
	 ;login:  APRIL 2012     25

Many people I work with understand neither Unicode’s complexities nor how
they must adapt their programming style to take Unicode into account. They
were taught to program without any attention to internationalization or localiza-
tion issues. To them, the world of ASCII is enough—after all, most programming
courses stress algorithms and data structures, not how to read Arabic from a file
and display it on a screen. But Unicode matters—without it, there is no way to
properly display on a computer the majority of names and addresses on the planet.
My goal with this article, then, is to briefly introduce the vocabulary and notation
of Unicode, to explain some of the issues that arise when encountering Unicode
data, and to provide basic information on how to write software that is more or less
Unicode-aware. Naturally, this article can’t be comprehensive. It should, however,
give the Unicode-naïve a starting point. At the end I have a list of references that
will provide the Unicode-hungry with additional food for thought.

Unicode is the international standard used by all modern computer systems to
define a mapping between information stored inside a computer and the letters,
digits, and symbols that are displayed on screens or printed on paper. It’s Unicode
that says that a decimal 65 stored in a computer’s memory should be displayed
as a capital letter “A”; that a decimal 97 is a lowercase “a”; and that the “£” is hex
00A3. Every Unicode character has a unique name in English that’s written with
uppercase letters—for example, POUND SIGN. Every Unicode character also has
a unique numeric code, which Unicode calls a “code point,” that’s written with a
U+ followed by a four or five character hex code. One of the most common Unicode
characters that will not fit in 8-bits is the EURO SIGN (E, or U+20AC); my favorite
character is SNOWMAN (☃, or U+2603). Code points over 65,536 are particularly
troublesome. Fortunately, they are mostly used for unusual Chinese characters
and letters in ancient scripts, such as AEGEAN NUMBER SIX THOUSAND (𐄧, or
U+10127) [1].

As the preceding paragraph demonstrates, Unicode is dramatically more complex
than the 7-bit American Standard Code for Information Interchange (ASCII) and
so-called “Latin1” (actually ISO 8859-1) systems that it replaces. But Unicode
brings more complexity than an expanded character set. For example, Unicode
accented characters can be represented with a single code point (for example,
LATIN SMALL LETTER E WITH ACUTE—é, or U+00E9), or with a character
followed by a so-called combining character (for example, Unicode character
LATIN SMALL LETTER E (U+0065) followed by Unicode character COMBIN-
ING ACUTE ACCENT (U+0301).

Programming Unicode
S I M S O N L . G A R F I N K E L

Simson L. Garfinkel is an

Associate Professor at the

Naval Postgraduate School

in Monterey, California. His

research interests include computer forensics,

the emerging field of usability and security,

personal information management, privacy,

information policy, and terrorism. He holds six

US patents for his computer-related research

and has published dozens of journal and

conference papers in security and computer

forensics.

simsong@acm.org

	26    ;login:  VOL. 37, NO. 2

The Unicode standard also has rules for displaying and correctly processing writ-
ing systems that go right-to-left such as Arabic, Hebrew, and Dhivehi. Before Uni-
code, it was a complex task to build computer systems that could properly display
text that way, let alone intermix right-to-left with left-to-right. Unicode’s support
for bidirectional text [9] largely eliminates these problems, making it possible
to freely use Arabic words like (Salam) in English text. What’s particularly
clever is that the characters are stored inside the computer in their logical order,
not in the order that they are displayed.

Because you can paste Unicode into Web browsers and email messages, Unicode
makes it relatively easy to embellish your writing with a wide variety of interesting
symbology, including boxed check marks (☑), circled numbers (both 1 1 and 1 1),
and even chess pieces (♛). Some programmers discover that it’s significantly easier
to paste a well-chosen Unicode character on a button than to hire a graphic art-
ist to make an icon. And these icons look really great when magnified or printed,
because they are typically encoded in the font as vector graphics, not bitmaps.

So why do so many US programmers and technologists have a poor understanding
of Unicode? I suspect it is our cultural heritage at work: by design, most written
communications within the United States can be encoded in ASCII. Ever since the
move to word processing in the 1980s, it’s been exceedingly hard for Americans to
type characters that are not part of ASCII. As a result, many of these characters,
such as the CENT SIGN ¢ (U+00A2), are now rarely used in the US—even though
they were widely available on typewriters in the 1970s.

