associates user accounts and permissions to individual files similar to Unix. FAT systems occur
more typically with Windows 98 installations, while NTFS is the default for NT, XP, Windows
2000, Vista and Windows 7. For NTFS filesystems which store user information for individual
files, the same mapping method used in the Unix based examples can be applied to Windows
images.

In addition to extracting user information from system files and file system information, it is also
possible to glean user account names from directory structures of home folders. This method is

46

easily fooled, as home directory names may be mapped to different user names, or have various
one-to-many or many-to-one relationships to users.

Of note is that this method only works for complete operating system images. Removable
media, such as USB thumb drives, CDs, DVDs, and most external hard drives may not retain
the same UID mapping between systems, and reasonable doubt may be introduced into a case.
For example, Unix and Mac OS X systems allow reading and writing of NTFS file systems via
user-space driver. Furthermore, most removable storage is formatted with the FAT32 filesystem
which does not support owner and group properties.

Signature Matches

Signature matching allows the investigator to be quickly alerted of files of interest. By creating
a hash dictionary of alert files, such as child pornography or known hacker tools, the investigator
is able to tell the system what files they deem important. By storing the hashes only, the system
is able to save space and avoid having to keep copies of potentially illegal materials. Current
hash implementations allow simple modifications to evade the filters[16], but may still provide
useful results.

Beyond standard file hashes which most forensic tools already support, attribute hashing has
potential for further development. By specifying a hash algorithm and storage mechanism,
any searchable quantity can be distributed to investigators and searched for presence in a media
image. For example, a collection of known criminal email addresses could be created, with each
address then hashed. The set of hashes can then be distributed to the locations where forensic
analysis is done for inclusion in the framework. The framework can then include a regular ex-
pression search for email addresses [A-Z0-9._%+-]+@[A-Z0-9.-]+\.[A-Z]{2,4}.
Each match can then be hashed and compared against the set of interest. The media can then
be brought to the attention of the investigator for further analysis. Distributing the set of hashes
provides an added measure of security where an investigator does not have the ”need to know”
all criminal email addresses, but is able to query against them and request further data.

Communication

Communications on media devices can reveal much to the investigator and can provide insight
for further analysis. On digital media, the primary recorded communications are email and
instant messaging. This data must be found automatically and parsed for information for the
investigator. Trend analysis may occur, but primary account identities must be found.

47

Email may be stored on any media device, and with the advent of thumb drive versions of
popular email clients, all media must be scanned for email. The representation of email on
media is highly dependent upon the client application used. Microsoft Outlook stores email
locally in a proprietary format called a personal store, or PST file. Apple Mail uses a proprietary
storage format based on Maildir called Mbox.

Instant messaging (IM) provides tremendous insight into case investigation. Popular IM pro-
tocols are MSN, AOL IM, and Google Chat. MSN and AOL offer specialized client programs
that talk on their protocols and implement all available functionality. By default, the MSN and
AOL clients do not log their communications to the hard drive. Google chat uses the jabber
protocol and was implemented as a Javascript application within the Google mail webpage,
and stores all communication on the Google servers. For each of these protocols, several other
client applications have become popular. Jabber, Pidgin, and Adium are all well used third
party clients which implement subsets of the total functionality. All of these programs allow
for conversation saving and automated logging in a variety of file formats, including plain text,
html and xml.

Web Activity

Modern web browsers leave significant histories on media devices to provide a tailored expe-
rience for users. Internet Explorer, Firefox, Chrome and Safari all leave history files showing
recently visited web sites. These browsers also allow the user to store a bookmarks file for
frequently visited sites. These files allow a web profile to be constructed for each user, with
special interest placed on web based email and forum sites where users can communicate.

In addition to history and bookmark files, web browsers also cache cookies for website authen-
tication information and user tracking. Embedded flash media on sites also caches cookies, that
most users are unaware of. Cookies contain web addresses and time stamps which are useful to
establish a timeline in an investigation.

Privacy programs have become popular to erase a person’s online tracks on their system. Safari
and Chrome both provide a privacy browsing mode where no cookies or history file are saved to
disk. Firefox provides a quick key combination to erase all private information. Based on this
new functionality, web browser carving needs continued research to recover this information
from hard drives and system memory.

48

Media

Digital media can provide a wealth of revealing information when examining a case. In this
context, digital media is defined as digital photos, video, and audio. Digital photos have been of
significant interest recently, though video is becoming increasingly prevalent with the increased
number of phone/pda/camera/video recorder products being released.

Digital photos have the potential to store a large amount of metadata. The Exchangeable
image file format (EXIF) standard developed by the Japan Electronic Industries Development
Association (JEIDA) provides for metadata fields in images. These fields are normally used
to record keyword tagging information, copyright information in professional images, camera
settings for the photograph exposure, and even the serial number of the device creating the
image.

Though recent real world analysis reveals that most consumer digital cameras do not stamp se-
rial numbers into EXIF, many professional and high-end consumer cameras do. Also significant
is the recent addition of Global Positioning Satellite (GPS) data to images directly from GPS
enable devices as higher end cameras and camera-phones. The ability to apply this GPS data
to a timeline view with map overlay could be beneficial to the investigator and is able to be
completely automated.

By identifying common digital media files, the number of unique images on a file system can
be identified to provide a kind of forensic image fingerprint. Common media files can help to
identify an operating system, applications installed, or common websites visited. They can also
prove membership in certain network subsets, such as mailing-list members that have shared an
image, or part of a social network where a ‘viral video’ has propagated.

Attached devices provide another avenue of providing identifying attributes to a system. Op-
erating systems store information about devices that have been attached, a popular case being
Apple’s iPod media device. Windows operating systems store an iPod’s serial number in the
system registry, allowing simple extraction. Macintosh operating systems also store a history of
attached devices inside of the iTunes application.

7.2 How We Would Implement It
As shown before, PyFlag already implements many of the requirements necessary for the
proposed framework. By choosing an industry standard database implementation, we allow for

49

fid feature text feature type (enum)
1 user@company.com “email”
2 user@free.net “email”
3 978-555-1212 “phone”
4 Jan 20, 2008 0600 EST “time”

Table 7.1: Features Table

sfid fid reftime case inode id offset
1 4 Dec 31, 2007 1532 EST case 1 P3|m3 1024
2 1 Nov 24, 2007 1200 EST case 2 P10|m1 640
3 2 Nov 24, 2007 1200 EST case 2 P10|m1 684

Table 7.2: Seen Features Table

row identity fid decider surity reason
1 1 2 ’“email agent” 1.0 “vcard”
2 1 3 “email agent” 1.0 “vcard”
3 2 2 “email agent” 0.5 “account setting”

Table 7.3: ID Table

easier development, wider deployment and ease of upgrade. However, the database schema will
be significantly expanded. We would also add a tool plug in option to provide rapid integration
of new forensic tools and techniques. Finally there are other modifications to PyFlag itself to
support the multiple ingestion points previously discussed.

7.2.1 Database Modifications

To implement our idealized model, we would retain the database repository of all case infor-
mation. The idealized implementation will start with a modified PyFlag database schema. We
will add a new database called “Identities” to the installation, aimed at feature correlation and
identity resolution. This database will have several tables, namely features, seen features and
ids. See Tables 7.1 through 7.3.

