
1

A Web Service for File Fingerprints:

The Goods, the Bads, and the Unknowns
Abstract:

Databases of cryptographic hash codes are increasingly
being used by computer security professionals and forensic

investigators. Nevertheless, today’s databases are
hampered by the way that they are distributed and

accessed. After surveying systems currently in use, this
paper presents the framework for a web service that would

allow for the collection, searching, and replication of a
cryptographic hash code database. Several applications

that could be built using this database are explored.

Garfinkel, Simson L. < simsong@mit.edu>

1507 words

Permission is granted to post this paper on the web and otherwise distribute it in any
format, paper or electronic. © 2003 Simson L. Garfinkel

2

1 File Fingerprints, Fingerprint Databases, and Current
Services

Cryptographic hash functions such as MD51 and SHA-12 have the property of condensing
a large blocks of data into compact representations of 128 bits (in the case of MD5) and
160 bits respectively. These condensed representations have the property that they cannot
be predicted from a given input file, and changing any bit in the input file results in a
bitwise inversion of approximately half of the bits in the resulting cryptographic residue.
Because the numbers 2128 and 2160 are vast when compared to the total number of
electronic documents that have been created during the course of human history, hash
representations can be treated as “fingerprints” or “signatures” for files: no two files have
ever been found that have the same MD5 or SHA-1 code.

Because even a single bit changed in a file results in the creation of a radically different
cryptographic hash, many software vendors separately publish the MD5 or SHA-1 codes
of their software distributions, allowinf end users to verify the integrity and authenticity
of downloaded software.3

Cryptographic hash codes can also be used to determine the identity of a file. By
computing the hash of a suspect file and then looking up that hash in a database, it is
possible to determine if that suspect file is a copy of a file that has previously been
evaluated, characterized and registered. CDROMs of hash codes are now available from a
variety of sources. For example, the National Software Reference Library Reference Data
Set4 is a collection of more than 7 million hash codes of executable files, Dynamic
Linked Libraries (DLLs), and auxiliary files gathered from commercially distributed
software packages sold over the past two decades. Various law enforcement agencies
have distributed data sets containing the hash codes of “known child pornography.5”
Hash sets can be imported into hard drive forensic analysis tools such as EnCase6 and
Forensic Toolkit,7 allowing these tools to automatically identify “known goods” (e.g.
application files) and “known bads” (e.g. exploits).

There is growing interest in accessing databases of “known goods” and “known bads”
over the Internet using web-based interfaces. For example, Brian Wotring’s website
www.knowngoods.com allows a user to search by MD5 code through one of 40 different
software releases for a matching file. Similar websites are under development by Filip
Maertens and Chris Loper, both participants in the online forum
forensics@securityfocus.com. Although inactive now, the website
http://www.newshog.com/viewblock.cgi apparently once allowed searching for reported
child pornography by MD5 code, filename and a variety of other search criteria.

2 A File Fingerprint Web Service
Today’s state-of-the-art could be considerably advanced by the creation of a file
fingerprint web service. This service would allow both searching the database of hash
codes for matches and the uploading of new hash codes for incorporation into the

3

database. Other queries would allow for database replication.

Searching. The database could be searched with two modalities. An interactive search
could be performed through either a query entered interactively on a CGI form or else
through an XML query uploaded using SOAP. In either case, the query would consist of
one or more MD5 or SHA-1 hashes coded in hexdecimal. Larger searches, for hundreds
or thousands of hashes, could be performed by sending an XML query by email to the
web service; the search would be executed and the results returned by email. In either
case, the result would be an XML document consisting file records for hash matches,
followed by a list of file sets for each set mentioned in the file records. Unlike the
www.knowngoods.com website, there is no need for the client to specify the file set to
search, since hash codes are globally unique.

Uploading. Although the web service’s database will be seeded with hash codes from
existing services, the service will be most useful if users are provided with a means for
uploading their own hash sets. The easiest way to do this will be to provide agents that
can run on Windows and Unix computers. These agents will scan the file system,
compute the MD5 and/or SHA-1 of every file, and upload the results. The web service
will assign a unique hash set ID for each upload session and will track uploads by date
and time and source IP. To secure the service against vandalism, uploads could be in the
form of XML objects signed with XML Signatures8; the web service could then
implement a voting system allowing users to rate the credibility of various signing keys.
Data from keys that is rated poorly by the community could be expunged from the
database at a later time, or simply ignored.

Replication. This web service needs to be replicated to protect against hardware failure
and to allow the database contents to be geographically distributed. Fortunately, there is
no need to create a separate database replication system. Instead, a slave database can
query the master database for all hash codes uploaded since the last update; the resulting
set of hash codes, files and file sets can then be incorporated into the replicate. This web
services replication approach has the advantage that replicas need not be running the
same back-end database.