Indeed, for nearly 30 years it has been possible to have a very lucrative career in the
US using only ASCII’s 96 printable graphemes, never once having to venture into a
world where characters are 8, 16, or 32 bits wide. Alas, the ASCII-ensconced lives
of most US programmers is increasingly an anachronism, thanks to the integra-
tion of the world’s economies, the increasingly international aspects of the comput-
ing profession, and even simple demographic trends—more people in the US have
accented characters in their names and want those names properly spelled.

Code Points and Characters

Like ASCII and ISO8859-1, at its most fundamental level the Unicode standard
defines a mapping between code points and print characters. The big difference is
quantity: Unicode’s most recent version, Unicode 6.1, defines more than 109,000
printable objects.

Most of the code points map to characters, which the standard sometimes calls
“graphemes.” A grapheme is a unit of written language such as the letter “a”
(U+0061), the number “1” (U+0031), or the Kanji for man “男” (U+7537). Most
graphemes are displayed as a single glyph, which is the smallest printable unit of a
written language.

Unicode terminology is precise and frequently misused: the confusion is frequently
reflected by errors in Unicode implementations. For example, a grapheme (such
as the lowercase “a”) can be displayed by two distinct glyphs (in the case of an
“a”, one of the glyphs looks like a circle with an attached vertical line on the right,
while the other looks like a slightly smaller circle with a hook on the top and a tail
in the lower-right quadrant). Both glyphs are represented by the same code point.
But some glyphs can represent two characters—for example, some typesetting
programs will typeset the letter “f” (U+0066) followed by the letter “i” (U+0069) as

	 ;login:  APRIL 2012   Programming Unicode    27

an “fi” ligature (U+FB01), which obviously has a distinct code point. Typesetting
programs do not expect to see a U+FB01 in their input file, for the simple reason
that people don’t type ligatures. It’s the typesetting program that replaces the
U+0066 followed by the U+0069 with a U+FB01, adjusting spacing as appropriate
for a specific font.

Arabic is even more complex. Arabic graphemes are written with different glyphs
depending on whether the grapheme appears at the beginning, at the end, or in the
middle of a word. In the case of Arabic, most of the letters actually have four code
points assigned: one that represents the abstract character and three “presenta-
tion” code points that represent each printable form. The abstract character might
be used inside a word processor document, while the presentation forms are used
in files that are rendered for display—for example, in a PDF file. Microsoft’s imple-
mentation of Arabic is different for various versions of Word, Excel, and Power-
Point on the Mac and PC. As a result, a file containing Arabic that looks beautiful
on one platform can look horrible on another. Google Docs has similar problems
when it is used to edit Arabic documents.

Every modern programming language supports Unicode, but frequently with types
and classes that are different from those taught in school. For example, C and C++
programmers should use the wchar_t type to hold a Unicode character (or any
other printable character, for that matter), defined in the <wchar.h> header. Uni-
code strings are best represented in C++ with the STL std::wstring class defined in
the <string> header. In Python3 the “string” type can hold 0, 1, or multiple Unicode
characters; there is no separate type for an individual character. If you are still
using Python2 (and you should stop), the “string” class holds ASCII and you need
to specify “unicode” (or u"") to create a Unicode character or string. In Java the
“char” primitive type and the “Character” class hold Unicode code points, but only
those characters with values less than U+FFFF—what’s called Unicode’s Basic
Multilingual Plane. Code points that require more than 16 bits are represented by a
pair of code points, as we will see below.

Expanding the Basic Multilingual Plane

Before Unicode, many manufacturers developed systems for representing Chinese
or Japanese using 16-bit characters, sometimes called “wide” characters. One of
the original goals of Unicode was “Han Unification”—that is, using the same code
points to denote ideographs that were the same in the two languages. The design-
ers were able to get nearly all of the characters they needed to fit into the 65,536
code points allowed by a 16-bit word. This 2-byte encoding was called UCS-2, for
Universal Character Set, 2-byte encoding.

Alas, 65,536 characters were not sufficient to represent all of the Chinese logo-
grams, let alone characters for all of the world’s ancient languages. Today, Unicode
supports a total of 17 “code planes,” each with 65,536 characters. Code Plane 0
is the Basic Multilingual Plane and covers Unicode characters U+0000 through
U+FFFF (although U+FFFF is explicitly not a valid Unicode character). Code
Plane 1 is mostly used for additional symbols, Plane 2 for additional ideographs,
Plane 14 for special purpose, and Planes 15 and 16 for private use. Planes 3–13 are
currently unassigned. With so much room to grow, it is highly unlikely that Uni-
code will ever need to be expanded beyond the 17 code planes—even if we encoun-
ter an alien race that has 100,000 or more characters in its written language (see
Table 1).