In this example, each feature that the extractors find in a case are placed into a separate database
and table “identities.features”. Here the features get a unique feature id number (fid), the text
of the feature and the type of feature. To speed searching, feature type should be a numeric
and a separate table should map the number to an enum description, but it is presented in this
way for clarity. When a feature is found by an extractor, the features table is searched for a
previous occurrence. If the feature is new, it is given a new feature identification and placed
into the feature table. The occurrence of the feature is then entered in the seen features table,

50

with the appropriate feature id, time and location information for this occurrence of the feature.
For instance, if the same email address is seen in two separate cases, there will be one feature
table entry with a feature id, but two entries in the seen features table referencing that feature
id. This allows features to be searched through separate cases and may provide the examiner
with useful leads for further investigation.

In addition to individual feature correlation, that id table database allows the architecture to
manage identity resolution. In this example, two separate features, an email address and a
phone number, are present in the ingested media within the same vcard file. A feature/identity
correlation process would parse through the seen features table, examine the inode where the
feature occurred for data types that it is aware of. In this case, a vcard file is a reliable indicator
that an email would map to a phone number, so the correlation process would create a new
identity number in the identity table and then reference these two features as separate rows to
the same identity with a high degree of surity. The same correlation process may crawl through
the features table looking for similar email addresses or name spellings and relate them in the
identity table with a lower degree of surity.

Through this methodical mapping of features to identities, large sets of ingested data from
similar cases could reveal patterns that would not be detected through normal manual forensic
investigation. A unique date that is present in several different cases may indicate a relation
though no direct path of communication has been discovered. Also, aliases within larger
organizations could be mapped similar to nicknames, and with enough data, possibly to a real
world name, one that would be present on a driver’s license or passport.

To support this new schema and identity resolution process, we also propose a new PyFlag class
for resolution, Feature Extractor. Similar to the Scanner class, the Feature Extractor would run
on each recognized file in the ingested media. Feature Extractor subclasses would register with
the main Feature Extractor. For file types that are registered, the main class would call the
subclass on the file, with extracted features placed into the proper database tables as described
above. This provides another level of complexity when developing new file identification and
extraction capabilities for PyFlag.

7.2.2 Tool Plug-In

In addition to the new schema, we propose a plug-in architecture for other forensic utilities.
These utilities would be obtained and compiled independently from the PyFlag installation.

51

Each tool would be described by a PyFlag configuration file to pass relevant information into
the PyFlag generic tool extractor class that would wrapper each program. The description of
each tool would be path to execution, execution flags, file types supported(i.e. for images a list
of jpg, jpeg, bmp; similar to what PyFlag uses to generate it’s automatic report of all images
found). and then a method to parse the information returned. The resulting information would
have to be specified if it is returned on the command line used to execute or in a separate
file. This returned information can then be parsed with a regular expression and mapped to the
PyFlag relevant fields for inclusion in the database.

For example, a steganography detection and extraction program that returns messages on the
command line would be defined as follows:

Path to execution /usr/bin/stegdetect
Execution flags $filename

File types jpg, jpeg, bmp, gif, png
Return path commandline
Parser "Found Messages: " ([A-Za-z0-9._\%+-ˆ]+)"\n"

Mapper <table> objects
Mapper <column> <communication> $filename

Mapper <column>

This approach has multiple benefits. First, as new applications are developed, either in the
forensics field or by academic researchers, they can be integrated into existing PyFlag installa-
tions. Also, it allows third parties to write their own custom tools based on their organizational
goals, but still use the PyFlag framework for overall extraction, data fusion and reporting.

7.2.3 Rich Reporting Output

Finally, we propose using a reporting output that is based on how investigators want to see
reports rather than the table based output of the SQL database the data is stored in. PyFlag
currently reports on single areas on a time, making fusion of different data types difficult.
Summary reports should be automatically generated and presented to the user once media
analysis is completed.

The additions presented in this section would bring much to the PyFlag architecture. Primarily,
the PyFlag database would be organized for data correlation in addition to extraction, allowing
large investigations and organizations with significant captured media to generate better infor-

52

mation from data analysis and provide more useful reports to the investigators. The framework
would allow for rapid tool integration to adapt to changing technology without having to modify
an existing in-place PyFlag installation. Finally, the reporting output would be focused on the
end users and what they need from the framework, rather then how the framework is currently
architected. Though not trivial to implement, we believe these changes are important and could
be extremely productive.

53

THIS PAGE INTENTIONALLY LEFT BLANK

54

CHAPTER 8:
Conclusions and Future Work

8.1 Conclusions

Currently available forensic tools are designed with the forensic expert in mind. The tools
present a wealth of options and require specific and technical knowledge to extract data media
images. These tools then present the extracted data in poorly organized fashions that try to show
the user as much data as possible rather than prioritizing information according to relevance.

This thesis has focused on providing a snapshot of the system or media imaged as the most
relevant information to a non-techinical investigator. Basic functions performed on common
operating systems with common applications are the focus, with in-depth analysis by trained
forensic investigators still necessary but only in a small percentage of cases. As a result,
this thesis has focused on common functions, communications, web history and media; such
information can then bet he starting point for additional analysis.

After reviewing current tools ability to ingest, analyze and report on a sample system image, we
looked at the ability to modify the tools to produce an automated report. Though EnCase,
PyFlag and TSK provide scripting abilities, each tool had drawbacks. While the scripting
abilities with EnCase allow additional data to be extracted from images and added to reports,
the scripting language is limited and there is no way to automate start to finish analysis and
reporting currently. TSK also allows scripting using standard unix tools, but does not provide
higher level analysis and extraction ability that PyFlag does provide. PyFlag however has poor
database organization and report display, though of these three tools, it is the most advanced
and easiest to modify.

Our proof of concept code demonstrates the ability for PyFlag to provide the automated re-
porting we believe will be necessary in the near future. The increased storage capacity, media
retention and computer usage of the general population will feed the increased trends reported
by the FBI of digital media becoming relevant in investigations. The high cost and lengthy
training required for expert digital forensic investigators has created a backlog of digital media
to be analyzed within organizations with budget limitations. For the typical investigator, an
automated report on media associated to a case that provides basic information about the media

55

and data stored within can provide a triage capability to focus the limited man hours of the
expert digital forensic investigator available for case analysis. By automating the digital forensic
process from data ingestion through reporting, and returning that report to the investigator to
decide whether further analysis is merited or required, the investigator is freed to focus on other
case aspects and the trained digital investigators can focus on significant tasks.

8.2 Future Work

There is much work that must be done to make this automated reporting vision a productive
reality. PyFlag requires fundamental redesign in the database and report display areas. The
current database seems to be developed ad-hoc as new functionality was added to the system.
There exists no means to provide cross case indexing or identity resolution, which can yield
productive results when investigating large organizations and networks. These capabilities can
direct the investigator towards previously unknown communication nodes.

