Syncframe: A Multi-Peer Synchronization Framework

December 5, 2002

“DRAFT REPORT: Not for distribution or
attribution. For review purposes only.”

Abstract

Distributed computing and mobile computing
have created significant interest in systems that
provide for the coherence of user data across mul-
tiple machines. While several such systems exist,
none is able to cope well with network topologies
that are complex, changing, and contain more
than a few nodes.

To overcome these problems, we present
Syncframe, a framework for creating small-to-
medium-scale peer-to-peer data coherence sys-
tems. Syncframe performs optimistic replication
for hosts with intermittent connectivity. Each
node in the network has a complete copy of the
working set; changes in working set are automat-
ically detected and propagated to other nodes in
the network.

Syncframe differs from other synchronization
systems because of its ability to synchronize mul-
tiple peers, support for intermittently connected
and mobile nodes, and segregation of its syn-
chronization and data management algorithms.
Segregation allows Syncframe to synchronize ar-
bitrary data types, e.g., file systems, address
books, and databases.

We have implemented the Syncframe frame-
work and a file system synchronizer. Preliminary
results verify the feasibility and efficiency of our
design.

1 Introduction

Despite the growth of a high-speed wired and
wireless networks, many computer users wish to
keep multiple copies of their data on multiple
computers. Keeping each of these copies in syn-
chronization' with the others is a growing prob-
lem. Consider these examples:

e John has a working set of 77GB of data that
he is analyzing for his thesis. To protect
against disk failure and fire, and to allow
him to work from home and office, he wants
to keep a copy of his dataset on his home
computer and one on his office PC. John
would like for changes at one location to
quickly and automatically reflected at the
other.

e Jane’s sister collects public-domain music
files on her home computer. Jane wants to
have these music files automatically copied
to her laptop whenever she visits her sister’s
home. Jane would then like to have these
files automatically copied from her laptop
to both Jane’s home and work computers.

e Sam has two laptops, a computer at home,
and a computer at work. On each of these
computers he has a directory called “cur-
rent” which contains the Microsoft Word

!Since the introduction of the Palm computer with its
hotsync technology, the term synchronization has increas-
ingly been used to describe a variety of data coherence
activities. In this paper, we use the term synchroniza-
tion to refer to the process of maintaining data coherence
between multiple computers that may or may not be si-
multaneously connected to a network and/or each other.

files that he is currently working on. Sam
would like to be able to sit down at any com-
puter and start working on these Word files,
and then have the files automatically copied
to all of the other computers without any in-
tervention on his part. He would like for the
laptops to automatically figure out whether
they have better connectivity to the home or
work machines and take their updates from
those computers. He wants the laptops to
be able to access the files in the “current”
directory even if he is on an aircraft. Fi-
nally, he would like his work computer to
automatically archive every version of every
Word file without any intervention on his
part.

e Mimi shares an address book with four other
people working on her project. Each person
is occasionally connected and occasionally
disconnected from the network. They all
wish to be able to make additions and dele-
tions to the data set, and have the database
automatically synchronized whenever possi-
ble.

2 Related Work

There are many systems, both free and commer-
cial, for performing data synchronization. Some
of the more common and relevant systems in-
clude:

o rdist [2], the file distribution program that
was included with Berkeley Unix BSD 4.3.
The purpose of rdist is to distribute up-
dates from a central machine(s) to client
machines. It is used in a master-slave con-
figuration, with updates only being propa-
gated from the master to the slaves. Rdist
uses a push method of updating clients.
Rdist runs simultaneously on the server and
the client, comparing each file on the server
with the corresponding file on the client
and pushing updates where the client does

not match. It does not keep a metadata
database. Because the server pushes up-
dates to the clients, it has to keep track of all
the clients. This can be a problem if clients
are mobile or have dynamic IP addresses.
Rdist is capable of updating client machines
in parallel, but performance still suffers be-
cause it compares new and old versions of
files byte-by-byte instead of using hashing.

rsync [9], a file synchronization utility that
was developed for use by the Samba file
server’s development team. Rsync is sim-
ilar to rdist in purpose and that the pro-
gram runs on both the client and the server,
but updates can be initiated by either side.
(Rsync can also be used entirely on one com-
puter to synchronize two directories.) When
a client connects to a server, the files are
compared to files on the server and only the
differences are transfered. Rsync’s compar-
ison algorithm is much more efficient than
rdist’s algorithm, in that it compares files in
blocks and only sends over blocks that have
changed. Rsync further gains over rdist
from pipelining the transfer of files. Also,
because clients can initiate the connections,
the server does not have to keep track of the
clients’ address. This is beneficial to having
client machines with dynamic addresses.

unison [6], is a two-way file-synchronization
tool for Unix and Windows. It has cross
platform capability. Synchronizations hap-
pens on user request. When one machine
requests synchronization, updates are per-
formed using the rsync algorithm. A meta-
data database is used to detect file deletion
and changes. Unison creates a new meta-
data database for each pair of synchroniza-
tion roots. Unison is capable of being run
on multiple pairs of nodes in order to form
a graph (even graphs with cycles) of two-
way links between many machines. It is ca-
pable of synchronizing between many ma-
chines this way, but is inefficient and has

problems. The following problem may oc-
cur in a graph with a cycle: A file is changed
on machine A. A synchronizes with B. A
changes the file again. A synchronizes with
C. An error occurs when B and C try to
sync because neither has the previous ver-
sion that the other thinks it has. This oc-
curs because each update to a given file from
machine A is not guaranteed to be sent to
other machines before succeeding updates.

Microsoft Briefcase [4], introduced with
Windows 95, allows for bi-directional file
synchronization between a Windows file
server and a Windows desktop computer.
Multiple clients can use briefcase to syn-
chronize from a single server if the clients
are arranged in a star about that server, but
clients cannot synchronize with each other.

CVS [1], is a concurrency control system
that uses a single central repository (master-
slave configuration) to ensure that all clients
have access to the most recent version of
files. Users manually update their files from
the repository and manually commit their
changes to the repository. Unlike most sys-
tems, CVS has the ability to merge conflict-
ing versions of files line by line, instead of
file by file. The design requires each client
to have direct access the server in order to
make or receive updates.