3 Applications
The “known goods and bads” web service will allow for a variety of applications,
including:

* Rapid identification and removal from consideration of “known goods” and
“known bads” on a computer that is under forensic investigation, giving an
investigator more time to analyze the material on the computer that is actually
unique.

* Automated identification and removal of unlicensed copyrighted software from
computers in a corporate setting (assuming that the hash codes for the copyrighted
software has been registered).

4

* Automated identification of “known bads” on production computers. Such “bads”
might include known Trojan horses, “root kits9,” and other hacker tools. Such
identification techniques would rely, in part, on the fact that most computer
attackers lack the sophistication to create their own attack tools, but instead
simply re-use tools that they have downloaded from other attackers.

* Automatic reasoning about a system. There is no reason that the web service
should be limited responding to simple database queries: a second-generation
semantic service should be able to draw conclusions about a system by simply
analyzing the hash codes that are uploaded. For example, a web service could
determine the operating system in use and whether or not particular patches had
been applied.

4 Implementation Issues
I propose building such a web service on a system running the FreeBSD operating system
using the Apache web server as a front-end, SOAP::Lite for Perl as the web services
gateway, and MySQL as the back-end database.

Whereas previous efforts have stored hash codes as hex strings, this effort will store
codes as binary BLOBS, as binary strings will consume half the space on disk and will
index better.

Although fields will be provided for SHA-1 entries, it is expected that most users will
only employ MD5 codes. SHA-1 is increasingly preferred because it is the current NIST
standard and is more appropriate for high-security applications given the larger hash size.
In this application, however, the 128 bits of MD5 provide adequate security. MD5 codes
can also be computed in a third the time as SHA-1 codes—an important factor given the
high computational overheads for forensic analysis.

Whereas previous efforts have allowed only a single description for each MD5 or SHA-1
code, this web service will necessarily need to provide for a single hash code to reside in
multiple file sets. This is important, for example, because some DLLs are included in two
different programs—one good (like Microsoft word) and one bad (like Back Orifice).
Without significant manual intervention, it will not be possible to evaluate individual
hash codes or files to determine if they are “good” or “bad.” Instead, the semantic
database will need to be able to tolerate ambiguity and apparent contradiction.

Although it is tempting to create a simple schema for representing file sets, more power
might be had by representing them with RDF.10 It may even be valuable to allow RDF to
describe individual files: this would allow the service to understand that one file had been
superseded by another file—for example, in the case of a security update.

Finally, it may be desirable to create a gateway that would allow the hash code database
to be quickly queried using the DNS protocol. Although non-standard, such a gateway
would allowing querying the database from behind most firewalls with a minimal amount
of configuration. This might be important during some forensic investigations.

5

5 Conclusion and Acknowledgements
Databases of MD5 and SHA-1 codes are increasingly important in the computer forensics
and security community. I have presented a proposal for web service that would greatly
simply the creation, maintenance, and access of such databases. I currently plan to create
this service during the spring of 2003.

I would like to give special thanks to Professor Benjamin Grosof for suggesting that I
take his IAP course on Web Services and the Semantic Web.

1 Rivest, R. “The MD5 Message-Digest Algorithm,” Network Working Group Request
for Comments: 1321, April 1992. http://www.ietf.org/rfc/rfc1321.txt
2 “Secure Hash Standard,” Federal Information Processing Standards Publication 180-1,
17 April 1995. http://www.itl.nist.gov/fipspubs/fip180-1.htm
3 For example, the Solaris Package Archive at http://www.ibiblio.org/ distributes the
MD5 “checksums” for SPARC and i386 Solaris releases of popular GNU software
packages. See http://www.ibiblio.org/pub/packages/solaris/sparc/.
4 “National Software Reference Library Reference Data Set,” National Institutes of
Standards and Technology. http://www.nsrl.nist.gov/
5 McCreight, Shawn, and Patzakis, John, “Hash sets and their proper construction,”
Guidance Software, 2001. http://www.guidancesoftware.com/support/
downloads/hashsets_wp.pdf
6 Guidance Software, “EnCase,” http://www.guidancesoftware.com/
7 Access Data, “Forensic Toolkit,” http://www.accessdata.com/
8 D. Eastlake 3rd, J. Reagle, D. Solo, “XML-Signature Syntax and Processing,” network
Working Group Request for Comments: 3275, March 2002.
http://www.ietf.org/rfc/rfc3275.txt
9 Oktay Altunergil, “Understanding Rootkits,” O’Reilly Network, 14 December 2001.
http://linux.oreillynet.com/pub/a/linux/2001/12/14/rootkit.html
10 “Resource Description Framework (RDF),” World Wide Web Consortium.
http://www.w3.org/RDF/