PyFlag needs more data extractors developed to increase usefulness. Many communications
protocols are not implemented in the current extraction capability, nor are analysis of application
storage implementations. Also, analysis of non computer related media such as cell phones will
eventually be required so that call records, phone books and SMS messages can be analyzed
and possibly resolved with other communications relevant to the investigation.

The PyFlag database schema requires a fundamental redesign with inter-case correlation and
identity resolution capabilities in mind. Communications methods should be abstracted and
stored at the most basic level in the database to facilitate faster querying of multiple commu-
nications streams. Unique identifying information should be cross indexed between cases to
provide instant correlation to other relevant information.

The proposed tool plug-in should allow for regression testing against known data sets to ensure
proper operation, though defining test data for unknown tool capabilities presents a larger
problem beyond the scope of this thesis. Finally, identity resolution capability should be
integrated so that varied and incomplete data sources can provide a better “big picture” analysis
of an investigation.

The task of choosing what is considered relevant data and what is not relevant was not discussed
in depth and in this thesis, this task will necessarily vary from case to case and with the technical
skill of the suspect. But there are basic pieces of relevant information - for example, a disk’s

56

users and their online electronic identities that are sure to be relevant to the vast majority of
investigations. By focusing on such data, significant improvements can be made in the field of
automated Digital Forensic reporting.

57

THIS PAGE INTENTIONALLY LEFT BLANK

58

APPENDIX A:
Sample Conceptual Report

The following pages present a conceptual report created in Microsoft Word to demonstrate the
type of information that we desire to provide to the investigator through this automated concept.

59

Report for drive “July2008_Smith_Investigation” generated 22JUL08

User accounts Last Login Full Name
Administrator 15JUN08 Administrator
Guest Never Guest
Jsmith 21JUL08 John Smith

Signature Matches:
 Stegprogram.exe SHA‐1 match Suspect_Programs.blm Jsmith
 SecureErase.exe SHA‐1 match Suspect Programs.blm Jsmith
 NISTSecret.pdf SHA‐1 match FilesPossiblyStolen.blm Jsmith
 NISTEmails.doc SHA‐1 match FilesPossiblyStolen.blm Jsmith

Email account User Sent Received Most Recent
jsmith@yahoo.com jsmith 261 692 21JUL08
 Top 5 Destinations Alias Sent Received Most Recent
 jmom@yahoo.com mom 20 21 21JUL08
 billy@gmail.com bill fitz 32 15 18JUL08
 steve@cox.net steve jones 21 12 10FEB08
 craig@redshift.com craig collins 15 31 28JUN08
 jen@gmail.com jen oliver 68 74 21JUL08

jmom@yahoo.com jen@gmail.com

 jsmith@yahoo.com

billy@gmail.com craig@redshift.com steve@cox.net

Email account User Sent Received Most Recent
secretj@yahoo.com jsmith 38 54 20JUL08
 Top 5 Destinations Alias Sent Received Most Recent
 durka@yahoo.com durk 28 30 19JUL08

60

 aarnold@nist.gov aaron arnold 20 24 10JUL08

durka@yahoo.com secretj@yahoo.com aarnold@nist.gov

Web Browser Internet Explorer
 Bookmarks
 http://mail.yahoo.com
 http://ebay.com
 http://www.bostonnews.com
 http://www.someforumsite.com
 Last 10 Sites Date Histogram
 www.yahoo.com 21JUL08 500 Hits
 www.cnn.com 21JUL08 330 Hits
 www.someforumsite.com 20JUL08 25 Hits
 www.mail.yahoo.com 21JUL08 400 Hits
 www.cnn.com 21JUL08 330 Hits
 www.bostonnews.com 17JUL08 55 Hits
 www.etc.com 18JUL08 15 Hits
 www.flickr.com 20JUL08 43 Hits
 Site Credentials (Cookies)
 http://mail.yahoo.com username: jsmith
 http://mail.yahoo.com username: secretj
 http://forum.someforumsite.com username: secretj

Images:

 10JUL08:

 15JUL08:

21JUL08:

61

Documents:
 Microsoft Word: 73 Documents Found 1 File Encrypted
 72 Files Created by Computer Owner
 1 File Not Created by Computer Owner:
 NISTEmails.doc Created by: A. Durk.

 Adobe PDF: 5 Documents Found 0 Files Encrypted
 4 Documents found via google.com search
 1 File not found via search:
 NISTSecret.pdf

Instant Messenger Logs:
 Aim.exe Found: AOL Instant Messenger Account: jsmith
 No Logs Found

 Pidgen.exe Found: AOL Instant Messenger Account jsmith
 Logs Found:
 BillySoccerPlayer 10JUL08 to 21JUL08 635 lines
 Chris242 11JUL08 to 20JUL08 210 lines
 Jmomonline 10JUL08 to 15JUL08 58 lines

 Pidgen.exe Found: Yahoo Chat Account secretj
 Logs Found:
 Durka 15JUL08 to 21JUL08 937 lines
 Aarnold 15JUL08 to 21JUL08 412 lines

62

APPENDIX B:
Actual Generated Report

Following is a proof of concept report run against the PyFlag case database after ingestion and
analysis of the realistic disk image. Several parts of the database are not populated by the
current versions of PyFlag. When trying to load the NSRL RDS database into PyFlag version
0.87, the nsrl load.py utility returns SQL errors on unsupported format characters. PyFlag also
does not currently populate the windows registry database tables. As PyFlag matures, the more
populated database will yield more information to these reports. The report also contains code
to generate IM information if available.

63

Report on realistic1 Case

Signature Matches

File Name Hash Product Name File Date

default - 2008-10-30 09:50:31

SAM - 2008-10-30 09:50:31

SECURITY - 2008-10-30 09:50:31

software - 2008-10-30 09:50:31

system - 2008-10-30 09:50:31

NTUSER.DAT - 2008-10-30 09:50:31

UsrClass.dat - 2008-10-30 09:50:31

NTUSER.DAT - 2008-10-30 09:50:31

UsrClass.dat - 2008-10-30 09:50:31

wuapi.dll - 2008-10-30 09:50:18

user 'domex1'

user: domex1

Most Popular Files

Filetype Count

1511

.gif 160

.js 140

.properties 96

.xml 88

.jpg 61

.dtd 48

.htm 42

.rdf 39

.ini 32

.txt 29

Most Recent Files

Filename Time

NTUSER.DAT 2008-10-30 09:47:55

64

ntuser.ini 2008-10-30 09:47:55

UsrClass.dat 2008-10-30 09:47:55

Application Data 2008-10-30 09:47:45

NTUSER.DAT.LOG 2008-10-30 09:47:37

common.cls 2008-10-30 09:47:08

cert8.db 2008-10-30 09:47:07

key3.db 2008-10-30 09:47:07

Temp 2008-10-30 09:47:02

6.8.12.4 2008-10-30 09:47:02

Most Popular Websites

Address Count

static.cache.l.google.com 165

www.aolcdn.com 79

mail.google.com 59

co101w.col101.mail.live.com 54

webmail.mozdev.org 50

bl120w.blu120.mail.live.com 50

cache.lifehacker.com 42

tk2.stc.s-msn.com 25

www.google.com 22

tk2.stb.s-msn.com 20

gfx1.hotmail.com 17

Images

File Link File Name File Size

None Windmills426637736[1].jpg 83923

None Gondolas1202795864[1].jpg 83919

None 32769399d01 72843

None hsm3promo[1].jpg 64504

None 29C1EC8Dd01 64504

None 13FFEC6Dd01 63040

None 48d3b9a1-0022a-06e32-400cb8e1[1].jpg 61210

None 48fceb6d-0008d-0637f-400cb8e1[1].jpg 60002

None F79D2850d01 59698

None sexychat[1].jpg 58887

None 343408E0d01 58887

None 48fcd482-003cb-0637f-400cb8e1[1].jpg 56753

None pixnay16[1].jpg 49916

65

None B9900074d01 49916

None 5AE35B40d01 48840

None 48dd2074-002b3-07303-400cb8e1[1].jpg 47901

None 9FCDB21Bd01 45851

None aimtoolbar150[1].jpg 45851

None AE71DA23d01 45802

None 3997BF36d01 42420

Microsoft Office Files

File Link File Name File Size

None excel4.xls 1518

user 'domex2'