Ficus and Rumor [8] [3] Are systems
that have similar functional requirements as
Syncframe, specifically performing peer-to-
peer optimistic replication for systems with
intermittent connectivity. The approach Fi-
cus uses is to keep track of all changes to a
file using vector timestamps. Vector times-
tamps follow a file from one machine to the
next. Using the timestamps, Ficus is capa-
ble of determining if and when two different
copies of a file diverged, and will deal with
the divergence. Peers are able to synchro-
nize with any other peers even when discon-

nected from all other machines on the syn-
chronization network. Rumor is a further
adoption of Ficus to mobile systems run-
ning the FreeBSD operating system, with
some additional refinements.

2.1 Data Publishing Systems

Rdist and rsync can be thought of as either
data publishing systems or one-way synchroniz-
ers. Specifically, both rdist and rsync are de-
signed for replicating a directory of files from
one master location to one or more slave loca-
tions. All files that are present on the master
are copied to the slave locations; all files that
are present on the slaves but not on the master
are deleted.

Data publishing systems easily scale to multi-
ple nodes; in these cases, a single master server
can publish to multiple slaves. Large (n > 50)
synchronization networks’ can be built using
multi-level distribution (e.g., a single master dis-
tributes to multiple sub-masters, each of which
distribute to multiple slaves).

Although it is possible to use these programs
for two-way synchronization by first replicat-
ing in one direction and then in the other, this
method fails if modifications are being made si-
multaneously at each location.

2.2 Pairwise Synchronizers

Unison and Microsoft Briefcase are examples
of pairwise synchronizers. Both programs are
designed to synchronize a single root directory
among multiple computers. (Multiple roots are
synchronized through repeated invocations of
the programs.) To perform pairwise synchro-
nization, both programs need to maintain meta-
data for each root. A metadata database is cre-

2In this paper, we use the term synchronization net-
work to denote a collection of computers, or nodes, that
work together to assure that a single data set replicated
on multiple machines remains consistent. Changes made
in one locations should be detected and automatically
propagated to the other nodes.

®
©

Figure 1: Using pairwise synchronizers to syn-
chronize three nodes.

ated when a synchronization pair is first set up:
the database consists of a list of every file under
control of the synchronization system. Metadata
is needed when a file exists on host A but not on
host B: if the metadata reveals that the file was
added to host A since the last synchronization,
the file is copied to host B. If the metadata re-
veals that the file was deleted from host B since
the last synchronization, the file is deleted from
host A. Metadata can also be used to detect
conflicts: if a file is changed on both computers
between synchronization, or if a file is changed
on one computer and deleted on another, these
programs will report a conflict to the user. The
user must then decide upon the appropriate ac-
tion.

Pairwise synchronizers can be used to synchro-
nize more than two hosts by setting up multiple
pairwise relationships. For example, if A, B and
C are all to be synchronized, one approach is to
set up synchronization relationships A <> B and
A < C, as shown in Figure 1). Such usage is
common today. As we shall see, this approach is
unsatisfactory for a number of reasons.

Pairwise synchronizers do not work well when
nodes are mobile or when nodes or connec-
tions fail. Consider the case of three machines,
HOME, WORK, and LAPTOP, that seek to
maintain a shared set of synchronized files. A
synchronization network can be set up using
pairwise synchronizers by having both HOME
and LAPTOP synchronize with WORK.

Although this approach normally works, us-
ing it can be awkward in practice. For example,

in order to move a synchronized file from LAP-
TOP to HOME, LAPTOP needs to be synchro-
nized with WORK, then WORK needs to be syn-
chronized with HOME. This pairwise synchro-
nization network cannot synchronize LAPTOP
and HOME directly. Even worse, if the network
connection between HOME and WORK is tem-
porarily unavailable, there is no way to synchro-
nize HOME and LAPTOP, even if the computers
are physically connected together.

Faced with such a network topology, a user
might be tempted to create a new synchroniza-
tion association between HOME and LAPTOP.
Alas, the synchronization tools mentioned above
do not conveniently handle synchronization of
directories that contain different files. Specifi-
cally, Unison will generate conflicts that must
be manually resolved while Microsoft Briefcase,
will require that a directory be manually copied
from the server into the briefcase before it can be
synchronized. In other words, there is no way to
apply Briefcase to a set of files that are already
resident on a workstation. This is a fundamental
limitation of the way that Microsoft Briefcase is
implemented.

2.3 Rumor

Rumor is an optimistically replicated file system
While
Syncframe closely resembles Rumor, it improves
upon it in several key ways:

designed for use in mobile computers.

e Syncframe replicates arbitrary objects,
while Rumor only synchronizes files.

e Syncframe has higher tolerance of node and
link failures

e Syncframe exploit fasts paths through the
network

e Syncframe runs on FreeBSD 4.8 and MacOS
X, while development on Rumor has been
terminated and the system only runs on an
obsolete version of FreeBSD. (Although it
might be possible to port Rumor to a cur-
rent system.)

3 Design

Syncframe is designed to efficiently maintain a
replicated object set across multiple computers
(or nodes). Syncframe’s most important features
are its support for:

e Arbitrary topologies

e Arbitrary objects

e Mobile nodes

Syncframe also provides the following features:

e Use efficient network paths (Fast Paths)

No kernel modifications

OS agnostic

Archiving

Firewall friendly

On-Demand or Automatic Synchronization

3.1 Architecture Overview

All Syncframe nodes are created equal. Nodes
are linked together using peering relationships.
All links are bi-directional, although sometimes
links are only initiated by one peer. (For exam-
ple, if one peer is mobile and the other peer is
not, only the mobile peer will initiate connec-
tions, but once a connection established, data
may move in either direction.) The topology
is determined before Syncframe is started, al-
though it is easy to add and remove nodes. For
example, Syncframe could be used to synchro-
nize an office machine, a home machine, and a
laptop, and then a user could later add another
laptop.

Each Syncframe node periodically detects
changes to objects in its object store. These
changes are encapsulated in a self-contained
update and propagates updates to all of the
node’s peers. Each of these tasks is done asyn-
chronously; this allows updates to be created and
stored while a node is disconnected from the net-
work. If conflicts are detected upon propagation,
the object is forked and the user notified.