	28    ;login:  VOL. 37, NO. 2

Plane 0: 0000–FFFF
Basic Multilingual Plane
(BMP)

Plane 1: 10000–1FFFF
Supplementary Multi
lingual Plane (SMP)

Plane 2: 20000–2FFFF
Supplementary Ideo-
graphic Plane (SIP)

Planes 3–13: 30000–DFFFF Unassigned

Plane 14: E0000–EFFFF
Supplementary Special
Purpose Plane (SSP)

Planes 15–16: F0000–10FFFF
Supplementary Private
Use Area (S PUA A/B)

Table 1: Unicode code planes

The assignment of code planes is arbitrary, of course, but there is some sensibility
in the allocation. Plane 0 was first. The extension mechanism that the standards
body adopted allows an additional 4 bits to be optionally specified; Plane 1 has all
of those additional bits set to 0, Plane 16 has them all set to 1, and Plane 0 is marked
by the absence of those optional bits. Planes 1 and 2 are really the only additional
planes that were mapped out by the Committee. Because Planes 3–13 are unas-
signed, they can be trapped as errors. Frankly, I doubt that characters within
Planes 3 through 13 will ever be assigned, although these might conceivably be
used for some other purpose at some point in our lifetimes.

Many systems (e.g., Java) were designed to be Unicode-aware back when Unicode
only had 16-bit characters. Unicode 2.0’s creators thought that they would not be
able to get programmers to change their systems to use 32-bit characters—espe-
cially when most of the bits would always be 0. Instead, a coding scheme was devel-
oped that allowed pairs of 16-bit code points in the BMP to represent characters
with code points greater than 65,535.

Consider the SQUARED FREE (, or U+1F193). This code point can be rep-
resented with 4 bytes using a sequence of four hex characters, 00 01 F1 93. But
the code point can also be represented with a pair of Unicode characters called
“surrogates.” The 18 bits of code points outside the BMP can be divided into two
halves, with 9 bits encoded by a first surrogate in the range D800–DBFF and 9
bits encoded using a second surrogate in the range DC00–DFFF. In the case of
U+1F193, the two surrogates are U+D83C and U+DD93. Java always uses surro-
gates to represent characters outside the BMP.

Python can be compiled to use either 16-bit or 32-bit Unicode code points for its
internal representation. If sys.maxunicode is 65535, then your Python interpreter
is using surrogates internally to represent characters outside the BMP; if sys.
maxunicode is 1114111, the Python interpreter can represent all Unicode charac-
ters without surrogates internally [4].

No matter how it is compiled, Python allows code points outside the BMP to be
specified with a pair of 16-bit surrogates or as a single 32-bit value. Here we ask
Python to print a character string from the two surrogates using the Python “\u”
escape, which lets us specify any Unicode character in the BMP with its 4-charac-
ter hexadecimal code:

	 ;login:  APRIL 2012   Programming Unicode    29

>>> print(“\uD83C\uDD93”)

And here we use the Unicode “\U” escape and enter an 8-character hexadecimal
code to print the same character without the use of surrogates:

>>> print(“\U0001F193”)

>>>

The way C and C++ handle characters outside the BMP depends on the platform.
Under GCC/G++ 4.2 on Mac and Linux systems, wchar_t is a 32-bit value, allowing
Unicode characters outside the BMP to be stored directly. But compile a program
with Microsoft’s Visual Studio or the mingw cross-compiler, and wchar_t is a
16-bit quantity. Frankly, it’s hard to notice the difference, provided you always allo-
cate memory in sizeof(wchar_t) chunks and never depend on the size of a Unicode
string being related in any way to the number of characters that it contains.

All of this is less complicated in practice if you use a high-quality Unicode imple-
mentation that hides these details. Indeed, I wrote and deployed several Unicode-
aware C++ programs before I realized that sizeof(wchar_t) was 4 on my primary
development system but 2 when cross-compiling for Windows.

Normalization and Collation

Since Unicode allows the same string to be represented with many different but
logically equivalent sequences of code points, the standard provides a way of
normalizing any Unicode sequence of code points so that different strings can be
compared for equivalency.