user: domex2

Most Popular Files

Filetype Count

462

.gif 157

.htm 66

.jpg 60

.js 37

.ini 33

.txt 27

.css 24

.dat 23

.lnk 22

.xml 20

Most Recent Files

Filename Time

UsrClass.dat 2008-10-30 09:49:00

NTUSER.DAT 2008-10-30 09:43:20

NTUSER.DAT.LOG 2008-10-30 09:43:20

Recent 2008-10-30 00:50:17

Local Settings 2008-10-30 00:50:13

My Documents 2008-10-30 00:50:13

66

Start Menu 2008-10-30 00:50:13

Application Data 2008-10-30 00:50:13

My Music 2008-10-30 00:50:13

My Pictures 2008-10-30 00:50:13

Most Popular Websites

Address Count

bl126w.blu126.mail.live.com 23

bl135w.blu135.mail.live.com 17

gfx1.hotmail.com 11

gfx2.hotmail.com 10

login.live.com 8

m1.2mdn.net 7

gfx8.hotmail.com 7

www.google.com 6

h.msn.com 6

gfx6.hotmail.com 6

rad.live.com 5

Images

File Link File Name File Size

None 4FFD0FE4d01 30199

None mAtL_inbox[1].jpg 27894

None gmail_77659b_en[1].gif 27006

None gmail_77659c_en[1].gif 25526

None 32[1].png 23940

None skydrive_overview_2[1].jpg 23556

None Settings[2].jpg 23259

None toolbar2[1].jpg 22860

None g_overview[1].jpg 22566

None Events_SuitePage_Graphic.cropped8[1].gif 22468

None maildesk2[1].jpg 21109

None D9A13DFBd01 20822

None 5D53F2EEd01 20264

Microsoft Office Files

File Link File Name File Size

None excel4.xls 1518

67

user 'Administrator'

user: Administrator

Most Popular Files

Filetype Count

593

.gif 214

.js 198

.png 164

.dll 147

.htm 94

.jpg 79

.css 62

.txt 37

.ini 32

.cab 32

Most Recent Files

Filename Time

NTUSER.DAT 2008-10-30 09:50:00

ntuser.ini 2008-10-30 09:50:00

UsrClass.dat 2008-10-30 09:50:00

ntuser.dat.LOG 2008-10-30 09:49:56

IconCache.db 2008-10-30 09:49:49

Preferred 2008-10-30 09:10:59

goopdateres_en.dll 2008-10-30 09:10:59

Local Settings 2008-10-30 08:56:40

Update 2008-10-30 08:56:40

1.2.131.25 2008-10-30 08:56:40

Most Popular Websites

Address Count

help.live.com 21

static.cache.l.google.com 19

co101w.col101.mail.live.com 18

bl120w.blu120.mail.live.com 18

68

shared.live.com 13

login.live.com 10

gfx1.hotmail.com 10

gfx2.hotmail.com 8

m1.2mdn.net 6

gfx8.hotmail.com 6

gfx6.hotmail.com 6

Images

File Link File Name File Size

None promoimage1[1].jpg 117956

None 100308_aol[1].jpg 99476

None GreenBizLogo_72ppi_[1].jpg 84940

None dlpage_lg[1].jpg 76002

None background-firefox-1[1].jpg 73350

None f_000002 71038

None f_000003 70424

None ss2[1].jpg 68044

None f_000001 64187

None feature-background-2[1].jpg 63296

None background-thunderbird-features[1].jpg 49930

None Install_AIM[1].exe 49930

None chrome-205_noshadow[1].png 49564

None background-download[1].jpg 45022

None splash[1].png 36767

None omni-2_300x250[1].jpg 36541

None aimani.gif 34127

None purple_logo_w_text[1].jpg 31112

None promo_bg14[1].jpg 30718

None promo_bg68b[1].jpg 30043

Microsoft Office Files

File Link File Name File Size

None excel4.xls 1518

69

THIS PAGE INTENTIONALLY LEFT BLANK

70

APPENDIX C:
Sample Adium Log

<?xml version="1.0" encoding="UTF-8" ?>

<chat xmlns="http://purl.org/net/ulf/ns/0.4-02" account="domextest1" service="AIM">

<event type="windowOpened" sender="domextest1" time="2008-09-18T22:06:06-07:00"/>

<message sender="domextest2" time="2008-09-18T22:06:06-07:00">

<div>test

</div></message>

<message sender="domextest1" time="2008-09-18T22:06:07-07:00" alias="p f">

<div>test

</div></message>

<message sender="domextest1" time="2008-09-18T22:06:15-07:00" alias="p f">

<div>

this is a message from adium to pidgin</div></message>

<message sender="domextest2" time="2008-09-18T22:06:22-07:00"><div>

this is a message from pidgin to adium</div></message>

<event type="windowClosed" sender="domextest1" time="2008-09-18T22:06:35-07:00"/>

</chat>

71

THIS PAGE INTENTIONALLY LEFT BLANK

72

APPENDIX D:
Sample Pidgin Log

Conversation with domextest1 at Thu 18 Sep 2008 09:50:28 PM PDT on domextest2 (aim)

(09:50:30 PM) domextest2: test

(09:50:41 PM) domextest1: test

(09:50:52 PM) domextest1: this is a message from aim6 to pidgin

(09:50:59 PM) domextest2: this is a message from pidgin to aim6

(10:06:24 PM) domextest2: test

(10:06:26 PM) domextest1: test

(10:06:33 PM) domextest1: this is a message from adium to pidgin

(10:06:40 PM) domextest2: this is a message from pidgin to adium

73

THIS PAGE INTENTIONALLY LEFT BLANK

74

APPENDIX E:
Sample AOL Instant Messenger Log

<?xml version="1.0" standalone="yes" encoding="UTF-8" ?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html>