3.2 Feature Comparison
3.2.1 Arbitrary Topologies

Syncframe allows nodes to be arranged in arbi-
trary topologies, e.g., trees, chains, and meshes.
Such flexibility makes Syncframe useful in a wide
range of usage, redundancy, and scalability sce-
narios. For example, if a small number of nodes
are updating files for a large audience, a hierar-
chical tree is appropriate because it scales well.
If a small number of users are all updating files
and it is important to tolerate node and link fail-
ures, a complete mesh is appropriate.

3.2.2 Arbitrary Objects

While most synchronization systems are de-
signed to handle a specific data type, such as a
file system or database, Syncframe can be used
to rapidly build synchronizers for arbitrary data
types (objects). We have built such a synchro-
nizer for file systems; it would require only a
small amount of work to build an address book
or email repository synchronizer.

3.2.3 Mobile Nodes

Nodes may become disconnected or connect to
the network at different places (e.g. home and
office). Syncframe allows nodes to continue
to work on their local repository while discon-
nected.

3.2.4 Fast Paths

If there are multiple paths through which an
update could propagate through the network,
Syncframe will dynamically use the fastest one.

3.2.5 No Kernel Modification

Syncframe runs entirely in user mode, making it
highly portable and easy to install.

3.2.6 OS Agnostic

We have cautiously avoided using OS-specific
functionality in our design and implementation.
For example, we do not assume that file names
are case sensitive or that files have users and
groups.

3.2.7 Archiving

Every node in the synchronization network is
guaranteed to see every synchronization update.
As a result, any node may be configured as an
archiving node which stories copies of files to a
permanent store, in addition to storing files in
the file system.

3.2.8 Firewall Friendly

A Syncframe node may be operating behind a
firewall, prohibiting it from receiving inbound
connections. We support such operation by al-
lowing a single TCP connection to be used for
both incoming and outgoing Syncframe links.

3.2.9 On-Demand or Automatic Syn-
chronization

Synchronization depends on three steps: the cre-
ation of synchronization updates, the propaga-
tion of these updates to other nodes in the net-
work, and application of the updates. FEach
step can be done on a periodic basis or can
be initiated at user request. Some people may
like to have Syncframe always running in the
background, whereas others may wish to have
Syncframe only collect updates when requested.

3.2.10 Storage Requirements

Because Syncframe propagates updates which
need to be created and stored on each node
before they are transmitted to other nodes,
Syncframe doubles the amount of storage re-
quired for the data under synchronization con-
trol.

4 Implementation

We have implemented the Syncframe framework
and a single Syncframe module, Filesync, which
synchronizes file systems. Unless otherwise spec-
ified, Syncframe refers to the framework alone.
Syncframe comprises the following modules:

1. The configuration file, which specifies
the synchronization parameters.

2. The metadata database, which is used
to track changes made to objects currently
under synchronization.

3. The Hunter, which iterates through all of
the objects under synchronization control
and creates updates associated with object
creation, modification, and deletion.

4. The Update Database, which stores all
updates that need to be sent out to the
node’s peers.

5. The Publisher, which publishes updates
to the node’s synchronization peers.

6. The Committer, which applies updates
that are received from other synchronization
peers to the system.

7. The Cleaner, which erases updates on this
node after they have been either sent to all
other peers or seen by those peers, and com-
mitted.

In the Filesync system objects are files that
are stored in a single synchronization root direc-
tory and subdirectories of that directories. Each
computer that maintains a synchronization di-
rectory is called a node. We call the entire set of
nodes a synchronization community. Each node
communicates with a subset of the community,
each member of which we call a synchronization
peer.

The Syncframe Hunter and Committer are im-
plemented as abstract C++ class libraries; these
libraries are subclassed to create the FileHunter
and FileCommitter used by the Filesync system.
Cleaner is also a C++ class, although it does

Feature Syncframe | Rumor | Pairwise | Publishers
Arbitrary Topologies yes partial no no
Arbitrary Objects yes no no no
Mobile Nodes yes yes partial partial
Fast Paths yes no no no

No Kernel Mods yes yes varies varies
OS Agnostic yes partial | varies varies
Archiving yes no no no
Firewall friendly yes no no no

Table 1: Comparison of Syncframe features with other systems

not need to subclassed for different Syncframe
applications as the garbage collection logic is in-
dependent of the type of objects being synchro-
nized. The Publisher is implemented as a Java
application; like the Cleaner, this application has
no dependencies on the particular type of object
being synchronized.

Under normal circumstances, each node has a
TCP connection open to all of its peers. Updates
are automatically sent to peers as they created
by the Hunter or received from other peers. If
a peer is unavailable, either because the peer is
down or because of a network partition, updates
are kept in the update database until connectiv-
ity is reestablished.

The peers for each synchronization node must
be manually configured in a configuration file
that appears on each peer. Nodes in the network
do not need to be explicitly configured: they are
discovered as the network runs.

4.1 Configuration File

Each synchronization node must be pre-
configured with the node’s name and its peers’
names. In our implementation changes to this
configuration require a Syncframe restart. How-
ever, this is not a fundamental design limitation.
It is important to note that a node does not need
to know about all other nodes, only its peers.
Each synchronization node has a name that
must be unique within the community. Nodes
can be located at fixed IP addresses (or IP host

names), in which case they can either receive
TCP connections from their peers or initiate
connections to their peers. Alternatively, nodes
can have dynamic addresses or hostnames (as is
the case with mobile nodes). Because the IP
addresses of mobile nodes are not known, mo-
bile nodes cannot receive connections from their
peers, they can only open new connections.

No special initialization phase is required.
When Syncframe starts for the first time, all
objects found in the object store are considered
“new” objects and published to the node’s peers.

4.2 Objects, Metadata and the Meta-
data Database

An object comprises data and metadata. The
data is an ordered sequence of bytes. The meta-
data is an extensible set of name/value pairs as-
sociated with each object.

Each Syncframe node has a metadata
database that is used to store the metadata
for each object within the synchronization root.
We implement this database with a persistent
B-Tree using the Sleepycat Berkeley DB pack-
age [7]. The object name is used as the key of
the B-Tree.

Syncframe requires the following metadata for
each object:

e Object name
e Length

e Creation time

e Modification time
Filesync adds the following metadata:

e File username

File groupname

File permissions

File type (e.g. regular file or symbolic link)

Filesync uses filenames as object names and
stores data in files on the file system. An address
book synchronizer might used a unique object
identifier as an object name and store the ad-
dress book entries in a special database.