Actually, Unicode has two kinds of equivalencies between characters: “canoni-
cal equivalence” and “compatibility equivalence.” Canonical equivalence resolves
the ambiguity introduced by combining characters. LATIN SMALL LETTER E
WITH ACUTE (U+00E9) and LATIN SMALL LETTER E (U+0065) followed
by a COMBINING ACUTE ACCENT (U+0301) are considered to be equivalent.
Compatibility equivalence is used to denote sequences that have the same seman-
tic meaning but may appear visually distinct—for example, SUPERSCRIPT ONE
(“1”, or U+00B9) and DIGIT ONE (“1”, or U+0031) have compatibility equivalence,
as do the characters LATIN CAPITAL LETTER I (“Ⅰ” U+0049) and ROMAN
NUMERAL ONE (“Ⅰ”, U+2160). One of the main uses of compatibility equivalence
is to improve the recall of string search, but it can also be used to address some of
the many security issues caused by having forms that are visually identical but
have different encodings [5a]. These two equivalence algorithms mean that deter-
mining whether or not two strings are equal is a multi-step process. First you must
decide what kind of equivalence you want. Then both strings must be normalized.
Finally, they can be compared [5b].

Yet another issue is the sort order of Unicode characters, something known as “col-
lation.” The complexity here is that different languages (and sometimes different
usages within the same language) require different sorting of the same characters.
A common example is that Swedish sorts “z” (U+007A) before “ö” (U+00F6), but
German sorts “ö” before “z”. Unicode’s combining characters add to the complex-
ity. The Unicode Collation Algorithm provides a unified, locale-aware approach
to sorting. Although it’s described in Unicode Technical Standard #10 [6], most

	30    ;login:  VOL. 37, NO. 2

programmers will be better off using a collation implementation that’s widely used
and well-debugged rather than implementing their own. For Python users, the
function locale.strcoll performs a basic implementation of the ISO 14651 collation
algorithm but not the full Unicode algorithm. For a more complete implementation,
use IBM’s International Components for Unicode library, which has bindings for C,
C++, Java, and Python [3].

Encoding and Decoding

So far, this article has been discussing Unicode in the abstract and has avoided
the messy issue of reading and writing Unicode data. The issue is messy because
modern computer systems read and write data in 8-bit bytes, but Unicode needs a
minimum of 16 bits to represent characters in the BMP and 21 bits [10] to represent
all possible code points (or two 16-bit pairs, if surrogates are used).

Early Unicode implementations, such as the one in Microsoft Windows, took the
rather straightforward approach of storing everything as 16-bit UCS-2 characters.
When Microsoft needed to store Unicode on disk—for example, in a file name—it
simply wrote the bytes in the same order that they were stored in memory. This
process of transforming abstract code points to a specific set of 8-bit codes stored
in a file or sent down a wire is called “encoding.”

Clearly, there are two ways for a 16-bit code point such as U+0061 to be encoded:
as a 61 followed by a 00 (called “little endian,” because the little end comes first),
or as a 00 followed by a 61 (“big endian”). Rather than mandating that Unicode be
encoded one way or the other, Unicode supports both byte orders. UTF-16LE (UCS
Translation Format—16-bit Little Endian) is what Windows uses.

For example, the FAT32 file system stores both legacy ISO8859-1 8.3 filenames
and UTF-16LE filenames that can be up to 255 characters long. NTFS file systems
store only UTF-16LE filenames. This means that the filename README.TXT is
stored as the UTF-16LE sequence 52 00 45 00 41 00 44 00 4d 00 45 00 2e 00 54 00
58 00 54 00. Most of the Windows API functions that operate on files have two ver-
sions—one that takes ISO8859-1 names terminated with a 00, and one that takes
UTF-16LE “wide” names terminated with a 00 00. For creating files, these are the
CreateFile() and CreateFileW() functions.

Similar to the 2-byte encodings, Unicode also supports 4-byte encodings UTF-
32LE and UTF-32BE. With the UTF-32LE encoding the string “READ” would
encode as 52 00 00 00 45 00 00 00 41 00 00 00 44 00 00 00. Such encodings are
rarely used outside of a computer’s memory, because of the storage cost.

Unicode provides a special code called the Byte Order Mark (BOM, U+FEFF)
that can be stored inside a file and used to unambiguously indicate whether the
file is encoded as UTF-16LE, UTF-16BE, UTF-32LE, UTF-32BE, or using the
variable-length UTF-8 code (see below). The BOM approach works because the
byte-swapped character U+FFFE is defined to be an invalid code point. Thus, by
looking at the first 2 or 4 bytes of a file, it is possible to determine the encoding (see
Table 2).