<head>

<meta http-equiv="content-type" content="application/xhtml+xml;charset=utf-8"/>

<title>IM History with buddy domextest2</title>

<link rel="stylesheet" href="styles.css" type="text/css">

</head>

<body><h1>

<img

src="http://api.oscar.aol.com/expressions/get?f=native&type=buddyIcon&t=domextest2"

height="48" border="1" alt="icon"/> IM History with buddy

domextest2</h1>

<table width="100%%" cellpadding="1" cellspacing="0">

<tr><td colspan="2" class="time">Thursday, September 18, 2008</td></tr>

<tr><td class="remote">domextest2 (9:49:49 PM):</td><td class="msg"

width="100%">test</td></tr>

<tr><td class="local">domextest1 (9:50:00 PM):</td><td class="msg"

width="100%">

test</td></tr>

75

<tr><td class="local">domextest1 (9:50:10 PM):</td><td class="msg"

width="100%">

this is a message from aim6 to pidgin

</td></tr>

<tr><td class="remote">domextest2 (9:50:18 PM):</td>

<td class="msg" width="100%">this is a message from pidgin to aim6</td></tr>

</table>

</body></html>

76

APPENDIX F:
userreport.py

#!/usr/bin/python

Examining the PyFlag database and report on a case

import time,sys,os,os.path,re

from sets import Set

import MySQLdb

import domex

bogus_users = ["NetworkService","All Users","Default User","SMSCCMBootAcct&","SMSCliToknAcct&","SMSCliToknLocalAcct&","SMSCliSvcAcct&",

"LocalService"]

def users(c):

files = c.execute("select path from file where path like ’%%Documents and Settings%%’")

res = c.fetchall()

multiuser_re = re.compile("/([ˆ/]+)/Documents and Settings/([ˆ/<]+)/")

from sets import Set

users = Set()

for (file,) in res:

m = multiuser_re.search(file)

if m:

if m.group(2) not in bogus_users:

users.add((m.group(1),m.group(2)))

print "<h1>Files by user</h1>"

for (vfs,user) in users:

print "<h2>user ’%s’</h2>\n" % user

print "user:",user

c.execute("""select name from file where path like ’/"+vfs+"/Documents and Settings/"+user+"%%’""")

res = c.fetchall()

hist = {}

for (file,) in res:

pos = file.rfind(".")

if pos==-1:

filetype = "<none>"

else:

filetype = file[pos:]

hist[filetype] = hist.get(filetype,0) + 1

rev = [(v,k) for k,v in hist.items()]

rev.sort()

rev.reverse()

hist = [(v,k) for k,v in rev]

print "<table>"

print "<tr><th>Filetype</th><th>Count</th></tr>\n"

i=0;

for key,count in hist:

print "<tr><td>%s</td><td>%d</td></tr>\n" % (key,count)

i+=1

if i>10:

break

print "</table>\n"

webhistory(c,user)

def signatures(c):

files = c.execute("select file.name, hash.NSRL_product, inode.atime from inode join file on file.inode_id = inode.inode_id join hash on hash.inode_id = inode.inode_id and inode.size > 10000 order by inode.atime desc limit 10")

res = c.fetchall()

print "<h1>Signature Matches</h1>\n"

print "<table>"

print "<tr><th>File Name</th><th>Hash Product Name</th><th>File Date</th></tr>\n"

for (name, hash, time) in res:

77

print "<tr><td>%s</td><td>%s</td><td>%s</td></tr>\n" % (name, hash, time)

print "</table>\n"

def emails(c):

files = c.execute("select email.from, email.to, email.date, email.subject from email")

res = c.fetchall()

subjs = {}

sends = {}

for (efrom, eto, edate, esubj) in res:

subjs[esubj] = subjs.get(esubj,0)+1

sends[efrom] = sends.get(efrom,0)+1

rev = [(v,k) for k,v in sends.items()]

rev.sort()

rev.reverse()

sends = [(v,k) for k,v in rev]

rev = [(v,k) for k,v in subjs.items()]

rev.sort()

rev.reverse()

subjc = [(v,k) for k,v in rev]

print "<h1>Most Popular Email Subjects</h1>\n"

print "<table>"

print "<tr><th>Subject</th><th>Count</th></tr>\n"

i=0;

for key,val in subjs:

print "<tr><td>%s</td><td>%d</td></tr>\n" % (key,val)

i+=1

if i>10:

break

print "</table>\n"

print "<h1>Most Popular Email Senders</h1>\n"

print "<table>"

print "<tr><th>Subject</th><th>Count</th></tr>\n"

i=0;

for key,val in sends:

print "<tr><td>%s</td><td>%d</td></tr>\n" % (key,val)

i+=1

if i>10:

break

print "</table>\n"

def webhistory(c,u):

files = c.execute("select http.url, file.path from http, inode, file where http.inode_id = inode.inode_id and inode.inode_id = file.inode_id and file.path like ’%%"+u+"%%’ order by inode.mtime desc")

res = c.fetchall()

address_re = re.compile("http\:\/\/([ˆ\/]+)\/[.]*")

sites = {}

for (url,) in res:

s=address_re.search(url)

if s:

s=s.group(1)

sites[s] = sites.get(s,0)+1

rev = [(k,v) for v,k in sites.items()]

rev.sort()

rev.reverse()

sites = [(v,k) for k,v in rev]

print "<h1>Most Popular Websites</h1>\n"

print "<table>"

print "<tr><th>Address</th><th>Count</th></tr>\n"

i=0;

for key,val in sites:

print "<tr><td>%s</td><td>%d</td></tr>\n" % (key,val)

i+=1

if i>10:

break

print "</table>\n"

def images(c,u):

files = c.execute("select file.link, file.name, inode.size from inode join ‘file‘ on ‘inode‘.inode_id = ‘file‘.inode_id join ‘type‘ on ‘inode‘.inode_id = ‘type‘.inode_id where ((1) and and file.path like ’%%"+u+"%%’ and ((‘inode‘.‘inode_id‘ in (select inode_id from type where type like ’%image%’)) and ‘inode‘.‘size‘ > ’20000’)) order by ‘inode‘.‘size‘ desc limit 20")

res = c.fetchall()

print "<h1>Images</h1>\n"

print "<table>"

78

print "<tr><th>File Link</th><th>File Name</th><th>File Size</th></tr>\n"

for (name, size, time) in res:

print "<tr><td>%s</td><td>%s</td><td>%s</td></tr>\n" % (name, size, time)

print "</table>\n"

def documents(c,u):

files = c.execute("select file.link, file.name, inode.size from inode join ‘file‘ on ‘inode‘.inode_id = ‘file‘.inode_id join ‘type‘ on ‘inode‘.inode_id = ‘type‘.inode_id where ((1) and file.path like ’%%"+u+"%%’ and ((‘inode‘.‘inode_id‘ in (select inode_id from type where type like ’%Microsoft Word%’ or type like ’%Microsoft Excel%’)))) order by ‘inode‘.‘size‘ desc limit 20")

res = c.fetchall()

print "<h1>Microsoft Office Files</h1>\n"

print "<table>"

print "<tr><th>File Link</th><th>File Name</th><th>File Size</th></tr>\n"

for (name, size, time) in res:

print "<tr><td>%s</td><td>%s</td><td>%s</td></tr>\n" % (name, size, time)

print "</table>\n"

def im(c,u):