4.3 Hunter

Hunter is a program that runs on the Syncframe
node. Hunter scans, or hunts, for changes to
stored objects. A change is detected when an
object’s metadata does not match the metadata
stored in the metadata database. Hunter can be
run periodically or on-demand, as desired by the
user.

When a change is detected, Hunter creates one
or more updates that encapsulate the change and
adds the update to the update database. These
updates will then be distributed to each of the
node’s peers by the Syncframe Publisher, de-
scribed below.

Hunter’s logic is straightforward:

1. At startup, Hunter makes a list of every ob-
ject currently in the metadata database.

2. Next, Hunter iterates through every object
in the object store. In the case of the File-
Hunter, iteration uses a recursive directory
list.

3. For each object in the object store:

(a) If the object does not appear in the
metadata database, Hunter creates a
WRITE update that contains the file
name, modification times, and file con-
tents. Large files may generate multi-
ple updates.

(b) If the object appears in the metadata
database, the object’s current meta-
data is compared with the metadata
stored in the database.

i. If the two metadatas are same, no
action is performed.

ii. If the file’s metadata does not
match the metadata in the
database, @ Hunter creates a
WRITE update that sets the
object’s data and metadata to
reflect the data in the object
store. These updates are designed
to be as small as possible: if the
object’s data has changed, the
update contains the new data and
the new metadata; if only the
metadata has changed, the update
contains only the new metadata.

ili. In either case, the object is re-
moved from the list that Hunter
created in the first step.

4. Finally, for every object that was in the
database but was not found in the directory,
Hunter creates a DELETE update.

Each update contains the name of the
Syncframe node on which it was created, a mono-
tonically increasing update number, an object
name, the object’s metadata before and after
the update would be applied, and, optionally,
update-specific data.

Note that only two updates - WRITE and
DELETE - are sufficient for synchronization of
arbitrary objects.

Updates are uniquely identified (named) by
the originating node ID and the update num-
ber. Because of this unique naming, update
receipt and write-to-disk are idempotent oper-
ations. Note, however, that an update may be
“committed” only once.

Because the Hunter runs periodically, it may
miss some file updates. For example, if a file foo
is created and then deleted between runs, other

WRITE node number My My data

Writes data into the object specified by metadata M. At the
end of the update, the object’s metadata is set to be M;. In
Filesync, WRITE updates can be used to write file contents,
change file ownerships, truncate files, and even rename files.

DELETE node num M

Deletes the object specified by Mj.

TWRITE node number My M-

This is a special WRITE update that is tagged so that it
only needs to be sent from one node to a second specified
peer, rather than be distributed throughout the entire syn-
chronization network. The TAGGED WRITE update is used
when nodes wish to join the synchronization network. [note:
Joining is not currently implemented.]

SEEN node node_list update_list

Informs other nodes that this node has seen the updates in
update_list from the nodes in node_list. The SEEN update is
used by the Cleaner to determine when updates on a node
can be garbage collected.

Table 2: Updates supported by the Syncframe system.

nodes will never learn about foo. This is not a
problem, however, since we are aiming to syn-
chronize nodes, not guarantee that all changes
are propagated to all nodes.

4.4 Update Database

In the present implementation each update is
stored as a single file. While this is useful for
debugging purposes and keeps our code simple,
it does exact a performance penalty. A more ef-
ficient implementation would store updates in a
database.

4.5 Publisher

Publisher is a program that keeps a node in
sync with its community. It interfaces with the
Hunter and Committer programs through the
update database; in our initial implementation,
this database is implemented as a directory of
files, each file representing a single update.

The nodes with which a given node commu-
nicates are termed “peers” and are enumerated
in each node’s configuration file. To accomplish
its synchronization tasks, Publisher sends up-
dates to its peers and receives updates from other
nodes.

Publisher attempts to keep a network con-
nection (socket) open to each of its peers at
all times. Communication over a socket is bi-
directional, which is useful when a node can-
not receive incoming connections (which is often
the case for nodes behind firewalls or for mo-
bile nodes that do not have a fixed IP address or
hostname).

Publisher uses the Syncframe protocol (SFP)
to communicate with Publishers running on
other nodes. SFP is simple (about 10 messages
and 10 states) and efficient (it keeps the pipe full
and does not transfer updates to a node if that
node has already received the update in ques-
tion.) The protocol’s principle drawback is that
it does not support simultaneous bi-directional
transfers.

The Syncframe protocol runs on on top of
TCP or, optionally, SSL. Authorization is ac-
complished by means of a shared secret that is
stored in the configuration file.

While it is essential for correctness that every
node in the community sees every update, it is
equally essential for efficiency that each node see
each update only once. Publisher accomplishes
this by keeping track of which peers have seen
which updates. When all peers have seen an up-

date, that update is deleted by the Cleaner (de-
scribed below). Publisher never sends updates
to a peer that the peer has already seen.

The order in which Publisher sends out up-
dates is important for correctness. Specifically,
for all updates originating at a given node, the
Publisher sends out the updates in the order that
it has received them. There is no notion of a se-
rialized order for the whole network. If a conflict
occurs as a result of this policy, it is detected and
scheduled for manual correction.

The Syncframe Protocol is described in more
detail in Appendix A.

4.6 Committer

Committer is responsible for committing up-
dates received from Publisher. The program pe-
riodically polls the update database for new up-
dates, checks for conflicts, and applies updates.

Committer detects conflicts by examining the
updates ”old metadata” and the metadata of the
object on disk. If the metadatas are not equal
there is a conflict because every node always
sends out updates in the order that they are re-
ceived. When a conflict occurs the object is then
forked and the user altered.’

4.7 Cleaner

After an update has been sent to all of the node’s
peers by the Publisher and applied to the local
object store by the Committer, it is deleted by
the Cleaner. An archiving node could instead
choose to save updates in a long-term persistent
store.

5 Security

The current Syncframe implementation pro-
vides basic authentication and encrypted net-
work communication. We have not rigorously

3Note that our current Syncframe implementation
does not fork the object, but only alerts the user. We
did not have the time to implement and test the code for
conflict management.

10

tested the security system and have identified a
man in the middle vulnerability; however, we be-
lieve the system is adequate for research use. We
have not implemented an authorization or access
control system.