	 ;login:  APRIL 2012   Programming Unicode    31

Initial Bytes Encoding

00 00 FE FF UTF-32, big-endian

FF FE 00 00 UTF-32, little-endian

FE FF UTF-16, big-endian

FF FE UTF-16, little-endian

EF BB BF UTF-8 (see below)

Table 2: Unicode Byte Order Mark signatures, from http://unicode.org/faq/utf_bom.html

C programmers have the biggest problem with UTF-16 and UTF-32 encodings,
for the simple reason that the C standard library uses the NULL character (00) to
denote the end of a string. The obvious way to avoid this is by using the wide-char-
acter version of the string library—for example, use wcslen() instead of strlen().
Personally, I recommend abandoning C-style strings and using the C++ STL
std::wstring type instead.

From the preceding examples it may seem that a program can trivially convert
between Unicode and ASCII by simply removing or inserting alternating NULL
characters. You should never do this!!! This simplistic approach will fail if the Uni-
code string contains anything other than code points in the range U+0001 through
U+007F. Instead, programs should explicitly encode Unicode strings from an
abstract internal representation when strings are transformed for operating sys-
tem APIs, sent over a network connection, or persisted into a file. Likewise, when
data is read from an external source it should be decoded from the wire format into
the program’s internal representation.

UTF-8

UTF-8 is a system for encoding Unicode code points using a variable-length
sequence of 8-bit characters. UTF-8 has the property that 7-bit ASCII characters
are directly coded as a single UTF-8 byte, making UTF-8 upwards compatible
from ASCII. Characters in the range U+0080 through U+07FF are coded as 2
bytes; the remaining characters in the BMP are coded as three bytes; characters
outside the BMP are coded as 4 (see Table 3).

The UTF-8 scheme makes it possible to identify the start of a UTF-8 character
from within a randomly chosen block of UTF-8 encoded bytes. If the most signifi-
cant bit is a 0, then the character is a 7-bit UTF-8 character. If the high bits are
“10”, then it is a continuation character: move forward or backwards until a byte
is found that begins “0” or that begins “11”. The number of leading “1”s in the first
byte of a UTF-8 encoding indicates the number of bytes in the sequence.

As the table makes clear, UTF-8 is great for Americans, since documents coded in
UTF-8 are the same size as documents coded in ASCII. For Europeans, the advan-
tage of UTF-8 is that all of their accented characters can be displayed, with only
the non-ASCII characters taking up 2 bytes. For the Chinese, UTF-8 is not so good,
as for most text it results in a 50% increase in required storage space compared to
UTF-16.

	32    ;login:  VOL. 37, NO. 2

Bits Code Point Range Byte 1 Byte 2 Byte 3 Byte 4

  7 U+0000 - U+007F 0xxxxxxx

11 U+0080 - U+07FF 110xxxxx 10xxxxxx

16 U+0800 - U+FFFF 1110xxxx 10xxxxxx 10xxxxxx

21 U+10000 - U+1FFFFF 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx

Table 3: UTF-8

One of the primary advantages of UTF-8 is that the NULL character is never used.
This means that the POSIX APIs can be used more or less transparently with
UTF-8 encoded Unicode. The confusion here, however, is that UTF-8 is not Uni-
code—it is a Unicode encoding. Keeping your program’s internal data encoded in
UTF-8 is fine as long as the strings are viewed atomically and no string operations
such as comparison, search, case change, or splitting ever need to be performed by
the program. All of these operations require decoding the UTF-8 sequences into
Unicode characters and then re-encoding the Unicode characters back to UTF-8.

Source Code

Encoding and decoding comes up in two primary places when coding: the encoding
and decoding of files that are written and read by your program, and the program’s
source code itself. To see how this works in practice, consider this simple Java
program with some embedded Unicode characters:

class test {

	 public static void main(String[] args) {

			 String LETTER_A = “A”;

		 System.out.println(“size(“+LETTER_A +”)=”+LETTER_A.length());

			 String IDEOGRAPH = “男";

		 System.out.println(“size(“+IDEOGRAPH +”)=”+IDEOGRAPH.length());

		 String SQUARED_FREE = “ ”;

		 System.out.println(“size(“+SQUARED_FREE+”)=”+SQUARED_FREE.length());

	 }

}

Java programs are files, of course, so they need to be encoded with a particular
Unicode encoding when they are stored in the file system. This file was written
with Apple’s TextEdit application and saved in UTF-8. In UTF-8 the LETTER_A
above takes a single byte, the IDEOGRAPH takes 3 bytes and the SQUARED
_FREE takes 4 bytes. So when we run this program we get this result:

size(A)=1

size(男)=3

size()=4

Whoops! The values in the Java String are not Unicode code points! Instead they are
literally the encoded bytes. This can be confusing (it’s confusing to me, at least).