files = c.execute("select file.name, inode.size, inode.atime from file, inode, type where file.inode_id = inode.inode_id and inode.inode_id = type.inode_id and file.path like ’%%"+user+"%%’ and type.type like ’%Instant Messenger Log File%’ order by inode.atime desc limit 10")

res = c.fetchall()

print "<h1>Instant Messenger Logs</h1>\n"

print "<table>"

print "<tr><th>File Name</th><th>File Size</th><th>Date</th></tr>\n"

for (name, size, time) in res:

print "<tr><td>%s</td><td>%s</td><td>%s</td></tr>\n" % (name, size, time)

print "</table>\n"

files = c.execute("select nick, COUNT(*) as count from msn_users order by count desc limit 10")

res = c.fetchall()

print "<h1>Instant Messenger Conversations</h1>\n"

print "<table>"

print "<tr><th>Nickname</th><th>Count</th></tr>\n"

for (name, count) in res:

if count > 0:

print "<tr><td>%s</td><td>%s</td></tr>\n" % (name, count)

print "</table>\n"

if(__name__==’__main__’):

from optparse import OptionParser

parser = OptionParser()

parser.usage = "usage: %prog [options] <database>\n\nReports on a PyFlag case"

(options,args) = parser.parse_args()

mysql = domex.mysql_connection(db=sys.argv[1])

c = mysql.cursor()

print "<html><head><title>%s User Report </title></head>" % sys.argv[1]

print "<body>"

print "<h1>Report on %s Case</h1>\n" % sys.argv[1]

signatures(c)

users(c)

print "</body></html>\n"

79

THIS PAGE INTENTIONALLY LEFT BLANK

80

APPENDIX G:
domex.py

""" The python domex.py library. Contains all site-wide definitions for our domex system """

import os

def mysql_connection(db):

"""Returns a MySQL connection to the DOMEX SQL database"""

for f in [’/var/run/mysqld/mysqld.sock’,"/var/mysql/mysql.sock","/tmp/mysql.sock"]:

if os.path.exists(f):

sock = f

break

import MySQLdb

"""if not db: db=os.getenv("DOMEX_MYSQL_DATABASE")"""

mysql = MySQLdb.connect(host="127.0.0.1",

user="root",

passwd="password",

db=db,

unix_socket=sock)

return mysql

def get_aff_files():

"""Return a list of the AFF files on the server"""

ret = []

for (dirpath,dirnames,filenames) in os.walk(os.getenv("DOMEX_CORP")):

for filename in filenames:

if filename.endswith(".aff"):

ret.append(dirpath + filename)

return ret

def get_xml_files():

"""Return a list of the AFF files on the server"""

ret = []

for (dirpath,dirnames,filenames) in os.walk(os.getenv("DOMEX_CORP")):

for filename in filenames:

if filename.endswith(".xml"):

ret.append(dirpath + "/" + filename)

return ret

def find_aff(basename):

for (dirpath,dirnames,filenames) in os.walk(os.getenv("DOMEX_CORP")):

for filename in filenames:

if basename==filename: return dirpath + "/" + filename;

return None

def affgid(fn):

from subprocess import Popen,PIPE

return Popen([’afsegment’,’-pimage_gid’,fn],stdout=PIPE).stdout.read()

def aff_gid_hex(fn):

import hex

return hex.bin2hex(affgid(fn))

81

THIS PAGE INTENTIONALLY LEFT BLANK

82

APPENDIX H:
IMLogMagic.py

""" This file contains magic classes to identify files from their

headers more accurately

"""

import pyflag.Magic as Magic

import pyflag.Registry as Registry

import pyflag.DB as DB

import pyflag.FlagFramework as FlagFramework

class PidginLogMagic(Magic.Magic):

type = "Instant Messenger Log File"

mime = "text/plain"

default_score = 100

regex_rules = [

("Conversation with [\w]+ at [\w\w\w] [\d]+ [\w\w\w] [\d]{4} [\w\w \w\w\w] on [\w]+ \([\w]+\)\n", (0,100)),

("\([\d\d]\:[\d\d]\:[\d\d] [\w]+\: [\w\s]+\n", (0,1000))

]

samples = [(100, "Conversation with domextest1 at Thu 18 Sep 2008 09:50:28 PM PDT on domextest2 (aim)")]

class AIMLogMagic(Magic.Magic):

type = "Instant Messenger Log File"

mime = "text/plain"

default_score = 100

regex_rules = [

("<title>IM History with buddy [\w]+</title><link rel=\"stylesheet\" href=\"styles.css\" type=\"text/css\">", (0,100)),

("<tr><td class=\"local\">[\w]+ (\d:\d\d:\d\d \w\w):", (0,1000)),

("<tr><td class=\"remote\">[\w]+ (\d:\d\d:\d\d \w\w):", (0,1000))

]

samples = [(100, """<tr><td class="local">domextest1 (9:50:00 PM):</td><td class="msg" width="100%">test</td></tr>""")]

class AdiumLogMagic(Magic.Magic):

type = "Instant Messenger Log File"

mime = "text/plain"

default_score = 100

regex_rules = [

("<chat xmlns=\"http://purl.org/net/ulf/ns/0.4-02\" account=", (0,100)),

("<message sender=", (0,1000))

]

samples = [(100, """<message sender="domextest2" time="2008-09-18T22:06:06-07:00"><div>test</div></message>""")]

class AIMLogScanner(Scanner.GenScanFactory):

"""Scan AIM Logs to insert data into msn_users table"""

depends = ’TypeScan’

group = ’FileScanners’

def __init__(self, fsfd):

Scanner.GenScanFactory.__init__(self,fsfd)

dbh=DB.DBO(self.case)

class Scan(Scanner.StoreAndScanType):

types = (’Instant Messenger Log File’)

def external_process(self, fd):

if self.mime_type==self.types[0]:

self.process_log(fd)

83

def process_log(self, fd):

try:

path, inode, indoe_id = self.ddfs.lookup(inode=fd.inode)

line = fd.readline()

local_user = ""

remote_user = ""

message_text = ""

if line.startswith(’<body><h1><img src=’):

info_re = re.compile("<body><h1><img src=\"http://api.oscar.aol.com/expressions/get?f=native&type=buddyIcon&t=(?P<remote_user>\w+)\" height=\"48\" border=\"1\" alt=\"icon\"/> IM History with buddy <a href=\"aim:goim?screenName=(\w+)&targetBuddyList=(?P<local_user>\w+)\">(\w+)</h1>")

match = info_re.search(line)

local_user = match.group("local_user")

remote_user = match.group("remote_user")

if line.startswith(’<tr><td class=\"local\">’):

local_re = re.compile("""<tr><td class="local">(?P<local_user>\w+) (\d:\d\d:\d\d \w\w):</td><td class="msg" width="\d\d\d%">(?P<message>[\w\W]+)</td></tr>""")

match = local_re.search(line)

message_text = match.group("message")

dbh=DB.DBO(self.case)

dbh.insert(’msn_users’,

inode_id = self.inode,

nick = local_user,

user_data_type = ’personal_message’,

user_data = message_text)

message_text = ""

if line.startswith(’<tr><td class=\"remote\">’):

local_re = re.compile("""<tr><td class="remote">(?P<remote_user>\w+) (\d:\d\d:\d\d \w\w):</td><td class="msg" width="\d\d\d%">(?P<message>[\w\W]+)</td></tr>""")

match = local_re.search(line)

message_text = match.group("message")

dbh.insert(’msn_users’,

inode_id = self.inode,

nick = remote_user,

user_data_type = ’personal_message’,

user_data = message_text)

message_text = ""

except Exception,e:

pyflaglog.log(pyflaglog.DEBUG,"AIMLogScanner Scan: Unable to parse inode %s as an AIM log message (%s)" % (self.inode,e))

class AdiumLogScanner(Scanner.GenScanFactory):