5.1 Authentication

We will refer to the peer initiating a network
connection as the client and the peer accepting
the network connection as the server. Each con-
figuration file stores the community name and
the community key. In our model the client
and the server must prove to each other that
they know the secret community key without re-
vealing the key. This exchange occurs through
a challenge/response process issued from both
sides.

An encryption cipher is setup using DES and
a key derived from the community key using
MDb5. Each side then randomly generates a 64-
bit number, encrypts it, and sends it to the other
as a challenge. The server must reply to the
client’s challenge with the client’s random num-
ber minus one encrypted using the same key.
The client must reply to the server’s challenge
with the server’s random number plus one in the
same manner. If both sides accept the other’s re-
sponses, then authentication has completed and
the protocol can continue.

This challenge/response method prevents any
eavesdroppers from obtaining the key directly
by listening to this conversation over an unen-
crypted link. It is also very difficult to determine
the appropriate response to the challenge with-
out knowing the symmetric secret key used in
the encryption or having already seen the cor-
rect response to that challenge. Unfortunately
this means that an eavesdropper who is lucky
or has a very large storage space can eventually
authenticate with one of our community nodes
without knowing the community key.

5.2 Encryption

By running the Syncframe protocol on top of the
Secure Socket Layer with Diffie Hellman anony-
mous key exchange, we gain protection from
eavesdroppers. The synchronized data that we
transport maintains its privacy, and eavesdrop-
pers cannot listen to the challenge/response in
order to record valid responses to challenges.
Our current implementation of Syncframe has
this level of security available.

5.3 Vulnerabilities

The system is vulnerable to an IPspoofing man
in the middle attack. By intercepting a client’s
connection to the server and then connecting to
that server itself, the man in the middle can al-
low the two to authenticate each other through
his connection to each side. Once authentication
has been performed, he can listen to their up-
dates and issue fake updates. The current imple-
mentation of Syncframe has no defense against
this, but we feel that IPspoofing is sufficiently
difficult that we can accept the risk of a man in
the middle attack until such a time that we can
implement an improved security layer.

There are a few options for defending against
the man in the middle attack. Authentication
can be moved to the SSL layer by using server
and client certificates. This would ensure that
the SSL connection would be formed between
two hosts with properly signed public keys. The
other option would be to provide a layer similar
to SSL that performed the key exchange under
the protection of the secret keys. Both of these
methods would ensure that only the intended
client and server would know the encryption and
signature keys for the session.

6 Performance

To test the performance of the Filesync system,
we created a test directory with 100 files of 1
megabyte each. Table 3 indicates the time for

11

Hunter Benchmark Clock User System
all new files 17.01 5.943 4.833
50% modified 8.931 4.346 2.991
0% modified 4.153 2.936 1.118
tar 9.142 0.076 3.803

Table 3: Hunter time tests: time for Hunter to
process 100 files of 1 megabyte each on a 400MHz
Apple PowerBook G4 with 384M of RAM. Times
reported are clock time, user CPU time, and sys-
tem CPU time. Each test was repeated 10 times
and an average presented. All times in seconds.

Hunter to scan all 100 files when all files were
new, after 50% of the files had been modified,
and after 0% of the files have been modified. For
comparison, we indicate the time for the Unix
“tar” program to read through the contents of
these files.

Hunter always takes more user time than tar
because it needs to calculate the MD5 sums for
every file that it processes. However, hunter
takes noticeably less clock time time than tar
when 0% of the files have been modified, even
though it needs to compute the MD5 codes for
each file: this is because Hunter is only reading
the files, not writing transactions. When Hunter
does need to write transactions, it takes more
than twice the lock time as tar, even though the
amount of data that it is writing is comparable.
This indicates that it might be possible to tune
Hunter’s output routines to improve overall per-
formance.

To test end-to-end performance, we set up the
synchronization network described by Figure 2
and started the system with empty root and
scratch directories. Each system was run with a
SYNCFRAME_SCAN set at 2 seconds, meaning
that Hunter ran every 2 seconds and Publisher
scanned for new update every 2 seconds.

We then created a single small file on the com-
puter named ni. Hunter running on ni detected
this file and created a update. That update was
sent to r2, which deposited the update into the
update database. The update was sent to lap1

Committer Benchmark Clock User System
all new files 5.326 2.682 1.571 @
50% modified 5.696 1.857 2.553
0% modified 0.022 0.005 0.011
untar 10.508 0.113 3.538

Table 4: Committer time tests: time for Com-
mitter to process transactions created by Hunter
for tests in Table 3. Times reported are clock
time, user CPU time, and system CPU time.
Each test was repeated 10 times and an average
presented. All times in seconds.

and v; After lap1 received the update, it also at-
tempted to send the update to v, but v refused
the update, telling lap1 that it already had the
update. The update was then sent by v to the
computer affectionately known as pain.

Each of these computers, in turn, executed
the update and created a SEEN update. These
SEEN records are then propagated to every
other host in the network. Total time to send
the data through the network was negligible; the
longest delays (24 seconds) were delays caused
by the sleep instructions in the Committer and
Publisher components. This is clearly an oppor-
tunity to employ the techniques in libasync[5] to
improve performance.

We then copied 20 files ranging in size from
230 bytes to 18,428 bytes into a directory un-
der synchronization control on the ni computer.
Hunter running on ni created the transactions
1 second after the files were created. Unfortu-
nately, at this point the Sun JDK 1.4.1 run-
time generated a runtime error and requested
that we reported the bug to Sun with Error ID
4F530E43505002E6.

The Java errors that we experienced on this
project were rarely repeatable. Re-running the
system and repeating the test, the batch of 20
files appeared within seconds on all of the com-
puters within the test network. The time it took
for the files to appear was entirely dependent
upon the frequency that Hunter and Committer
scanned for updates and the speed of the net-

Figure 2: A simple synchronization network set
up for performance measurements. The comput-
ers ni, r2, v and pain are all workstations run-
ning the FreeBSD operating system; r2 and ni
are connected with a 100 Mbps network, as are
the computers v and pain. The computers lapl
and lap2 are laptop computers that have inter-
mittent connections to r2 and v. All synchro-
nization was done on port 9011 using TCP/IP
with encryption disabled.

work connection.

7 Subtleties

This section of the paper addresses several subtle
issues with Syncframe.