Instead of saving the file in UTF-8, the source file can be saved in UTF-16. I’ve
done that, renaming the class from “test” to “test16.” Now when the program is
compiled, the Java compiler needs to be told the encoding used by the file:

	 ;login:  APRIL 2012   Programming Unicode    33

$ javac -encoding utf-16 test16.java

$

When I run the program I get these confusing results:

$ java test16

size(A)=1

size(?)=1

size(?)=2

$

The question marks display result from the fact that the program was run inside
a UTF-8 terminal. The A takes a single UCS-2 character, as does the 男. Java’s
runtime seems willing to convert the A to UTF-8, but not the 男. The SQUARED
_FREE is represented in the Java source file with two surrogate pairs (I saved it as
UTF-16, remember?), so the length of the string is 2, not 1.

I also tried saving my test program in UTF-32LE and compiling it with the Java
compiler, but I got this error:

$ javac -encoding utf-32 test32.java

test32.java:1: warning: unmappable character for encoding utf-32

???...

...

Clearly, my Java compiler does not support UTF-32 for input source encoding. For
more information about how Java does this, see the Java documentation for the
Character and String classes and the Java tutorial "Working with Unicode" [1a].

Python source code encodings are defined with a “magic comment” [1b] like this:

#!/usr/local/bin/python

coding: utf-8

import os, sys

...

Reading and Writing Files

Similar problems occur when attempting to process files. Asked to open a file and
infer its coding, some programs will attempt to guess whether the file’s contents
are in ASCII, UTF-8, or one of the UTF-16 dialects. Unfortunately, it is not always
possible to guess correctly, for the simple reason that there are many hex sequences
that can be decoded using multiple coding variants. Consider the sequence of hex
bytes 41 42 43 44. This could be the UTF-8 sequence “ABCD” (U+0041 U+0042
U+0043 U+0044), but it could also be the UTF-16LE sequence (U+4241
U+4443) or the UTF-16BE sequence (U+4142 U+4344).

Python and Java address the encoding issue by allowing the programmer to
specify an encoding when a file is opened. For example:

f = open(“file.txt”,mode=”r”,encoding=”utf-8”)

(In Python2.7, you can get the same functionality with the codecs.open function.)

In Java, one would use:

FileInputStream fis = new FileInputStream(“file.txt”);

InputStreamReader isr = new InputStreamReader(fis,”UTF8”);

BufferedReader in = new BufferedReader(isr);

	34    ;login:  VOL. 37, NO. 2

Some file formats allow you to specify the encoding inside the file itself, which is some-
thing of a trick, because you need to know the encoding in order to decode the file.

For example, if you edit files with EMACS, you can put a local variables line at the
top of your file to tell EMACS which coding to use:

-*- coding: utf-8 -*-

In XML, encodings are specified on the first line of the file:

<?xml version=”1.0” encoding=”UTF-8”?>

Python’s XML parsers expect to read this line to determine the coding of the file.
As a result, to read an XML file with Python3 and process it with expat, it’s neces-
sary to open the file as a binary stream:

f = open(“file.xml”,mode=”rb”)

p = xml.parser.expat.ParserCreate()

...

p.ParseFile(f)

Encoding a Python Unicode string to a particular representation is quite simple.
Here’s how s, a Python3 Unicode string with my favorite Snowman character, looks
in UTF-8, UTF-16LE, and UTF-16BE:

>>> s = “This is a Snowman: ☃”

>>> s.encode(‘utf-8’)

b’This is a Snowman: \xe2\x98\x83’

>>> s.encode(‘utf-16le’)

b’T\x00h\x00i\x00s\x00 \x00i\x00s\x00 \x00a\x00 \x00S\x00n\x00o\x00w\

x00m\x00a\x00n\x00:\x00 \x00\x03&’

>>> s.encode(‘utf-16be’)

b’\x00T\x00h\x00i\x00s\x00 \x00i\x00s\x00 \x00a\x00 \x00S\x00n\x00o\

x00w\x00m\x00a\x00n\x00:\x00 &\x03’

>>>

For encoding and decoding in C++, I recommend using the open source UTF8-CPP
package [2]. The package contains C++ classes and iterators for interconverting
between UTF-8, UTF-16, and UTF-32. If you want a more complete (and signifi-
cantly larger) implementation, IBM’s ICU is a better choice.