"""Scan Adium Logs and insert data into msn_users table"""

depends = [’TypeScan’]

group = ’FileScanners’

def __init__(self, fsfd):

Scanner.GenScanFactory.__init__(self,fsfd)

dbh=DB.DBO(self.case)

class Scan(Scanner.StoreAndScanType):

types = [’Instant Messenger Log File’]

def external_process(self, fd):

if self.mime_type==self.types[0]:

self.process_log(fd)

def process_log(self, fd):

try:

path, inode, indoe_id = self.ddfs.lookup(inode=fd.inode)

line = fd.readline()

local_user = ""

remote_user = ""

message_text = ""

if line.startswith("""<chat xmlns="http://purl.org/net/ulf/ns/0.4-02" account="""):

info_re = re.compile("""<chat xmlns="http://purl.org/net/ulf/ns/0.4-02" account="(?P<local_user>\w+)" service="AIM"><event type="windowOpened" sender="\w+" time="\d{4}-\d{2}-\d{2}T\d{2}:\d{2}:\d{2}-\d{2}:\d{2}"/>""")

match = info_re.search(line)

local_user = match.group("local_user")

if line.startswith("""<message sender="""):

84

local_re = re.compile("""<message sender="(?P<user_name>\w+)" time="\d{4}-\d{2}-\d{2}T\d{2}:\d{2}:\d{2}-\d{2}:\d{2}"><div>(?P<message>[\w\W]+)test</div></message>""")

match = local_re.search(line)

message_text = match.group("message")

nickname = match.group("user_name")

dbh.insert(’msn_users’,

inode_id = self.inode,

nick = nickname,

user_data_type = ’personal_message’,

user_data = message_text)

message_text = ""

except Exception,e:

pyflaglog.log(pyflaglog.DEBUG,"AdiumLogScanner Scan: Unable to parse inode %s as an Adium log message (%s)" % (self.inode,e))

class PidginLogScanner(Scanner.GenScanFactory):

"""Scan Pidgin Logs and insert data into msn_users table"""

depends = [’TypeScan’]

group = ’FileScanners’

def __init__(self, fsfd):

Scanner.GenScanFactory.__init__(self,fsfd)

dbh=DB.DBO(self.case)

class Scan(Scanner.StoreAndScanType):

types = [’Instant Messenger Log File’]

def external_process(self, fd):

if self.mime_type==self.types[0]:

self.process_log(fd)

def process_log(self, fd):

try:

path, inode, indoe_id = self.ddfs.lookup(inode=fd.inode)

line = fd.readline()

local_user = ""

remote_user = ""

message_text = ""

if line.startswith("""Conversation with """):

info_re = re.compile("""Conversation with (?P<remote_user>\w+) at \w{3} \d{2} \w{3} \d{4} \d{2}:\d{2}:\d{2} \w{2} \w{3} on)?P<local_user>\w+) (\w{3})""")

match = info_re.search(line)

local_user = match.group("local_user")

remote_user = match.group("remote_user")

if line.startswith("""(\d{2}:\d{2}:\d{2} \w{2})"""):

local_re = re.compile("""(\d{2}:\d{2}:\d{2} \w{2}) (?P<username>\w+): (?P<message>[\w\W]+)""")

match = local_re.search(line)

message_text = match.group("message")

nickname = match.group("user_name")

dbh.insert(’msn_users’,

inode_id = self.inode,

nick = nickname,

user_data_type = ’personal_message’,

user_data = message_text)

message_text = ""

except Exception,e:

pyflaglog.log(pyflaglog.DEBUG,"PidginLogScanner Scan: Unable to parse inode %s as an Pidgin log message (%s)" % (self.inode,e))

85

THIS PAGE INTENTIONALLY LEFT BLANK

86

List of References

[1] Forensic toolkit 2.0, 2008. http://www.accessdata.com/Products/

ftk2test.aspx. [Online; accessed 11 June 2008].

[2] Robert-Jan Mora Bas Kloet, Joachim Metz. libewf: Project info, May 2008. http://
www.uitwisselplatform.nl/projects/libewf/. [Online; accessed 6 June
2008].

[3] Steven Bassi. An automated acquisition system for media exploitation. Master’s thesis,
Naval Postgraduate School, June 2008.

[4] Brian Carrier. Autopsy forensic browser: Description. http://www.sleuthkit.

org/autopsy/desc.php. [Online; accessed 03 January 2009].

[5] Brian Carrier. The Sleuth Kit & Autopsy: Forensics tools for Linux and other Unixes,
2005. http://www.sleuthkit.org/. [Online; accessed 06 March 2009].

[6] Brian Carrier. A Hypothesis-Based Approach to Digital Forensic Investigations. PhD
thesis, Purdue University, 2006.

[7] M.I. Cohen. Pyflag: An advanced network forensic framework. In Proceedings of the 2008

Digital Forensics Research Workshop. DFRWS, August 2008. http://www.pyflag.
net. [Online; accessed 06 March 2009].

[8] Michael I. Cohen. Advanced jpeg carving. In e-Forensics ’08: Proceedings of the 1st

international conference on Forensic applications and techniques in telecommunications,

information, and multimedia and workshop, pages 1–6. ICST (Institute for Computer
Sciences, Social-Informatics and Telecommunications Engineering), ICST, Brussels,
Belgium, Belgium, 2008. ISBN 978-963-9799-19-6.

[9] Cray Inc. Cray inc., the supercomputer company - about cray - history. http://www.
cray.com/About/History.aspx. [Online; accessed 20 Feburary 2009].

[10] Ian F. Darwin. Libmagic, August 2008. ftp://ftp.astron.com/pub/file/.

[11] DF Labs. Ptk overview. http://ptk.dflabs.com/overview.html. [Online;
accessed 03 January 2009].

87

[12] Digital Assembly, LLC. Why adroit photo recovery? http://digital-assembly.

com/products/. [Online; accessed 02 March 2009].

[13] Digital Forensic Research Workshop. A roadmap for digital forensic research,
2001. http://dfrws.org/2001/dfrws-rm-final.pdf. [Online; accessed 03
September 2008].

[14] Digital Forensic Research Workshop. Dfrws 2008 forensics challenge results, 2008.
http://dfrws.org/2008/challenge/results.shtml. [Online; accessed 03
January 2009].

[15] Dan Farmer and Wietse Venema. The coroner’s toolkit (tct). http://www.

porcupine.org/forensics/tct.html. [Online; accessed 02 March 2009].