7.1 What is Correct Synchronization?

Correctness means that:

e all updates are eventually seen by all nodes
e every conflict is detected by at least one

node

Note that we do not guarantee, and that it not
essential for correctness, that:
e there is a global ordering of updates

e every change to an object will be captured
by an update

12

In the event of a permanent partition, the sys-
tem is not guaranteed to work correctly.

7.2 Allowed Topologies

A properly formed Syncframe community is a
strongly-connected directed graph in which ver-
tices are hosts and edges are peer relationships
(defined in the configuration file). A strongly
connected graph is one in which for all pairs
of vertices, both vertices are reachable from the
other.

7.3 Conflict Detection and Resolution

As described above, when conflicting updates are
received the object is forked. The user is alerted
via a message in the log and an error message
to standard error. A conflict will be detected
on at least one node, at which point further up-
dates to the object are stalled until the conflict
is resolved. Users resolve conflicts by deleting
one object and renaming the correct one to be
the original name (after possibly manually merg-
ing conflicting updates). Conflict resolution is in
turn treated as an update and propagated to the
network.

Note that if two identical writes to the same
object are done on two different hosts, then both
writes will result in the same metadata M; being
created on each host. When the committer goes
to commit the second write, it will discover that
the object’s metadata has already been updated
from My — M, and the update will be dropped,
as it has already taken place.

Put another way, bundling both before and af-
ter metadata with each transaction makes them
idempotent, which make the system robust with
respect to certain kinds of conflicts.

7.4 Limits to Network Size

We have not done enough testing to know where
our bottlenecks are. However, since we allow
arbitrary network topologies it should be possi-
ble to build fairly large networks. For example,

13

a tree (in which updates flowed from the root
down) of five levels with a branching factor of 10
would not be unreasonable since it would only
take 4 hops for any update to reach a leaf and
every node would only have to have 10 network
connections open.

7.5 Joining the Network

To add a node to an existing network at least one
existing configuration file will need to be modi-
fied to add the new node as a peer (to meet the
strongly connected requirement). The new node
can designate any existing nodes as peers.

Any node that designates the new node as a
peer will create special write transactions to get
the new node synchronized initially.

7.6 The SEEN update

After each run of the Committer, a Syncframe
node creates a SEEN update that is sent to its
peers, which in turn sent the update to their
peers. Alas, in our design the SEEN update
needs to be sent to every node. The seen up-
date is used by peers

7.7 Object Renaming

Renames are currently implemented as a pair of
updates: the old object name is removed with a
DELETE update and a new object with a new
name is created with a WRITE update. While
this is correct, it is inefficient; to improve effi-
ciency we could implement a separate RENAME
transaction.

7.8 Permanent Partitions

If a network is permanently partitioned, then the
nodes that have peers across the partition will
never clean their updates. If the configuration
file is edited to remove the peers that are across
the partition, the cleaner will then automatically
remove the updates.

7.9 Fast Paths

Because each Syncframe peer attempts to send
all of its updates to all of its peers — and be-
cause updates are not sent to peers that already
have those updates — updates implicitly finds
fast paths through a synchronization network.

For example, if nodes A, B and C are con-
nected in a triangle, with fast links between A-B
and B-C, but a slow link between A and C, up-
dates will flow from A — B and then B — C
before updates can flow from A — C

8 Detecting Object Changes

Because we wanted to make Syncframe easy to
port and debug, we decided early on to keep all
modules entirely in user mode. One important
effect of this constraint is that we are unable to
listen to disk events, such as writes or deletes,
that affect files under synchronization. We thus
have to do periodic polling via the Hunter to
detect changes.

If propagation latency and efficiency became
more important, it would be possible to create
a “disk event listener” that created updates as
they were written to disk. One way to do this
would be to patch the Unix file system.

9 Lessons Learned

We learned the following while working on this
project.

e Starting update numbers at 1 may
be a mistake. Our update numbers start
at the first ordinal and monotonically in-
crease after that. This produced complica-
tions during development and testing, as we
frequently needed to restart the ordinal at
one. Whenever this happened, we needed
to go throughout the network and remove
the SEEN metadata files. A better design
might incorporate a host-based timestamp
in the update number.

14

e Separating updating algorithms from

data representation was a powerful
tool. The design of Hunter and Commit-
ter was significantly simplified by our sep-
aration of the abstract algorithms that op-
erated on “objects” from the specific algo-
rithms that dealt with the details of Unix
files. Cleaner and Publisher contained no
logic having to deal with files at all, simpli-
fying them as well.

Separating host-based logic from the
network-based logic was a powerful
tool The separation of the Publisher from
the rest of the system made it easy to test
the individual modules before we put the
whole system together.

Using the file system as a database
was a good debugging tool. Likewise,
our storing of updates in individual files,
rather than putting them in a database,
eased development. In a future implemen-
tation, we will have the decision to store up-
dates in individual files or in a B-Tree as a
compile-time option.

C++ enabled modularity. The design
of Hunter, Committer and Cleaner as sep-
arate C++ classes made it easy to develop
them in stand-alone executables, but then
it was easy to combine them into a single
executable for deployment.

It is important to think about logging
early on.

Good logging makes a system easier to de-
velop, debug, and test. Unfortunately, we
didn’t specify logging behavior in our ini-
tial design, and different team members de-
cided that different information was worthy
(or not worthy) of being logged. This cre-
ated considerable problems later on.

It is important to design and imple-
ment status commands early on. Our
original design called for the creation of sta-
tus commands that could be used to rapidly

determine the current status of the sys-
tem. For example, it would be nice to see
how many transactions are pending for each
peer, whether there is currently a connec-
tion with another peer, how many transac-
tions have been sent over the connection,
and so on. Unfortunately, for some rea-
son these commands were never developed.
They would have been very useful for setup
and testing.

e If you are on a deadline, don’t force
people to use tools that they are not
comfortable using. One of our project
members insisted writing this paper using
ITEX, even though nobody else on the team
had experience with the program. This
proved to be a mistake.

10 Future Work

10.1 Optimizations

The FileHunter and Committer programs can
be modified so that the “object” is actually a
64kilobyte page of a file, rather than an entire
file. This will allow the system to perform incre-
mental updates to a large file when only a few
bytes change. It will also have the side effect of
placing a maximum size limit on updates of just
over 64K.

10.2 Enhancements to the Syncframe
Server

To support multiple people using Syncframe on
the same host, the Syncframe server could use
the community that is sent across at the start
of the TCP/IP connection to determine which
configuration should be used.