Encoding Errors

Many programmers get their first unpleasant taste of Unicode when they attempt
to read a file and instead of getting data, they get an exception. For example, con-
sider a file “file.txt” that contains the hex characters FF FE FE FF. Try to read this
file with Python, and Python will throw an exception:

>>> f=open(“file.txt”)

>>> f.read()

Traceback (most recent call last):

	 File “<stdin>”, line 1, in <module>

	 File “/opt/local/Library/Frameworks/Python.framework/Versions/3.2/

lib/python3.2/codecs.py”, line 300, in decode

		 (result, consumed) = self._buffer_decode(data, self.errors, final)

UnicodeDecodeError: ‘utf8’ codec can’t decode byte 0xff in position 0: invalid

start byte

>>>

	 ;login:  APRIL 2012   Programming Unicode    35

Python assumes the file is in UTF-8, and FF is an invalid UTF-8 character. Of
course, Python couldn’t read this file if opened in text mode with any encoding.

If you are unsure if a file contains valid Unicode encodings, one approach is to open
it in binary mode and convert it a line at a time. This approach works best with
files encoded as UTF-8, since it’s relatively easy to spot the line breaks, but it can
be applied to UTF-16 and UTF-32 encoded files as well. If a line contains invalid
Unicode, you can try converting it character by character. There are a number of
packages that will do this, such as BeautifulSoup’s UnicodeDammit class.

For longtime UNIX programmers, this need to open files in “text” or “binary”
mode might seem like a step backwards—or into the wacky world of Windows pro-
gramming. Sadly, the multiplicity of encodings leaves us no choice.

Problems resulting from improper encoding and decoding pervade modern
computing systems. If you have ever opened a Web page and seen it filled with
white question marks in black diamonds, your browser was showing the Unicode
REPLACEMENT CHARACTER (, U+FFFD), because the bytes on the
Web page couldn’t be decoded using the encoding the Web page specified. This
frequently happens on Web pages that specify no encoding at all but contain smart
quotes; the default HTTP encoding is ISO 8859-1, and 8859-1 doesn’t have any
smart quotes in it.

I encountered a more egregious case of bad encoding after a recent trip to Japan.
All of the little paper receipts had nicely printed katakana, hiragana, and kanji
characters. But the online statement for my American Express credit card for a
$39.30 transaction at the Tokyo Muji store looked like this:

MUJIRUSHI RYOHIN * S L GARFINKEL 39.30

TOKYOTO TOSHIMAKU

TOKYOTO TOSHIMAKU

Foreign Spend Amount: 3,064 JAPANESE YEN

Doing Business As: MUJIRUSHI RYOHIN

Merchant Address: ncgÔcn nÇuh

ÏfæÇbiÐæhã 4-27-10

Æ]ÊcÄæjæb1Ïæ× 3F

JAPAN

From the selection of characters, it seems that the merchant’s bank transmitted
the transaction information to American Express as an encoded UTF-8 string, but
the data was then decoded by a computer in the US that assumed ISO 8859-1.

You don’t have to travel to Japan to see these kinds of problems. A growing number
of GNU tools now output UTF-8 error messages. Consider this buggy function:

int fail() {

	 return “A”;

}

Here is the error message that g++ generates when it is compiled:

	36    ;login:  VOL. 37, NO. 2

$ g++ -Wall fail.cpp

fail.cpp: In function ‘size_t fail()’:
fail.cpp:2: error: invalid conversion from ‘const char*’ to ‘int’
$

The compiler outputs the error messages with smart quotes because the environ-
ment variables LANG and LC_ALL are set to ‘en_US.UTF-8’. The compiler notices
this encoding and sends the hex sequence E2 80 98 for the open quote and E2 80
99 for the close quote. If I unset both environment variables, the smart quotes go
away:

$ unset LC_ALL; unset LANG; g++ -Wall fail.cpp

fail.cpp: In function 'size_t fail()':

fail.cpp:2: error: invalid conversion from 'const char*' to ‘int’

$

One day I was running my compiles inside EMACS on a remote system and started
seeing error messages like this:

fail.cpp:3: error: invalid conversion from âconst char*â to âcharâ

EMACS was not expecting the compiler to be sending UTF-8, so it assumed the
default of ISO 8859-1. It received the E2 and displayed the â character (U+00E2);
the 80, 98, and 99 have no mapping in ISO 8859-1, so they were not displayed. (A
more clever EMACS implementation might notice that the sequence E2 80 98 is
invalid ISO 8859-1 but valid UTF-8 and change the encoding mode for the buffer,
but that might cause other problems.)