[16] Paul Farrell, Simson Garfinkel, and Doug White. Practical applications of bloom filters to
the nist rds and hard drive triage. In Annual Computer Security Applications Conference

2008, December 2008.

[17] Federal Bureau of Investigation. Regional computer forensic laboratory annual
report 2007. http://www.rcfl.gov/downloads/documents/RCFL_Nat_

Annual07.pdf. [Online; accessed 06 March 2009].

[18] Simson L. Garfinkel. Carving contiguous and fragmented files with fast object validation.
Digital Investigation, 2007.

[19] Simson L. Garfinkel, David J. Malan, Karl-Alexander Dubec, Christopher C. Stevens,
and Cecile Pham. Disk imaging with the advanced forensic format, library and tools.
In Research Advances in Digital Forensics (Second Annual IFIP WG 11.9 International

Conference on Digital Forensics). Springer, January 2006.

[20] Guidance Software. Guidance software form 10-k, 2007. http://

investors.guidancesoftware.com/secfiling.cfm?filingID=

1193125-08-57761. [Online, accessed 17 June 2008].

[21] Guidance Software. Encase annual training passport, 2008. http://www.

guidancesoftware.com/training/AnnualTraining.aspx. [Online; ac-
cessed 06 March 2009].

88

[22] Guidance Software, Inc. EnCase Forensic, 2007. http://www.

guidancesoftware.com/products/ef_index.asp.

[23] Golden G. Richard III and V. Roussev. Scalpel: A frugal, high performance file carver.
In Proceedings of the 2005 Digital Forensics Research Workshop. DFRWS, August 2005.
http://www.digitalforensicssolutions.com/Scalpel/.

[24] Jeff Jonas. Threat and fraud; intelligence, las vegas style. IEEE Security and Privacy, 6:
28–34, 2006.

[25] Nicholas Mikus. An analysis of disc carving techniques. Master’s thesis, Naval
Postgraduate School, March 2005.

[26] Nick Mikus, Kris Kendall, and Jesse Kornblum. Foremost(1), January 2006. http:

//foremost.sourceforge.net/foremost.html. [Online; accessed 06 March
2009].

[27] National Institute for Standards and Technology. Federal information processing standards
publication 180-1, 1995.

[28] Cftt project overview. http://www.cftt.nist.gov/project_overview.

htm, National Institute of Standards and Technology. [Online; accessed 28 September
2008].

[29] National Institute of Standards and Technology. National software reference library
reference data set, 2005. http://www.nsrl.nist.gov/. [Online; accessed 06
March 2009].

[30] Anandabrata Pal, Husrev Sencar, and Nasir Memon. Detecting file fragmentation point
using sequential hypothesis testing. In Digital Forensic Research Workshop, 2008.

[31] Vassil Roussev, Golden G. Richard III, and Lodovico Marziale. Multi-resolution similarity
hashing. Digital Investigation, 4(Supplement-1):105–113, 2007.

[32] Sourcefire Inc. Clam antivirus. http://www.clamav.net/about/. [Online;
accessed 03 January 2009].

[33] Bret Swanson. The coming exaflood-bret swanson. The Wall Street Journal, 2(26), 2007.

[34] U.S. Census Bureau. Computer and internet use in the united states: 2003, 2005.

89

[35] U.S. Department of Justice. A forensic examination of digital evidence: A guide for law
enforcement, April 2004.

[36] Hal R. Varian and Peter Lyman, 2003. http://www2.sims.berkeley.edu/

research/projects/how-much-info-2003/. [Online; accessed 28 September
2008].

[37] G. Alan Wang, Siddharth Kaza, Shailesh Joshi, Kris Chang, Chunju Tseng, Homa
Atabakhsh, and Hsinchun Chen. The arizona idmatcher: developing an identity matching
tool for law enforcement. In dg.o ’07: Proceedings of the 8th annual international

conference on Digital government research, pages 304–305. Digital Government Society
of North America, 2007. ISBN 1-59593-599-1.

[38] Xiaoyun Wang, Dengguo Feng, Xuejia Lai, and Hongbo Yu. Collisions for hash functions
md4, md5, haval-128 and ripemd, August 2004. http://eprint.iacr.org/

2004/199.pdf. [Online; accessed 06 March 2009].

90

Referenced Authors

Atabakhsh, Homa 6

Bas Kloet, Robert-Jan Mora,

Joachim Metz 7

Bassi, Steven 27

Carrier, Brian 3, 7

Chang, Kris 6

Chen, Hsinchun 6

Cohen, M.I. 8

Cohen, Michael I. 6

Cray Inc. 1

Darwin, Ian F. 29

DF Labs 7

Digital Assembly, LLC. 9

Digital Forensic Research

Workshop 3, 8

Dubec, Karl-Alexander 7

Farmer, Dan 7

Farrell, Paul 30, 47

Federal Bureau of Investigation

1

Feng, Dengguo 5

Garfinkel, Simson 30, 47

Garfinkel, Simson L. 5, 7

Guidance Software 7

Guidance Software, Inc. 7

III, Golden G. Richard 5, 8, 29

Jonas, Jeff 6

Joshi, Shailesh 6

Kaza, Siddharth 6

Kendall, Kris 8

Kornblum, Jesse 8

Lai, Xuejia 5

Lyman, Peter 1

Malan, David J. 7

Marziale, Lodovico 5

Memon, Nasir 6

Mikus, Nicholas 5

Mikus, Nick 8

National Institute for Standards

and Technology 5

of Standards, National Institute 5

Pal, Anandabrata 6

Pham, Cecile 7

Roussev, V. 5, 8, 29

Roussev, Vassil 5

Sencar, Husrev 6

Sourcefire Inc. 30

Stevens, Christopher C. 7

Swanson, Bret 1

Technology 5

Tseng, Chunju 6

U.S. Census Bureau 1

U.S. Department of Justice 3

Varian, Hal R. 1

Venema, Wietse 7

Wang, G. Alan 6

Wang, Xiaoyun 5

White, Doug 30, 47

Yu, Hongbo 5

91

THIS PAGE INTENTIONALLY LEFT BLANK

92

Initial Distribution List

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudly Knox Library
Naval Postgraduate School
Monterey, California

93

	Introduction
	Motivation
	This Research

	Background, Existing Tools and Methodologies
	Forensic Methodology
	Relevant Forensic Techniques
	Identity Resolution
	Current Tools

	An Analysis of Today's Batch Reports
	Building a Test Image Containing Realistic Data
	An Analysis of Current Batch Reports
	Default Reports Comparison
	A Brief PyFlag User Study

	A Vision for Automated Media Reporting
	Automated Ingestion
	Automated File Analysis
	Automated Reporting
	Report Distribution

	PyFlag Implementation
	AIM Plugin
	Report Plugin
	PyFlag Limitations

	Results on Realistic Data
	A Proposed Framework for Automated Reporting
	Requirements
	How We Would Implement It

	Conclusions and Future Work
	Conclusions
	Future Work

	Sample Conceptual Report
	Actual Generated Report
	Sample Adium Log
	Sample Pidgin Log
	Sample AOL Instant Messenger Log
	userreport.py
	domex.py
	IMLogMagic.py
	List of References
	Referenced Authors
	Initial Distribution List