10.3 Extending
Databases

Syncframe to

We have asserted that Syncframe will work with
objects other than files, but we haven’t proven

this. We are considering continuing this project
after the termination of the course and creating
an address book synchronizer for address books
stored in XML.

References

[1]

[3]

[4]

[7]

15

Per Cederqvist. Version management with
cvs, 2001.
URL http://www.cvshome.org/

Michael A. Cooper. Overhauling rdist for the
'90s. In LISA VI. October 1992.
URL http://magnicomp.com/rdist/

Richard Guy, Peter Reiher, David Ratner,
Michial Gunter, Wilkie Ma, and Gerald
Popek. Rumor: Mobile data access through
optimistic peer-to-peer replication. 1998.
URL http://lever.cs.ucla.edu/-
rumor98/er98wmda . ps

Susan Hotton. Keep your files in order with

my briefcase. Using Windows 98, 1999.

URL http://www.microsoft.com/windows98/-
usingwindows/work/articles/906Jun/-
briefcase.asp

David Mazieres, Frank Dabek, Eric Peter-
son, and Thomer M. Gil. Using libasync.

URLhttp://wuw.pdos.1lcs.mit.edu/6.824/doc/libasync.y

Benjamin C. Pierce, 2002.
URL http://www.cis.upenn.edu/-
“bcpierce/unison/

Sleepycat Software. Berkeley db online doc-
umentation, 2002.
URL http://wuw.sleepycat.com/

Jr. T. W. Page, R. G. Guy, J. S. Heidemann,
D. H. Ratner, P. L. Reiher, A. Goel, G. H.
Kuenning, and G. J. Popek. Perspectives on
optimistically replicated, peer-to-peer filing.
Software— Practices and Ezperience, 28:155—
180, February 1998.

[9] Andrew Tridgell and Martin Pool. rsync -~ A Syncframe Protocol (SFP)

faster, flexible replacement for rcp, 2002.
URL http://dp.samba.org/rsync/

16

1.1

The Syncframe protocol is a text-based proto-
col that is used to transfer Syncframe updates
between a pair of hosts. The protocol allows a
single connection to send updates in both direc-
tions.

The protocol runs on a TCP/IP port which
can be configured for an entire synchronization
community or for any pair of peers. If two users
are using Syncframe on a single host, they must
each have a dedicated TCP/IP port number for
their synchronization activities.

The protocol assumes that only one conversa-
tion taking place on a given socket at a time. It
handles the cases in which either or both peers
have updates that they wish to send. (This is
necessary because one Syncframe peer may be
behind a firewall or have a changing IP address
and thus be unable to receive incoming TCP/IP
connections.) In the case that both hosts have
updates to send, the protocol arbitrates between
the hosts, effectively giving each host an equal
chance of sending or receiving updates — with-
out requiring that either party maintain state
regarding whose turn it is to send updates.

Performance of the protocol remains to be
studied. An advantage that this protocol has
is that it allows for the batch transfer of many
small objects. The protocol’s primary shortcom-
ing is that it does not allow for bi-directional
data transfer, so in the case where both parties
have updates to send, the protocol is at most
50% efficient.

A.1 Example Conversation

An example SFP conversation illustrates the
typical operation of the protocol, while a formal
specification using states and state transitions
follows.

Nodes A and B have established a connection
that is authorized and have agreed on a protocol
version (this version). A wants to give B updates

from node C numbered 100-200. B has already
received updates 100-149 (perhaps from a previ-
ous session or from C directly).

The following messages are exchanged:

A—B "STARTSEND 3823" 3823 is a
random number - see below

B—A "100 CONTINUE"

A—B "PROPOSE C 100 200"

B—A "PROPOSE C 150 200"

A—B Data C 150-200

B—A "202 CONFIRM C 150 200"

Note: the Syncframe protocol uses the term
“object” to refer to an update that is being sent
between peers, rather than an object that is under
synchronization control. We apologize for this
confusion.

A.2 Protocol Details

The Syncframe protocol relies on the sending of
ASCII text messages between the two partici-
pants to query for the availability of updates and
to initiate their transfer. Updates are transferred
simply by sending them down the TCP/IP con-
nection; the receiving side can examine the in-
coming updates and determine the end of each
one.

Syncframe messages are not case sensitive.
Each message is terminated by a single newline.

When one Syncframe peer connects to an-
other, both peers are in the INITIAL state.
From this state either peer can enter the SEND-
ING state by sending a STARTSEND z com-
mand. If the other side acknowledges this with
a CONTINUE acknowledgment, then a delega-
tion has been made and one peer will send while
the other receives. If both peers send a START-
SEND 2z command before the other acknowl-
edges, then the peer that sent a larger randomly-
chosen integer will be the sender and the other
will be the receiver.

Once a delegation has been made, the sending
node will send a PROPOSAL, which is a pro-
posed set of updates that it can send. The re-
ceiving node will then acknowledge this proposal

STARTSEND

PROPOSE

100 CONTINUE

200 OK

201 NO OBJECTS NEEDED

300 ABORT

400 BAD REQUEST

401 NOT ALL OBJECTS RECEIVED
402 UNEXPECTED OBJECT

500 BAD RESPONSE

Table 7: Syncframe Protocol Messages

with a list of which updates it wishes to receive.

17

send STARTSEND

recv STARTSEND
recvdsggll\{%?ﬁlgg SENTCONFIRMREQUEST tie election,
" send STARTSEND

reco STARTSEND reco STARTSEND
lose election win election reco dcgal\gggg
send CONTINUE send PROPOSE sen
WAITPROPOSAL SENTPROPOSAL
recv PROPOSE reco PROPOSE

updates needed
send OK

send updates

reco PROPOSE;

no updates needed recv
WAITDATA send NO OBJECTS
NO OBJECTS NEEDED

NEEDED

receive updates reco OK or ABORT

send OK

Figure 3: Syncframe protocol state transition diagram with error states omitted

18

START STATE - END STATE
Input: Text required for transition
Output: Text output after transition