Conclusion

The information here should help many C, C++, Java, and Python programmers in
developing Unicode-aware programs. There’s certainly a lot more to learn, though.
For those programmers with the time and the interest to delve deeply, here are
some suggestions for further reading. Even if you aren’t a Python programmer,
it’s quite instructive to read the Python “Unicode HOWTO.” While there’s lots to
criticize about the Python Unicode implementation, Python3 gets a lot of things
right. Python also includes a built-in Unicode database in a module named, aptly
enough, unicodedata (http://docs.python.org/library/unicodedata.html). With the
database you can trivially convert from code points to Unicode names and access
other aspects of the standard.

Resources

Apple’s Character Viewer, built into Mac OS X, is a great way to find Unicode
characters. You can access it from the Apple menu bar if you enable the appropriate
option in the System Preferences.

Wikipedia’s articles on Unicode are really excellent.

The Unicode standard is available online. Start with the FAQs [7] and the Techni-
cal Reports [5, 6, 8].

Stackoverflow.com is filled with good information about Unicode.

The Web site FileFormat Info contains detailed information on each Unicode
character, including test pages to see if your browser will display it. Find the snow-
man at http://www.fileformat.info/info/unicode/char/2603/.

	 ;login:  APRIL 2012   Programming Unicode    37

References

[1] It’s quite possible that this character won’t show up properly on your system,
since many programs still do not properly display Unicode code points over
U+FFFF. You can see what AEGEAN NUMBER SIX THOUSAND is supposed to
look like and test your browser’s functionality at http://www.fileformat.info/
info/unicode/char/10127/index.htm.

[1a] The Java Unicode tutorial can be found at http://docs.oracle.com/javase/
tutorial/i18n/text/unicode.html. Documentation for the String and Character
classes is at http://docs.oracle.com/javase/7/docs/api/java/lang/Character.html
and http://docs.oracle.com/javase/7/docs/api/java/lang/String.html.

[1b] For more information on Python’s magic comments to specify file encoding,
see http://www.python.org/dev/peps/pep-0263/.

[2] See UTF-8 with C++ in a Portable Way: http://utfcpp.sourceforge.net/.

[3] IBM’s International Components for Unicode: http://site.icu-project.org/.

[4] Python 3.3 will be able to represent 1, 2, or 4-byte code points internally using
the most efficient representation. For more information, see PEP393 Flexible
String Representation: http://www.python.org/dev/peps/pep-0393/.

[5a] For a complete discussion of Unicode security issues, please see Unicode Tech-
nical Report #36, Unicode Security Considerations: http://unicode.org/reports/
tr36/. There is also a very short but somewhat informative Security Issues FAQ at
http://unicode.org/faq/security.html.

[5b] See Unicode Technical Annex #15: Unicode Normalization, for an in-depth
discussion of the different forms of equivalence and the Unicode Normalization
Algorithm: http://unicode.org/reports/tr15/.

[6] TR10—Unicode Collation Algorithm, Unicode Technical Standard #10:
http://unicode.org/reports/tr10/.

[7] FAQ: UTF-8, UTF-16, UTF-32, and BOM: http://unicode.org/faq/utf_bom
.html.

Python Unicode How To—http://docs.python.org/release/3.1.3/howto/unicode
.html.

[8] TR17—Unicode Character Encoding Model, Unicode Technical Report #17:
http://unicode.org/reports/tr17/.

[9] See “Unicode Bidirectional Algorithm” (Unicode Standard Annex #9), which
formally defines the correct way for conforming Unicode implementations to dis-
play bidirectional text: http://unicode.org/reports/tr9.

[10] Twenty-one bits are required to represent an arbitrary code point: 16 bits for
the character within the Plane; 1 bit indicating whether the code point is within the
BMP or uses one of the higher planes; and 4 bits to represent the higher plane that
is in use.