R1 INITTAL - WAITPROPOSAL
Input: “STARTSEND x” where x is a randomly-chosen integer
Output: “100 CONTINUE”
R2 INITIAL - ERROR
Input: Not “STARTSEND x” where x is integer
Output: “400 BAD REQUEST”
R3 WAITPROPOSAL - WAITDATA
Input: “PROPOSE node x y” where node is a node in community, x and y integers,
0 <z <y<max
Output: “PROPOSE node a b” where node is above, a...b is the range receiver wants,
a>z,b<y,a<b
Note: Sender MUST send the range receiver wants
R4 WAITPROPOSAL - DONE
Input: “PROPOSE node x y” where node is a node in community, x and y integers,
0 <z <y<max
Output: “201 NO OBJECTS NEEDED?”
Note: Receiver already has all the updates (we anticipate this to be a common case)
R5 WAITPROPOSAL - ERROR
Input: Any message not meeting input of R3 or R4
Output: “400 BAD REQUEST”
R6 WAITDATA - DONE
Input: All requested updates received or abort
Output: “200 DONE” or “300 ABORT”
Note: A “300 ABORT?” should be sent when the protocol wants to abort; data received after
this point should be ignored
R7 WAITDATA - ERROR

Input: Not all requested updates received or unexpected update
Output: “401 NOT ALL OBJECTS RECEIVED”

Output: “402 UNEXPECTED OBJECT”

Note: Ignore unwanted updates

Table 5: Receiving state transition table for Syncframe Protocol

19

START STATE - END STATE
Input: Text required for transition
Output: Text output after transition

S1

INITIAL - SENTCONFIRMREQUEST
Input:
Output: “STARTSEND x” where x is randomly generated integer

52

SENTCONFIRMREQUEST - SENTPROPOSAL

Input: “100 CONTINUE” or “STARTSEND j” where j is an integer greater than i (above)
Output: “PROPOSE node; x y” where node; is a node in community, x and y integers, the
sender wants to send updates from node x through y (inclusive)

Note: If receives STARTSEND, both nodes are trying to act as senders

S3

SENTCONFIRMREQUEST - WAITPROPOSAL
Input: “STARTSEND j” where j is an integer greater than i (above)
Output: “100 CONTINUE”

Note: Sender now becomes a receiver

S4

SENTCONFIRMREQUEST - SENTCONFIRMREQUEST
Input: “STARTSEND j” where j is an integer less than i (above)
Output: nothing

54

SENTCONFIRMREQUEST - SENTCONFIRMREQUEST

Input: “STARTSEND j” where j is an integer equal to i (above)

Output: “STARTSEND i” where i is a newly chosen random number

Todo: We may want to but a counter on how many of these transitions we have in case
sender and receiver have the same random number generator or have some other problem
(avoids infinite loops)

S5

SENTCONFIRMREQUEST - ERROR
Input: Not one of the above
Output: “500 BAD RESPONSE”

S6

SENTPROPOSAL - SENTDATA
Input: “PROPOSE node, a b” where a < b,a > z,b < y, node, = node;
Output: Send updates [a-b] for node,

ST

SENTPROPOSAL - DONE

Input: “201 NO OBJECTS NEEDED?”

Output:

Note: The client already had all the proposed updates

S8

SENTPROPOSAL - ERROR
Input: Invalid proposal
Output: “500 BAD RESPONSE”

S9

SENTDATA - DONE

Input: “200 OK” or “300 ABORT”

Output:

Note: In case of a “300 ABORT” the sender should immediately stop sending

510

SENTDATA - ERROR
Input: Not “200 OK” or “300 ABORT”
Output: “500 BAD RESPONSE”

Table 6: Sending state transition table for Syncframe Protocol. States involved in sending updates
are in red; states involved in receiving updates a2r63 in blue.

This is a sample Syncframe configuration file.
Any line of the file may begin with a hash mark to indicate a comment.
Blank lines are ignored too.

First we define our community. The community identifies this synchornization network.
Communities are case-sensetive and may consist of any character other than = and \n.

H OH O H H OH H OH

COMMUNITY=Boston3

Next we define our encryption key. In the initial system, we’ll use this for

access control. They "key" is actually a passphrase that is then hashed with MD5 to create
a true 128-bit key

#

KEY=gandalf

Syncframe uses a roll-our-own TCP protocol that runs on a port that we specify.

Clients and servers use the same port. If multiple people are using Syncframe on a single
computer, they must choose their own ports. Different peers in the same community can use
different ports, but ports other than the standard port need to be clearly indicated

in the config file

PORT=6533

This section defines the synchronization root for the COMMUNITY on this host.
~ is interperted as the user’s $HOME.

If $HOME is not set, using ~ generates an error

SYNCROOT="/synctest

Every Syncframe peer requires a unique ID. You can make this your hostname, but
beware that DHCP makes hosts change thier hostnames. The name doesn’t mean anything, really.
MYNAME=syncmasterl

Hey, here’s who we talk to. It is a set of:
* unique IDs,
* internet addresses, either hostnames or IP addresses.
* optional ports (if no port is specified, Syncframe uses the PORT specified above.)
PEER=K1:kl.vineyard.net
PEER=R2:r2.simson.net
PEER=NO:no.simson.net:6500

#
#
#
#

These configuration variables are used to specify synchornization behavior.
IGNORE specifies a pattern that should be ignored if it is found in a filename
IGNORE=*.0
IGNORE=*"
IGNORE=. _*
21
Where Syncframe stores the transaction log and other information
This must be a directory
#
SYNCSCRATCH="/.syncframe

Verbosity [0-5], O is default

0 is no output

1 is errors only

2 is minimal informational messages (e.g., "Starting Daemon")
5 is full debug

VERBOSITY=0

Do we hunt on demand? If so, hunter must be called manually
Default is "no"
HUNT_ON_DEMAND=NO

#

Logging

#

Where to log:

#
LOGFILE="/.syncframe/log.txt
#

What to log:

#

LOGLEVEL=0x0001

Note LOGLEVEL can be a decimal number or be preceeded by "O0x" to
be a hexdecimal level.

The following bit fields are accepted for logging:
0x0001 - Program startup/shutdown

0x0002 - Thread and task startup/shutdown
Transactions:

0x0010 - Transaction creation

0x0020 - Sending transaction to a remote machine
0x0040 - Receiving a transaction from a remote machine
0x0080 - Committing a transactions

0x0100 - Expunging a transaction from the store

Debugging:
0x1000 - Updates to metadata database

H OH OH H OH OH OH H O OH H H K H

Table 9: A sample Syncframe configuration file, cont.

22

